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Real walking is considered as the best locomotion metaphor to explore virtual
environments in terms of user experience. In addition to being intuitive for the
user, walking captures the true feelings of motion since the visual and
proprioceptive sensations are harmonized well. The major disadvantage of
choosing walking over other locomotion metaphors involves the physical
constraints of the available space, which is usually considerably smaller than
the virtual environment. To address this issue, redirected walking (RDW)
introduces slight mismatches between a user’s visually perceived path and
their actual walking pattern, compelling them to subconsciously compensate
for the inconsistency by adjusting their walking trajectory. As a result, users are
steered to a certain degree, and expansive virtual environments are effectively
compressed into smaller physical spaces. Among others, particularly predictive
RDW offers immense potential for growth since it unites various algorithmic
systems, whereasmany approaches from literature depend on drastic restrictions
like single-user constraints or architectural limitations to ensure real-time
performance. This work presents two novel predictive RDW systems that
allow multiple physically colocated users to explore independent and
unconstrained virtual environments. The systems rely on two new
implementations of prediction systems based on clothoid trajectory
generation combined with a cost-based planning concept built on non-
harmonic artificial potential fields (APFs), which inherently allow non-convex
and dynamic physical environments. Using the APFs, three additional RDW
conditions popular in the literature are implemented for comparison
purposes. The five RDW concepts are then validated in an extensive user
study with 150 participants conducted in 75 pairs. The results indicate that the
novel predictive RDW systems outperform the three systems from literature,
except for particular sections of the virtual environment with specific
architectural traits.
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1 Introduction

Choosing an ideal locomotion metaphor to navigate in virtual reality (VR) while
ensuring the highest user presence possible has been a challenge for years. Multiple
metaphors have been investigated as substitutes for walking, such as simple
teleportation or flying using a handheld controller (Usoh et al., 1999; Bolte et al., 2011)
to more elaborate systems like motion platforms (Bouguila et al., 2002; Bouguila and Sato,
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2002) or omnidirectional treadmills (Souman et al., 2008). However,
none of these metaphors have managed to fully capture the
naturalness and intuitiveness of real walking to date (Usoh et al.,
1999). Furthermore, they often invoke simulator sickness (Kennedy
et al., 1993) due to the inherent inconsistencies between the visually
perceived motion and a user’s vestibular sensations. More
comprehensive overviews and relevant discussions on the
advantages and disadvantages of the various locomotion
metaphors have been reported in multiple reviews (Langbehn,
2019; Boletsis, 2017; Nilsson et al., 2018).

Although real walking is the most natural motion and is
frequently preferred over other metaphors, it poses major
challenges in VR applications. Allowing the users to explore virtual
environments while really walking induces technical constraints since
the users must never collide with real objects, other users, or
boundaries of the available physical space. Most importantly, the
physical space requirements do not adhere to the extensive virtual
environments and vice versa and have therefore taken relevance over
other challenges. A potential solution to this issue was proposed more
than 20 years ago in the form of redirected walking (RDW) (Razzaque
et al., 2001). Even though this was only a crude execution, RDW held
strong promise and was rapidly developed into a full research field,
enhancing the existing field of locomotion in VR. RDW exploits the
fact that humans tend to rely more on their vision than on other
senses and aims to deviate the virtual from the real pathway by
inducing intentional, small mismatches between motion and vision
(so-called RDW gains; Williams et al., 2006; Razzaque, 2005) to
compel the users to subconsciously compensate while walking. As
long as these induced mismatches remain adequately low, the users
are mostly unaffected by simulator sickness, while their locomotion
can be decoupled between the environments to a certain extent
(Steinicke et al., 2008). Applying these so-called RDW gains in
succession and complying with a steering paradigm essentially
provides a decision basis on where to actively steer the users
during their exploration. These steering paradigms can be
distinguished into three base categories as reactive, predictive, and
scripted RDW. These categories differ from each other by how they
incorporate knowledge about a user’s future path. Reactive RDWonly
evaluates a user’s current state (i.e., position and heading) in a given
environment and applies the gains accordingly. Scripted RDW follows
a narrative approach and mostly prevents the users from deviating

from the intended path, thus fixing the trajectory a user can actually
follow; in this approach, the RDW gains are calculated and optimized
before actual exposure to users, ensuring the best redirection possible.
Naturally, this paradigm fails if the users deviate considerably from
the intended paths (e.g., by meandering or veering). Predictive RDW
is arguably the least investigated category owing to its complexity and
error-proneness originating from user spontaneity; however, it still
offers immense potential for growth. Since predictive approaches
mostly comprise two base algorithms (prediction and steering
algorithms), each individual and the combinations thereof can be
solved in several ways.

