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Training complex skills is typically accomplished bymeans of a trainer ormediator
who tailors instruction to the individual trainee. However, facilitated training is
costly and labor intensive, and the use of a mediator is infeasible in remote or
extreme environments. Imparting complex skills in applications like long-
duration human spaceflight, military field operations, or remote medicine may
require automated training algorithms. Virtual reality (VR) is an effective, easily
programmable, immersive training medium that has been used widely across
fields. However, there remain open questions in the search for the most effective
algorithms for guiding automated training progression. This study investigates the
effects of responsiveness, personalization, and subtask independence on the
efficacy of automated training algorithms in VR for training complex,
operationally relevant tasks. Thirty-two subjects (16M/16F, 18–54 years) were
trained to pilot and land a spacecraft on Mars within a VR simulation using four
different automated training algorithms. Performance was assessed in a physical
cockpit mock-up. We found that personalization results in faster skill acquisition
on average when compared with a standardized progression built for a median
subject (p = 0.0050). The standardized progression may be preferable when
consistent results are desired across all subjects. Independence of the difficulty
adjustments between subtasks may lead to increased skill acquisition, while
lockstep in the progression of each subtask increases self-reported flow
experience (p = 0.01), fluency (p = 0.02), and absorption (p = 0.01) on the
Flow Short Scale. Data visualization suggests that highly responsive algorithms
may lead to faster learning progressions and higher skill acquisition for some
subjects. Improving transfer of skills from training to testing may require either
high responsiveness or a standardized training progression. Optimizing the
design of automated, individually adaptive algorithms around the training
needs of a group may be useful to increase skill acquisition for complex
operational tasks.
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1 Introduction

Training for complex tasks is critical for ensuring high
performance in challenging operational environments.
Automated training is required when facilitation is infeasible,
such as when bringing large equipment or physical simulators is
impractical (Braun and Manning, 2006; Simon et al., 2015), when a
trainer or mediator cannot be spared among crew (Saluja et al., 2008;
Landon et al., 2017; Robertson et al., 2020), or when communication
delays render remote facilitation difficult (Love and Reagan, 2013;
Kintz and Palinkas, 2016; Diamond, 2022). Such limitations are
frequently encountered in high-consequence domains with large
constraints on the ability to practice tasks in advance, including
spaceflight, remote medicine, and military field operations.

Adaptive training algorithms alter subtask difficulty as a
function of subject performance across a range of related
subtasks, a process also known as dynamic difficulty adjustment
(Hunicke, 2005; Zohaib, 2018; Moon and Seo, 2020). The core facet
of adaptivity is the use of performance on previous trials as an input
used to determine the difficulty of the successive trial by means of an
algorithm. By contrast, non-adaptive algorithms hold difficulty
across subtasks fixed at constant levels regardless of performance.
The challenge-point framework suggests that training efficiency is
increased by modulating difficulty to account for the skill level of the
performer to provide optimal challenge (Guadagnoli and Lee, 2004).
Automated training where task difficulty is adaptively matched to
skill is known to increase engagement (Missura, 2015; Xue et al.,
2017), improve training outcomes (Hunicke, 2005; Lang et al., 2018;
Iván Aguilar Reyes et al., 2022), and enhance overall experience and
reported stimulation (Schmidt, 1975). However, the effect of
personalized rather than standardized progression on training
outcomes and flow experience, which depend on how well a
training system provides optimal challenge, has not been
investigated (Vaughan et al., 2016; Jeelani et al., 2017; Yovanoff
et al., 2017). The effect of progression personalization is important
for applications that require complex training on multiple subtasks
and where individual training variability may be high.

Further, although different performance thresholds for difficulty
progression have been used for adaptive training (Koenig et al., 2011;
Dhiman et al., 2016; Yang et al., 2016; Gabay et al., 2017), the effect
of high vs. low thresholds (responsiveness) on training outcomes has
not been systematically studied. Characterizing the optimal degree
of responsiveness in automated training is important for reducing
inefficiency, since an algorithm that is not adequately responsive
requires excess trials to adjust difficulty and risks negatively affecting
subject motivation. In addition, past investigations of training
involving multiple subtasks have typically required that subjects
train to proficiency on one task before progressing to a new one
(Gagne, 1962; Rickel and Johnson, 1999 and 2010). The effect of
training multiple subtasks in parallel and of independent subtask
progression has not been investigated and is important for
developing automated training systems which can most
effectively teach subjects to perform complex, multi-part tasks.

The challenge-point framework suggests that optimal challenge
occurs at the difficulty level where learning is maximized without
large decrements in performance. When a training algorithm
maintains this level of optimal challenge for subjects, they
become engrossed in an activity and can enter a state called flow

in which self-awareness is reduced and time is perceived to pass
rapidly, conditions that accompany favorable learning
(Csikszentmihalyi and LeFevre, 1989; Agarwal and Karahanna,
2000). The experience of flow has been shown to increase
motivation and exploratory behavior and to improve training
and learning outcomes in computer-mediated environments
(Trevino and Webster, 1992; Ghani and Deshpande, 1993;
Webster et al., 1993; Choi et al., 2007). However, it is not known
how automated training systems can best detect and maintain a state
of flow (Liu et al., 2005; Hamari et al., 2016; Oliveira Dos Santos
et al., 2018) or how responsiveness, personalization, and subtask
independence affect flow experience. Investigating the role of these
features in improving subjective experiences during training is
important for developing training algorithms which maximize
flow and optimize learning.

The use of VR as a medium for adaptive training is an area of
increasing interest. Immersive training in VR is known to be
effective at imparting complex, operationally relevant skills
(Thurman and Mattoon, 1994; Ng et al., 2019) and has been
used for decades by entities like NASA to train astronauts
(Psotka, 1995; Homan and Gott, 1996), including to perform
operational tasks in neutral buoyancy (Everson et al., 2017;
Sinnott et al., 2019), conduct simulated extravehicular-activity
(Garcia et al., 2020), and to perform on-orbit repairs of the
Hubble Space Telescope (Loftin et al., 1997). Although the
transfer and equivalence to real world tasks has been
demonstrated extensively (Kenyon and Afenya, 1995; Rose et al.,
2000; Hamblin, 2005; Park et al., 2007; Moskaliuk et al., 2013), VR
training does not confer benefits universally. For instance, higher
levels of immersion may distract from learning (Jensen and
Konradsen, 2017; Makransky et al., 2019) and virtual
environments are less effective than real-world training for
skilled sensory-motor coordination tasks (Harris et al., 2020;
McAnally et al., 2022). Despite this, skill retention in both
minimally and maximally immersive VR training systems
(i.e., desktop vs. head-mounted display (HMD), respectively) is
high for procedural skills (Farr et al., 2023), and highest for
subjects who used HMDs when training to gain complex military
medical skills (Siu et al., 2016). Skill acquisition is highest among
those who train in VR, especially if used in concert with physical
and/or haptics-mediated controls (Butt et al., 2018). Compared to
large ground-based flight simulators, VR offers a lightweight,
programmable, cost-effective, and easily operable alternative
(Gupta et al., 2008) ideal for delivering automated training in
remote environments.

We hypothesized that higher degrees of responsiveness,
personalization, and subtask independence would improve skill
acquisition, performance in a final assessment environment, and
flow experience of subjects trained by automated algorithms.
Although prior work has found adaptive training in immersive
VR to be effective for simple procedural tasks (Sampayo-Vargas
et al., 2013; Siu et al., 2016; Constant and Levieux, 2019), adaptive
training on complex operational tasks has typically only been done
in a physical environment (Gray, 2017; Plass et al., 2019). To bridge
this gap, we conducted automated training in VR and selected three
piloting subtasks with both motor learning and strategic decision-
making components to investigate the role of algorithm features on
complex, operationally relevant training.
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2 Methods

In summary, the experimental data collection was completed
over a period of 4 days, with 3 training sessions, each spaced 18–48 h
apart (depending upon subjects’ schedule availability). Each session
contained 10 training trials for a total of 30 training trials across the
3 sessions. During the training sessions, subjects were trained to
perform a spacecraft entry, descent, and landing (EDL) task in VR.
The complex EDL task included three subtasks described in detail in
section 2.2. The difficulty of each subtask was modulated depending
on the algorithm to which subjects were assigned.

Subjects were randomly assigned to one of four groups, with
their own algorithms that defined the automated training
progression: Two-Up/One-Down with Lockstep (2U1D-L), Two-
Up/One-Down Unlocked (2U1D-UL), One-Up/One-Down with
Lockstep (1U1D-L), and Median Fixed Progression (MFP). Each
of these algorithms is described in detail in Section 2.4. For the
fourth and final session, subjects performed 10 trials of the EDL task
in the Aerospace Research Simulator (AReS) physical (non-VR)
cockpit mock-up (Zuzula et al., 2018), shown in Figure 2. Subjects in
the AReS cockpit were assessed at a fixed difficulty level not
encountered during training. This phase of the experiment was
used to assess performance when executing the task after training
was completed.

Subjects completed an Affect Grid before and after each session
to provide information on induced changes in emotional state
(Russell et al., 1989) as a result of the training and testing
sessions; this survey is mentioned for completeness, but was not
analyzed for this experiment. Following each session, subjects
completed the Flow Short Scale (FSS) survey to provide self-
reported information on wellbeing as proxies for the degree of
task challenge, internalization, commitment, and motivation
(Diener et al., 2010; Engeser and Rheinberg, 2008; Abuhamdeh,
2020; Roscoe and Ellis, 1990).

2.1 Subject demographics

A total of 32 subjects (16M/16F, 18–54 years, avg. 23.82 years)
in good general health were recruited for participation in the
study. Recruitment was primarily accomplished by means of
flyers posted within the Aerospace Engineering Sciences
building at the University of Colorado, Boulder. Subjects were
prescreened and excluded from the study if they scored above the
90th percentile on the Motion Sickness Susceptibility
Questionnaire (Reason, 1968; Golding, 1998; Golding, 2006) to
avoid the potential for cyber sickness in highly susceptible
individuals during VR training. Subjects were also excluded if
they reported having color blindness or vision uncorrectable to
20/20 to avoid confounds surrounding variability in the
perception of the primary flight displays and their indicators.
Subjects were required to abstain from alcohol 6 or fewer hours
prior to the study, and all subjects completed a reaction time test
and a demographic survey, which included questions about prior
piloting and flight experience and prior use of VR systems. These
tests were designed to allow for an examination of individual
variability in training and performance outcomes during
statistical analysis.

Subjects were randomly assigned to one of four training groups
as shown in Table 1, which includes basic demographic information
for each group. Random assignment to the MFP group began once
testing in the 2U1D-L group was completed.

2.2 Training simulator

The VR training simulator was developed in Unity Game
Engine version 2020.3.18. The EDL task required subjects to
complete a sequence of activities, or subtasks, in each trial to land
a spacecraft on the surface of Mars. The first subtask was landing
site selection (LS), where subjects were presented with a
topological map of the Martian surface (1a) and asked to pick
a landing site that optimized the distance to marked points of
scientific interest while avoiding hazardous (i.e., excessively
steep) terrain within a time window of 8 s. Next, subjects
performed the manual control (MC) subtask, where they used
pitch and roll commands on a joystick to follow a guidance cue
and other flight display information (Figure 1B) to navigate the
spacecraft to their selected landing site with a limited amount of
propellant for piloting. Once the spacecraft was piloted over the
landing site, subjects transitioned to the terminal descent (TD)
subtask, where they employed a hand thruster to minimize
vertical descent speed on touchdown using a limited amount
of propellant for landing on the surface (1c). Graphics from each
of the three EDL subtasks are shown in Figure 1.