In this work, we present a novel approach to predictive RDW
based on clothoidic trajectories (see Figure 1) that allows multiple
users to be steered simultaneously in a common artificial potential
field (APF). Specifically, we highlight the following contributions:

• two different technical implementation strategies of the
prediction concept;

• a novel combination of prediction, steering, and non-
harmonic APF-based costs that is fully functional in virtual
open spaces with multiple colocated users;

• a user study with 150 participants highlighting the merits of
the new algorithms.

The remainder of this manuscript is organized as follows. The
related works are presented in section 2, which focus on RDW
mainly in the predictive landscape. Then, subsection 3.1 introduces
the APFs, subsection 3.2 discusses prediction and its
implementation, and subsection 3.3 summarizes and combines
the APFs with prediction and redirection implementation.
Section 4 presents a user study, and section 5 provides an
overview of the gathered data and its analysis. Finally, the
findings are summarized in section 6, and the potential
applications and consequences of RDW for future works are
discussed in section 7.

2 Related works

In this section, we describe the work related to RDW, mainly
focused on the predictive perspective.

FIGURE 1
Predictive multiuser redirected walking—utilizing the benefit of incorporating a user’s trajectory prediction into the determination of effective and
efficient redirections based on non-harmonic artificial potential fields in colocated user settings.
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2.1 Redirected walking

Over the years, it has been shown that the walking trajectories
of users can be manipulated by applying RDW gains, such as
linear, rotational, or curvature gains in the virtual environment
(Razzaque et al., 2001; Razzaque, 2005; Nitzsche et al., 2004;
Williams et al., 2006, 2007; Langbehn et al., 2017), which
effectively compress the expansive virtual environment into a
small physical space. Furthermore, when these RDW gains are
only applied within certain thresholds, the users tend to not
notice these redirections, while mostly avoiding simulator
sickness (Steinicke et al., 2008); (Kennedy et al., 1993).
However, a crucial example of applying redirection outside
these detection thresholds are the so-called resets (Williams
et al., 2007); resets are introduced as emergency strategies to
prevent collisions shortly before impact and resemble external
interventions, often breaking the sense of presence of a user. Such
resets can be designed in multiple ways, and the most popular
type is rotational reset, which demands that the user spin in place
through an interface in the head-mounted display (HMD).
Although this virtual reorientation often visually corresponds
to a full 360° turn to ensure easier continuation of the experience,
a rotational gain is applied to divert the real rotation to a different
target orientation (i.e., toward an open space). Although this
rotational reset has a rather simple implementation, it can be
incorporated well in many redirection concepts. Furthermore,
since resets tend to invoke at least partial breaks in presence, they
are well-established as quality criteria for evaluating the
performances of redirection strategies.

Arguably, the most important concern to date is the choice of
when a technique must be optimally applied and at what intensity, as
this strongly depends on the virtual architecture (Hodgson et al.,
2014)). Generally, there are three core concepts in redirection
techniques: reactive (Razzaque, 2005; Thomas and Rosenberg,
2019; Bachmann et al., 2019), predictive (Peck et al., 2012;
Zmuda et al., 2013; Nescher et al., 2014,) and scripted (or semi-
predictive) (Azmandian, 2018; Yu et al., 2018).

Since the focus of this work is mainly predictive approaches, we
primarily discuss related examples. Peck et al. (2012) presented
RFED as the first algorithm that resembled the predictive nature;
they derived a skeleton graph consisting of nodes and segments that
described the walkable paths within the available area in the virtual
corridors to create a prediction to the next node based on the user’s
head orientation. Similarly, Zmuda et al. (2013) created a skeleton
graph with probabilities assigned to the crossings, which were used
to prioritize the final score of a predicted and redirected path; this
final score was calculated by evaluating the distance a user could
walk straight ahead at the end of a redirected prediction multiplied
by the path probability. Finally, Nescher et al. (2014) introduced
MPCRed as a method that recursively evaluates a cost function
consisting of actions, such as applying redirection, while also
following predefined bidirectional skeleton graphs. Recently,
approaches utilizing reinforcement learning have been reported
(Lee et al., 2019, 2020) that have drastically reduced real-time
calculations; however, these algorithms demand sophisticated
setups with neural networks that must be trained based on
previously recorded user data, which makes them less applicable
to more general use cases.