Each of the subtasks had 24 possible levels of difficulty (1–24).
The AReS cockpit performance assessment was fixed at level 18,
which corresponded to the full complex task at a challenging, but not
infeasible difficulty; this level was skipped during training to ensure a
novel difficulty for all subjects during the assessment. The LS subtask
adjusted difficulty by varying the number of science sites and their
proximity to dangerous terrain. The primary MC subtask adjustors
were windspeed, which perturbed the spacecraft from the desired
heading, and fuel capacity. The TD subtask varied the fuel available
for the descent engine thruster.

During training trials, the simulator collected raw
performance metrics. For the LS subtask, the simulator
reported the sum distance between the selected landing site
and the scientific sites of interest together with the sum
distance for an algorithmically computed perfect landing site
choice. A crash was reported if the subject failed to select a site in
time, or if they selected a site on dangerous terrain. For the MC
subtask, the simulator reported the root mean squared error
between the guidance cues and the subject’s pitch and roll
commands. A crash was reported if the subject ran out of fuel;

TABLE 1 Allocation of subjects into four training groups with associated
demographics, including sex composition, average age and age range, and
number of subjects who reported previous flight experience.

Group Sex (F) Age Prior flight experience

2U1D-L 4M/4 25 [22–32] 2

1U1D-L 4M/4 22 [18–35] 2

2U1D-UL 4M/4 27 [18–54] 2

MFP 4M/4 20 [18–25] 4
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when MC crashes occurred, the simulator was unable to score the
LS and TD tasks and these data points were excluded from
analyses. For the TD subtask, the simulator reported vertical
speed upon contact with the ground. A crash was reported if the
subject impacted the surface at a speed exceeding limits
for survival.

At the end of each training trial, the simulator presented simple
performance grades to the subject for each subtask: “Poor,”
“Adequate,” or “Excellent.” These grades were calculated based
upon the raw performance metrics, and the thresholds for each
category were determined via pilot testing prior to the experiment.
For the MC subtask, the thresholds were dependent upon difficulty
level because increased wind disturbance increases the root mean
squared error, even under exceptional reaction times. Subjects were
instructed to attempt to earn “Excellent” grades for all
three subtasks.

A head-mounted display (HMD, HTC Vive Pro) was used to
project the simulated interior of the AReS spacecraft cockpit mock-
up to subjects during training (Sherman et al., 2023). The virtual
displays and cockpit environment were designed to emulate those of
AReS, the physical cockpit mock-up seen in Figure 2. Subjects used a
physical joystick and hand-thruster (Logitech X-52 Saitek X52 Pro
Flight System) to perform tasks, and physical inputs to both

controllers were recorded in a server in addition to
performance data.

2.3 Automated training algorithms

Four adaptive difficulty training algorithms were developed,
visualized in Figure 3. The first adaptive algorithm takes the
form of Two-Up/One-Down (2U1D), which we use as our
baseline. In this algorithm, difficulty is quantized and can both
ascend (Up) and descend (Down) by increments of 1 difficulty level
based upon performance on preceding trials. This staircase is
modeled on the parameter estimation by sequential testing
(PEST) method often used for signal detection tests, whereby the
strength of a signal is diminished after successive correct detections
of a stimulus (Taylor and Creelman, 1967; Pollack, 1968; Leek,
2001). Requiring a higher number of correct detections increases
fidelity, but with diminishing effect (Levitt, 1971). Thus, when
applied to training paradigms, subjects in the 2U1D staircase
were required to score “Excellent” performance grades on a
subtask twice at the same level of difficulty in succession (Two-
Up) before that difficulty was modulated up by one level.
Conversely, subjects who scored a “Poor” performance grade just

FIGURE 1
(A) Topological map on the secondary flight display used to select a landing site during the LS subtask; (B) Primary flight display with guidance cue,
altimeter, velocity meter, fuel gauges, flight vector indicator, andmini-map for piloting during the MC subtask; (C) View of the virtual cockpit with primary
and secondary flight displays and auto-generated Martian landscape for landing burn execution during the TD subtask.
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once on a subtask (One-Down) would have the algorithm modulate
the difficulty down by one level for that subtask.

In contrast to the baseline 2U1D progression algorithm, we
investigated the role of responsiveness by developing a second
algorithm that uses a One-Up/One-Down (1U1D) variant which
requires only a single, rather than double, excellent performance to
increase subtask difficulty. Both forms of the staircase have been
used in prior work, with 2U1D being employed for rehabilitation
training in virtual environments, and its 1U1D counterpart being
used de facto for neurorehabilitation, balance and gait training, and
training of fine motor movements (Cameirão et al., 2010; Grimm
et al., 2016; Gray, 2017; Kumar et al., 2018; Saurav et al., 2018). By
comparing the outcomes on skill acquisition, transfer, and
performance outcomes of 2U1D versus 1U1D, we were able to
isolate the effect of heightened sensitivity and responsiveness to
subject performance.

We also investigated the role of independent versus locked
subtask progression on learning outcomes. To do so, we created
a system called “lockstep” such that when difficulty levels begin to
diverge, the difficulty of the highest-level subtasks were “locked”,
unable to increase (regardless of performance) until the difficulty of
the lowest level subtask improved to within one difficulty level. This

lockstep was intended to prevent the development of one skill at the
expense of mastering the entire integrated task. By contrast, an
unlocked staircase allowed for independent modulation of subtask
difficulty. Staircase independence assumes that though sequential
and interconnected, subtasks require disparate skills and that
subjects may develop skills faster on certain subtasks compared
to others. When the 2U1D staircase was unlocked (2U1D-UL), there
were three staircases functionally operating in parallel, modulating
difficulty according to subject performance for individual subtasks.
This allowed for unconstrained progression on the basis that
subjects will learn more effectively at varying levels of challenge
across subtasks.

Finally, we investigated the role of personalization by developing
the Median Fixed Progression (MFP) algorithm, a non-adaptive,
fixed progression based on themedian difficulty progression on each
subtask by subjects in the baseline 2U1D condition with lockstep
enabled (2U1D-L). MFP mimics the progression characteristics of
adaptivity without responding to individual subject performance. It
isolates the effect of subject-specific adaptivity on those whose
performance, and thus training needs, differ from the median,
either because of exceptional ability or unique difficulty in skill
acquisition. The MFP condition captured the initial decline in

FIGURE 2
(A) Head-mounted VR display, joystick, and hand-thruster used by subjects during virtual training (B) AReS cockpit interior during EDL scenario
testing, with physical flight displays and identical flight controls visible (C) View of the AReS cockpit exterior in the Bioastronautics Laboratory at the
University of Colorado, Boulder, with external monitors and controls visible.
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difficulty across subtasks as subjects familiarized themselves with
subtasks and associated controls, as well as the eventual and gradual
increase in difficulty as subjects become familiar with controls and
begin honing specific motor skills.

2.4 Statistical methods

2.4.1 Data preparation
The raw performance metrics collected by the simulator were

transformed into a subtask skill metric for each subtask and a
summary mission success indicator for the trial as a whole. The
subtask skill metrics—prior to difficulty control, as discussed
below—are continuous values between zero and one such that
zeros correspond to crashes, values less than 0.25 are “Poor”
grades, values between 0.25 and 0.75 are “Adequate” grades, and
values greater than “0.75” are “Excellent” grades for the subtask. This
standardization ensures that the subtask skill metrics are comparable
across subtasks. To construct these numbers, we computed a linear
transformation of the raw performance metrics, and then applied the
error function. The transformation was chosen such that the result of
the error function corresponds with the correct performance grades.
We refer to the integrated skill on a given trial to be the sum of the
three subtask skill metrics. The mission success indicator takes the
value one if the performance grades contain at least one “Excellent”
grade and no “Poor” grades, and zero otherwise.

A difficulty control mechanism was used to account for the
differences between achieving an “Excellent” grade at each difficulty
level. Conceptually, we considered an “Excellent” grade on the highest
difficulty level of 24 to correspondwith havingmastered the task at 100%
of the possible difficulty. An “Excellent” grade on level 23 corresponds

with a 23/24 proportion of the task’s possible difficulty. As such, we
multiplied the subtask skill metric by the difficulty level at which it was
completed, divided by 24. This adjustment means that the maximum
possible subtask skill metric at the starting level of 12 is 0.5, and the
corresponding maximum integrated skill at level 12 is 1.5 (if all three
subtask skill metrics were at their maximum of 0.5).

2.4.2 Automated training
The difficulty staircases were analyzed to assess how the

algorithms facilitated difficulty progression during training. We
then compared the staircases with performance measured in the
AReS mock-up to assess whether the facilitation affected task
execution after training. To determine whether the difficulty
staircases differed between groups, we used Mixed-ANOVA
(Kassambara, 2023) to compare each subject’s median difficulty
level attained between groups and within each subject’s sessions.
Since the sphericity assumption was violated (Mauchly: group*session
interaction p < 0.00005) due to the diffusion of subjects’ difficulty
levels over time, Greenhouse-Geisser corrections were used. Pairwise
t-testing with Holm’s corrections were used in post hoc tests. To
compare the staircases with performance in the mockup, we created a
visualizationmapping the difficulty attained on the last trial versus the
skill level attained in the mockup (Figure 7).

We hypothesized that the subject’s skill level progression would
initially increase quickly before plateauing. To characterize this
learning process in training, nonlinear mixed effects modeling
was used to fit a logistic (learning) curve for skill level as a
function of trial number (x) with three parameters: the
asymptote (asym), the scale (scal), and the midpoint (xmid)
(Dang et al., 2017; Pinheiro et al., 2017).

skill � asym

1 + e−
x−xmid( )
scal

(1)

The asymptote describes the maximum achieved skill. The scale
describes the timescale for attaining the asymptote, and the
midpoint describes the inflection point on the curve. We used
fixed effects for the asymptote and scale by group, with a global
midpoint. Random effects were used for the asymptote by subject.
The residuals in the final model were skewed slightly left (as
ascertained from a QQ plot), and their variance was not
homogeneous in time because subjects’ skills diverge as their
difficulty levels diverge. Consequently, measurements taken near
the end of training were too highly penalized for large residuals, and
some outlying negative residuals (crashes) were strongly penalized.
These effects caused underestimates of the asymptote, but the result
was uniform across groups, retaining cross-group comparability.

To assess whether the maximum achieved skill during training
and the learning timescale differed between groups. A permutation
test was used to ascertain whether the fixed effects modeling
parameters differed significantly from the 2U1D-L baseline. The
null hypothesis was that the training algorithm had no effect on the
measurement of the asymptote fixed effects. The same model was fit
for 1,000 randomized training algorithm assignments to produce a
sampling distribution for the differences between the asymptote
fixed effects (Finos et al., 2013). We then compared the sampling
distribution with the differences obtained for the real data to
produce a p-value.

FIGURE 3
Features of automated algorithms investigated in the study:
responsiveness, by changing the progression sensitivity; integration,
by removing subtask lockstep; and personalization, by creating
difficulty fixed to the median progression of adaptively
trained subjects.

Frontiers in Virtual Reality frontiersin.org06

Verniani et al. 10.3389/frvir.2024.1322656

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2024.1322656


2.4.3 Cockpit performance
We aimed to ascertain how differences in training groups

corresponded with differences in performance during cockpit
evaluation. Our hypothesis was that training groups attaining
higher median difficulty levels, or which achieved higher
asymptotic skill levels in training, would proceed to perform
better during evaluation. We compared the composite and
integrated skill metrics attained by subjects in each group when
evaluated on the first trial in the AReS cockpit mock-up. We limited
our evaluation to the first trial to preclude measuring any potential
skill acquisition and adaptation to the AReS environment as a result
of repeated trials. The first trial is especially relevant as it is
analogous to a pilot’s first transition from simulator training to
physical execution. Depending on assumption validity, we used
either one-way ANOVA or Kruskal–Wallis to compare
composite and integrated skill metrics as assessed on the first
trial in AReS. Where significant results were obtained, pairwise
t-tests factor or Dunn’s tests were used for post hoc analysis with
Holm’s correction.