2.2 Artificial potential fields

APFs were first introduced to RDW in 2019 via two slightly
different implementations (Thomas and Rosenberg, 2019;
Bachmann et al., 2019) and follow the simple principle of
assigning high potentials to potentially dangerous physical
environments and low potentials to safe equivalents. Following
the derivatives of such potential fields always guarantees flow
from higher to lower potentials, which can be described by a force
vector “pushing” and “pulling” the user. Accordingly, aligning
the redirection with such force vectors ensures that the users are
always steered away from dangerous regions while being pulled
toward safety. These two first implementations follow a classic
reactive approach and straightforwardly align a redirection
vector with the repulsive force vectors generated by obstacles.
They only differ in the manner in which the force vectors are
generated but essentially apply the same principles. Later, Dong
et al. (2020) enhanced this concept of repulsion by adding
attractive forces to influence the redirection vector toward a
real open space. APFs inherently offer the advantage of
superimposing multiple layers of potentials, both static and
dynamic, which enables incorporation of multiple users
roaming the same physical space. All of these APF RDW
applications have only considered the current states of the
users and are thus categorized as reactive RDW approaches,
while any predictive attempts were only suggested
conceptually (Hirt et al., 2019a).

3 Methodology

This section presents different algorithms and describes how the
elements of these algorithms are implemented. First, an overview on
the APF is shown, followed by introduction of the predictive
algorithm and its details, and finally the description of the
complete process with all concatenated elements.

3.1 Artificial potential field

The physical environment in which a user is tracked while
walking and exploring the virtual environment has been hard-coded
in early RDW approaches and is always assumed to be static and
convex. Naturally, such static tracking spaces provide stable and
uncomplicated boundary conditions but restrict dynamic
adjustment of the tracking space size while mutually excluding
multiple users exploring virtual environments in colocated
spaces. There have been some attempts to study how such
physical tracking space boundaries could be made more dynamic
and accessible (Yang et al., 2019; Cheng et al., 2019; Hirt et al., 2018),
but an entirely explorative RDW (e.g., RDW in the wild) is still
subject to research (Lutfallah, 2023). However, given fixed boundary
conditions around a tracking space, APFs are an elegant option to
describe the space dynamically and were initially presented in
robotics (Khatib, 1986; Krogh, 1984); they are indispensable in
many modern robotic path-planning approaches. APFs can
incorporate non-convex tracking boundaries (Messinger et al.,
2019) and allow multiple users in colocated tracking spaces
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(Thomas and Rosenberg, 2019; Bachmann et al., 2019) by modeling
the respective second users as dynamic obstacles influencing each
user’s own potential field. Since there exist many options to model
APFs, we briefly investigated three approaches, namely wavefront
expansion (Barraquand et al., 1992), harmonic (Kim and Khosla,
1992), and non-harmonic (Thomas and Rosenberg, 2019;
Bachmann et al., 2019) APFs, with some basic limiters added to
avoid local minima. We compared the calculation time in a static
environment encompassing 104 grid cells, with three obstacles inside
(see Table 1). Although the harmonic and non-harmonic algorithms
perform sufficiently similarly with slight advantages for the non-
harmonic APF, the wavefront approach lags considerably by a factor
of almost 6×. Quadrupling the environment size shows linear
increases in the calculation times for the harmonic and non-
harmonic approaches, with the wavefront approach again being
more resource-intensive by a factor 10× compared to the others.
Notably, none of the APFs were specifically optimized and were only
implemented with their basic functionalities. From these qualitative
comparisons, it was decided to pursue only non-harmonic APFs in
the following implementations.