The mission success indicator provides a summary of whether a
given trial would have resulted in a successful mission. We aimed to
test whether the training condition affected the probability of
mission success. To compare mission success probability for each
subtask across groups, we modeled successes on the first trial in the
AReS mockup as draws from one of four Bernoulli distributions
such that each group is permitted its own success probability. A
generalized likelihood ratio test was conducted to test the null
hypothesis that these success probabilities were equal (Amsalu
et al., 2019).

2.4.4 Subjective perceptions
Differences in self-reported perceptions of flow were

analyzed between groups during training. Parametric tests
were exchanged for nonparametric tests when assumptions
were violated. For a subset of attributes from the Flow Short
Scale survey (i.e., flow experience, perceived task importance,
fluency, and absorption), we used mixed ANOVA on the training
data to compare between-subject training conditions and within-
subject sessions. Where significant results were obtained,
pairwise t-tests or Dunn’s tests were used for post hoc analysis
with Holm’s correction.

Mixed ANOVA was used for analysis as the method has been
widely employed in studies that assess skill transfer from virtual to
physical environments, as well as to assess attributes of the Flow
Short Scale surveys (Wilbert et al., 2010; Francis et al., 2020; Cooper
et al., 2021; King et al., 2022). All analyses were performed using R
version 4.3.0 (R Core Team, 2023) and Python 3.10.6 Jones et al.,
2001; McKinney, 2010; Vallat, 2018; Wickham et al., 2019.

3 Results

3.1 Automated training

Difficulty progressions of each automated training group as a
function of subtask and training trial are shown in Figure 4. The LS
task (Figure 4-LS) was the easiest subtask. Subjects in all algorithms
showed the ability to perform the task well at the entry level

difficulty, level 12. Over the 30 training trials, median difficulty
level achieved diverges. Testing the interaction between training
session and group yielded significance (p = 0.027). The MC subtask
(Figure 4-MC) was the most difficult of the three task dimensions, as
shown by the initial decrease in difficulty as all algorithms stepped
down as a result of poor performance. This dip in difficulty level at
the start of training is caused by task familiarization and was
sustained for many subjects during all training trials.

The 1U1D-L group tends to excel faster on the MC subtask, but
the interaction between training session and group did not yield
significance (p = 0.733), likely due to high individual variability.
The TD subtask (Figure 6-TD) also showed a familiarization dip in
the initial trials, but subjects then began to progress in difficulty
over the remaining training trials. While the 2U1D-UL group
reached the highest difficulty level, the interaction between
training session and group did not reach significance (p =
0.199). Paired t-testing with Holm’s corrections found no
significant differences in the difficulties achieved by each group
in any session; we did not assess contrasts between sessions of any
one group because these comparisons are not of research interest.
See Table 2 for complete results.

Integrated skill acquisition is shown below in Figure 5. All
training conditions show subjects improving over time. Some
high performing subjects improve near linearly, while other
subjects follow the learning curves more closely. The 2U1D-L,
1U1D-L, and 2U1D-UL groups all have similar scale parameters,
and the permutation test on these parameters found a significant
difference between the MFP group and the baseline, 2U1D-L (p =
0.005). This difference likely occurred because the MFP reaches high
difficulty levels—and thus higher integrated skill levels—slower than

FIGURE 4
Solid lines show the median difficulty level (y-axis) attained by
subjects in each group (color) and each task (paneling) as a function of
training trial number (x-axis). Colored dashed lines above and below
each corresponding solid line represent the 0.75 and
0.25 quantiles respectively. The MFP group is omitted because its
difficulty progression is defined as the 2U1D-L median.
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the highest performers in other groups. The other differences in
scale parameters were not found to be significant (1U1D-L: p =
0.8211; 2U1D-UL: p = 0.4110). The 2U1D-UL group has the highest
computed asymptote, likely due to its unlocked progression, but
permutation testing did not find a significant difference from
baseline for any group (1U1D-L: p = 0.6831, 2U1D-UL: p =
0.105, MFP: p = 0.8079).

To further investigate the effects of individual differences on the
asymptote parameter, Figure 6 shows the distribution of asymptote
parameters calculated for each subject. The overall standard
deviation for the between-subject random effect on asymptote
was 0.459, which is comparable with the mean differences
between groups and may reduce power to detect group level
effects. The 2U1D-L group exhibits the greatest variation in
subjects’ asymptotes, while the MFP group had much smaller
differences. Fixed progression may result in more consistent
training outcomes, while adaptive progressions seem to enable
higher performance for some subjects.

3.2 Cockpit performance

To investigate the connection between the learning process and
evaluation in the physical AReSmockup, we examinedwhether training
at a high difficulty level predicted excellent performance in the cockpit
mockup. The difficulty level attained in training was a strong predictor
of the subtask skill metric in the physical AReSmockup for theMC task,
but not the other tasks, as shown in Figure 7. On the MC task, all seven
of the subjects who trained above the physicalmock-up testing difficulty
achieved a performance score of excellent, and those who trained below
largely did not perform as well. For the LS task, the difficulty attained in
training does not predict performance, as evidenced by the flat
regression curve. The TD task shows that subjects trained above the
difficulty level in the mockup had a mixture of high and low scores.

Figure 7 also highlights how the algorithms differ in skill transfer
from the virtual to the physical environments. Data located above
the regression lines suggests that subjects training at that difficulty
went on to perform better than average in the cockpit. The 2U1D

TABLE 2Mixed ANOVA results for a comparison of themedian difficulty levels attained by subjectswithin each session and between each training condition.

Dependent
variable

2U1D-L 1U1D-L 2U1D-UL

Training
session

S1 S2 S3 S1 S2 S3 S1 S2 S3 Algorithm Session Interaction

LS Difficulty Mean 0.50 0.55 0.62 0.50 0.58 0.68 0.54 0.68 0.86 F (2.21) 5.274 (2.42) 50.784 (4.42) 3.926

SD 0.02 0.11 0.18 0.02 0.10 0.17 0.05 0.09 0.09 pes 0.334 0.707 0.272

p <0.05* <0.001*** <0.05*

MC Difficulty Mean 0.42 0.43 0.56 0.44 0.52 0.62 0.43 0.42 0.56 F (2.21) 0.261 (2.42) 13.703 (4.42) 0.349

SD 0.08 0.21 0.24 0.07 0.19 0.30 0.07 0.19 0.25 pes 0.024 0.395 0.032

p >0.05 <0.001*** >0.05

TD Difficulty Mean 0.45 0.47 0.56 0.45 0.56 0.67 0.50 0.59 0.74 F (2.21) 1.571 (2.42) 35.816 (4.42) 1.792

SD 0.07 0.21 0.23 0.06 0.12 0.16 0.04 0.11 0.17 pes 0.13 0.63 0.14

p >0.05 <0.001*** >0.05

FIGURE 5
Points show each subject’s integrated skill (y–axis) as a function of training completion (x-axis). The panels show each training condition in its
corresponding color. The black curves show the fixed effects predictions computed via nonlinear mixed effects modeling with a learning curve. The
group parameter estimates may be found inset in each panel. The global estimate for xmid is 0.160, which corresponds roughly with the sixth trial.
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conditions exhibit below average transfer on all subtasks, with twice
as many subjects scoring poorly relative to the difficulty at which
they trained.

The 2U1D-UL group scored the lowest—or otherwise
comparable—mean skill across all metrics as seen in Figure 8;
compare this finding with their comparatively excellent

performance in training with the NLME asymptote. Subjects
trained with the 2U1D-L algorithm scored well on the LS task.
TheMFP group has a substantially smaller standard deviation on the
MC task and notably excellent performance on the MC task as well.
However, none of the hypothesis testing yielded significant
results (Table 3).

When assessing whether the probability of success on the first
trial in the physical AReS mockup differed between groups, we
found no significant results (generalized likelihood ratio test,
Bernoulli: mission success p = 0.990; LS failure p = 0.773; MC
failure p = 0.3110; TD failure p = 0.697).

3.3 Subjective perception in training

Differences between automated training groups in measures
of subjective experience during training are shown in Figure 9,
depicting the mean flow scores for a selection of four subscales on
the Flow Short Scale. We note the 2U1D-L group stands out
having reported the highest flow experience and fluency in
session 2 and 3, as well as the highest task importance and
absorption throughout training. The four groups differed
significantly in absorption (group p = 0.013). The interaction
terms for flow experience (p = 0.012), fluency (p = 0.023), and
absorption (p = 0.013) during training also differed. See Table 4
for full testing results. These results indicate the 2U1D-L group
differed over time on these dimensions compared to the
other groups.

4 Discussion

4.1 Comparison of subtasks

The MC subtask differs from the other two subtasks in several
ways. Notably, Figure 4 suggests that MC is the most challenging
subtask for subjects to become familiar with because the median
difficulty level initially dips significantly below the starting
difficulty. This is not the case for the other two subtasks.
Although subjects may be scoring well on the other subtasks,
training algorithms with lockstep initially prevent further
difficulty progression on the LS and TD subtasks until subjects
begin to score well consecutively on MC. For instance, the 2U1D-
UL condition reached the highest difficulties in the LS and TD
tasks because these subjects were not locked to low difficulty
levels on the challenging MC task.

This higher achievement in training did not, however,
correspond to better performance in testing within the
physical AReS mockup (Figure 8). Since higher training
difficulty did not predict higher performance in the physical
AReS mockup testing (Figure 7), it is likely that either the
difficulty increments were not large enough to have an effect
or the skill metrics were only weakly related to how the task
changes between difficulty levels. Additionally, it may be the
case that subjects who train at high difficulties and leap down to
the testing difficulty may face issues adapting back to the easier
task. Figure 7 shows this observation seems to hold in general
for the LS and TD subtasks. This suggests that skill

FIGURE 6
The points and summarizing box plots show the asymptote
parameters (y-axis) fit as a random effect for each individual subject by
training condition (x-axis). The crossed-out squares show the means
for each group, which are definitionally also the corresponding
fixed effect asymptote parameters.

FIGURE 7
Data points describe the subtask skill metric (y-axis) measured on
trial 1 in the physical AReS mockup as a function of the difference
between the last difficulty level at which they trained and the difficulty
level at which they were assessed in the mockup. The vertical
gray dotted line partitions the x-axis into those trained below the
tested difficulty (left) and those trained above. Black trend lines are
Loess regressions for all data points collectively.
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measurements made from the MC subtask best characterize the
effects of difficulty modulation, and we prioritize these results
accordingly.

4.2 Responsiveness

We hypothesized that higher algorithmic responsiveness would
lead to faster skill acquisition, higher tested performance, and

improved self-reported measures of flow by more rapidly
responding to deviations from an optimal level of challenge. Our
results show that responsiveness, represented by the 1U1D-L
algorithm, leads to higher learning rates, but not improved flow.

The 1U1D-L group progresses faster than the other groups on
the MC subtask during training, a unique finding illustrated in
Figure 4. Among the training groups, subjects in 1U1D-L also tested
well on the MC subtask in the physical AReS mockup (Figure 8)
because its higher adaptivity rate in training allowed access to higher

FIGURE 8
Mean skill type (y-axis) for each algorithm: 2U1D-L, 1U1D-L, 2U1D-UL, and MFP (x-axis) during the first trial in the physical mock-up, faceted by task.
The error bars showcase the standard deviation for each skill type. The integrated task corresponds to the summation of LS skill, MC skill, and TD skill.

TABLE 3 ANOVA results for a comparison of the integrated skill levels attained by subjects between each training condition when evaluated on their first
trial in the AReS physical mockup.

Dependent variable 2U1D-L 1U1D-L 2U1D-UL MFP Algorithm

Integrated skill 1st trial in AReS mockup Mean 1.69 1.66 1.4 1.72 F (2.21) 5.274

SD 0.44 0.54 0.74 0.32 pes 0.334

p <0.05*

FIGURE 9
Depicts the mean (y-axis) at each training session (x-axis) for the 4 selected attributes of the Flow Short Scale survey, partitioned by each algorithm
(colors). The error bars depict the standard deviation for each flow attribute.
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TABLE 4 ANOVA results for a comparison of Flow Short Scale responses provided by each subject within each training session and between each training condition. Only four subscales are shown.

Dependent variable 2U1D-L 1U1D-L 2U1D-UL MFP

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 Algorithm Session Interaction

Flow Experience Mean 4.99 5.89 5.68 5.35 5.11 5.11 5.18 5.3 5.31 5.18 5.32 5 F (3.28) 1.316 (2.56) 2.32 (6.56) 3.03

SD 0.68 0.39 0.27 0.56 0.37 0.49 0.72 0.58 0.5 0.52 0.36 0.3 η2 0.12 0.076 0.076

p >0.05 >0.05 <0.05*

Perceived Importance Mean 5.21 5.46 5.33 4.13 4.17 4.08 4.29 3.96 3.75 4 3.75 3.92 F (3.28) 1.88 (2.56) 0.52 (6.56) 0.84

SD 0.93 0.96 1.12 1.12 1.26 1.24 1.56 1.68 1.46 1.56 1.46 1.67 η2 0.17 0.02 0.08

p >0.05 >0.05 >0.05

Fluency Mean 5.1 6.04 5.9 5.79 5.42 5.54 5.4 5.67 5.56 5.56 5.88 5.46 F (3.28) 0.12 (2.56) 2.42 (6.56) 2.69

SD 0.71 0.48 0.32 0.64 0.25 0.48 1.02 0.79 0.82 0.56 0.53 0.26 η2 0.01 0.08 0.22

p >0.05 >0.05 <0.05*

Absorption Mean 4.81 5.66 5.34 5.69 4.66 4.47 4.84 4.75 4.94 4.59 4.5 4.31 F (3.28) 4.28 (2.56) 0.67 (6.56) 1.61

SD 0.95 0.57 0.37 0.62 0.72 0.75 0.77 0.47 0.56 0.64 0.31 0.51 η2 0.31 0.02 0.15

p <0.05* >0.05 >0.05
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training difficulties relative to the other algorithms for the MC
subtask specifically. We posit that the 1U1D-L algorithm’s higher
responsiveness best matches the effective learning rate of the
subjects, while the 2U1D algorithms were too conservative in
increasing difficulty.

Higher learning rates may, however, negatively impact self-
reported measures of flow. The 2U1D-L baseline group
generally had the highest flow scale scores including in direct
contrast with the higher adaptivity rate of 1U1D-L. This
observation might mean that the flow channel does not
correspond with the fastest learning progression; the
adaptivity rate influences flow. This may occur because
highly responsive difficulty adjustments more frequently
expose subjects to unduly high levels of challenge, negatively
impacting performance and affecting flow by more frequently
prompting negative feedback.

We propose that the appropriate degree of responsiveness may
be task dependent. A difficult task with large difficulty increments
may require lower responsiveness, where multiple success counts are
required before increasing difficulty. On the other hand, an easier
task with small increments may benefit from the accelerated
progression of high responsiveness. Naturally gifted or
experienced subjects may require higher algorithmic
responsiveness to enable them to reach their fastest potential
progression. The underlying principle is that the algorithm
should adapt as quickly as the subject learns without responding
to noise in the subject’s performance.

4.3 Subtask integration

We hypothesized that algorithms without locked subtask
integration would lead to faster skill acquisition, higher tested
performance, and improved self-reported measures of flow by
allowing algorithms to supply an optimal difficulty level across
subtasks. Our results show that when subtask difficulty is
modulated independently rather than in lockstep,
progression and skill acquisition is heightened on subtasks
which subjects find easier. In a highly integrated algorithm,
lockstep limits the maximum skill achievement over a fixed
training period since easier subtasks are held back or anchored
by difficult ones.

Although integration does not seem to benefit overall
performance (Figures 5, 8), it may improve self-reported
measures of flow. The 2U1D-UL group does not share in the
higher flow scale scores enjoyed by the 2U1D-L group (Figure 9),
indicating that the lockstep affects flow.We note that in the presence
of one subtask, MC, that is harder than the rest, the lockstep ensures
that the subject experiences a distribution of subjective challenge
levels; the hardest task prevents progress on the others, thereby
enforcing that some tasks feel easier than others. This effect may play
a role in the facilitation of flow.

Subtask independence may be favorable when the subtasks vary
in complexity or when maximum skill achievement is desired.
Lockstep may be employed when subjective perceptions are a
priority. This suggests that the optimal challenge-point
framework is not generalizable across subtasks if difficulty is
variable between them. Applied to spaceflight, astronauts who

train to perform variably complex tasks such as vehicle control,
habitat maintenance, or medical operations would likely benefit
from independent subtask difficulty progression.

4.4 Personalization

We hypothesized that personalized, individually adaptive
algorithms, would lead to faster skill acquisition, higher tested
performance, and improved self-reported measures of flow by
supplying an optimal challenge-point tailored to individual needs.
Our results show that personalization results in faster skill
acquisition across training for some subjects, but slower skill
acquisition for other subjects. On average, the timescale for skill
acquisition is faster in a personalized context.

The MFP group performed strongly on the MC subtask in the
physical AReS mockup testing. We note that all subjects in the MFP
group were trained up to level 15, close to the testing difficulty of 18.
All other groups had subjects training at a variety of difficulty levels,
including some much lower than 18 (Figure 7). This suggests that
the forced training up to level 15 benefited some subjects who may
not have attained this difficulty level under a personalized
progression. Conversely, however, the stronger subjects were held
back from attaining exposure to higher difficulties.

Quantitatively, the standard deviation for skill measurements in
the MFP group was generally smaller than the other groups (Figures
5, 6). This phenomenon likely occurred because all members of the
MFP group trained at the same difficulty levels; the difficulty control
mechanism scales skill measurements such that a wider spread in
difficulty levels leads to a wider spread in skill. In addition, the
permutation test on the nonlinear mixed effects model showed a
significantly larger scale parameter relative to the other groups, yet
we tote that the asymptote for the MFP group is in the range of that
achieved in the other groups. As such, it is reasonable to speculate
that the MFP group would reach the same level of proficiency if
allowed to performmore training trials. We believe that the shape of
this learning curve is highly dependent on the choice of fixed
progression. For instance, had we chosen a single, static, low
difficulty, the maximum achievable skill would be much
lower—lower asymptote—and the subjects would reach this skill
faster—smaller scale.

These findings imply that a standardized rather than
personalized progression will result in more consistent
performance at a level dependent upon the choice of progression
when only a fixed number of training trials are administered. This
aligns with prior findings that individually customized difficulty in
training improves spatial cognitive performance (Jeun et al., 2022)
and that spatial training in augmented reality is more effective when
it is personalized to account for prior knowledge (Papakostas et al.,
2022). This also suggests that the optimal challenge-point may not
always be best acquired by tailoring a progression to individual
needs during training, but rather by creating a standardized
progression which reliably exposes subjects to difficulty levels
akin to those of the testing environment. Our study expands
upon such work by characterizing the effect of personalization on
complex operational tasks and by showing that training subjects to a
non-personalized adaptive progression results in tighter variance of
training outcomes. The MFP forces weak subjects to encounter
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difficulty levels higher than they would naturally attain benefit their
overall performance. Meanwhile, gifted subjects are held back from
reaching higher potential performance. Overall, the lack of
personalization for an MFP results in homogenous performance
at a moderate level. For applications where training time abounds,
such as in isolated, confined, or extreme (ICE) environments or
long-duration spaceflight, personalization is a potent method for
ensuring that a subject reaches their full training potential.

4.5 Limitations

Some results could not be adequately assessed by hypothesis
testing because the effect sizes were small relative to natural
within and between subject variation, particularly for the skill
metrics; a larger sample size may benefit power. Thus, we
highlighted conclusive findings and suggest qualitative
interpretation where appropriate. Furthermore, we note that
the alpha level was set to 0.05 for each family of hypothesis
tests. Certain limitations also arise from our cohort of
participants, as a larger subject pool would have provided
greater statistical power. Further, subjects in the MFP
condition were 5 years younger on average than those in the
baseline condition, and half of the MFP subjects reported
previous flight experience, factors which may have impacted
measures regarding personalization. Also, the experimental
subjects were primarily comprised of aerospace engineering
students. While this cohort may have been well primed to
perform this simulation, as would be the case for using this
training approach with an operational group of participants,
these factors place potential limits on the generalizability of the
results to older or non-technical populations. Although
differences in the amount and frequency of positive feedback
between algorithms were hypothesized to vary as a function of
responsiveness, these differences were not captured explicitly
and may be of interest in investigating responsiveness in future
work. Finally, survey fatigue in some subjects may have eroded
the significance of self-reported measures of flow. Although
dividing the training across 3 days may have provided a
structural mitigation to fatigue, the degree to which variability
in survey motivation may have affected results could not
be quantified.

5 Conclusion

Automated training algorithms with personalized, highly
responsive difficulty adjustments operating independently across
subtasks lead to faster learning rates and greater skill acquisition,
particularly for complex, operationally relevant tasks. Our results
demonstrate that personalized training is beneficial for the average
subject because they are free to progress faster through training and
attain the highest levels of proficiency. Meanwhile, a standardized
system of adaptive progression creates more predictable and
consistent training results when constrained by finitely many
training trials. This finding is particularly useful for applications
where a larger number of subjects of varying ability must be trained
to a specific level of competence.

The optimal training algorithm depends on the goals of the
training. An algorithm for fast learning among gifted subjects is one
with sufficient responsiveness to match a subject’s learning rate on a
given task. Military settings seeking to quickly identify fast learners
could train subjects with a highly responsive algorithm and assess who
excels the most. When achieving flow is important, higher subtask
integration may be helpful on lengthy time scales while lower subtask
integration facilitates greater skill acquisition on short time scales.
Secondary school settings would benefit from higher integration
because motivating students and increasing task engagement is
paramount. When higher consistency in performance between
trainees is desired over maximizing achievement, standardization
may be more appropriate than personalization. Medical settings
aiming to train patients on personal medical equipment may prefer
standardization because assuring average performance in a short time is
often more important than enabling high performers. To facilitate
transfer of skills from training to testing, it may be helpful to prioritize
either higher responsiveness or less personalization. While this study
was not intended to study these populations or this application, these
results may serve as a starting point for future work.

Characterizing these effects is needed to improve automated
training, which proffers a variety of benefits including ease of
deployment, low operational overhead, reduced mass and cost,
and an ability to incorporate novel training scenarios as they
become relevant. These results inform the design of automated
training systems tailored to improve complex skill acquisition in
challenging, remote environments, including those of remote
medicine, military field operations, and long-duration spaceflight.
Substituting operator mediated training with adaptive training
capable of attaining similar outcomes is increasingly important
with the advent of long-duration human spaceflight and
upcoming missions to the moon and Mars.

Future work on automated training should investigate algorithms
which actively vary the levels of responsiveness, for instance by
adjusting difficulty by amounts proportional to performance, or by
shifting staircase progressions based on consecutive positive
performance. Moreover, given the surprising benefits of guaranteed
challenge inMFP, future work should investigate the use of aminimum
difficulty, or floor, during automated training. Further inquiry into the
effect of workload on complex, operational task training should be
made by investigating self-selection of task difficulty. In addition, a
Bayesian approach of predictive dynamic difficulty adjustment may be
of significant interest for data-driven training. Finally, future studies
should recruit a broad sample of people, including older and non-
technical populations, to improve the generality of results.
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