3.2 Prediction

Unlike the prediction algorithms employed in existing predictive
RDW approaches, our system works in unrestricted virtual open
spaces. Accordingly, we refrain from using the popular skeleton-
graph-based predictions and implement two different algorithms
derived from a recently suggested and evaluated concept (Hirt et al.,
2019b, 2022). Accordingly, we employ clothoid trajectory shapes,
which are bound by a lemniscate shape in the first case and by the
inverse of their curvature in the second case. Both approaches were
designed for a short-term prediction (Nescher and Kunz, 2012) to
favor higher calculation frequency over long-term predictions.

3.2.1 Smoothing
To ensure more accurate and precise predictions, both

algorithms relied on incorporating some historic data points
recorded from the user’s previously walked trajectory. These
historic data points are stored in the HMD data buffer with fixed
sizes, and new recordings are captured while removing the oldest
data points. If the HMD data buffer remains unprocessed, then the
data acquired through the HMD contains unstable and oscillating
gait artifacts from the user’s natural head veering (Hirasaki et al.,
1999; Murray et al., 1964) and noise. Utilizing such perturbed data
when extrapolating from the HMD data buffer can quickly and
sustainably impair the results. Accordingly, a double-exponential
smoothing approach intended for similar purposes (Nescher and
Kunz, 2013) was extended by calibrating a damping factor

(Hyndman and Athanasopoulos, 2018; Taylor, 2003) to capture
the trend of a given path without compromising the
smoothing result.

3.2.2 Lemniscate Path Prediction (LPP)
In LPP, the prediction origin is always defined by a number of

stepsT backwards in time, which can naturally be varied on the basis
of how much the HMD data buffer is integrated in the prediction.
The prediction itself creates a bundle of clothoids contained within a
lemniscate shape, which are then evaluated based on a path
similarity measure to identify the best trajectory.

The lemniscate is given by Eq. (1) and is created anew with each
prediction iteration.

x t( ) � ALem · sin t( )
1 + cos2 t( )

y t( ) � ALem · sin t( ) cos t( )
1 + cos2 t( ) ,

(1)

where ALem denotes a constant defining the size of the
lemniscate, and the running variable t ∈ (0, π) incorporated only
the positive half of the lemniscate. In theory, ALem can be used to
directly relate the size of the lemniscate with the current walking
speed of the user; instead, we designated a rigid horizon of 3 m to
reduce the number of variables and hence improve comparability
among the approaches. To create the trajectories within the
lemniscate, a set of endpoints is identified along the contour of
the shape and generated by uniform discretization, notably with an
odd number of endpoints to ensure that a straight prediction is
always available in the symmetry. This discretized lemniscate is now
transformed to the chosen user state at t − T and overlaid on the
virtual environment, where a collision check is performed using
Unity’s stacked overlap boxes. Collision events can thus be found,
and the endpoints colliding with the virtual obstacles are labeled as
infeasible trajectories for consequent removal. To create the clothoid
trajectories, an external C# library called Curves1 was used and
modified for seamless integration with Unity. Curves contains a
convenient function that allows creation of 2D clothoids given a
starting point (i.e., user position at t − T), direction (i.e., user
heading at t − T), and final point (i.e., discretized endpoints).
From this generated set of trajectories, a single best prediction is
isolated using a simple mean-squared error enhanced by a discount
factor. This ensures fast computation while providing stronger
weights to more recent buffer states. The LPP with the
functionalities of scene awareness and path isolation is shown
in Figure 2.

3.2.3 Forward Path Prediction (FPP)
In FPP, a more analytical approach is chosen that inherently

results in a single predicted trajectory. FPP revolves around solving
the non-holonomic dynamic system of equations (Arechavaleta
et al., 2006) presented in Eq. (2):

TABLE 1 Comparison of calculation times for different types of APFs.

APF Time in A Time in 4 × A

Non-harmonic 3.0 ms 11.0 ms

Harmonic 3.5 ms 12.0 ms

Wave expansion 16.5 ms 105.0 ms

1 https://github.com/SEilers/Curves, accessed: 01.08.2022
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_xT

_yT

_φT

_κT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �
cos φT

sin φT

κT
0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠u1 +
0
0
0
1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠u2, (2)

where x, y,φ, κ denote the user’s x and y positions as well as
heading and curvature, respectively. The control input u1 � vT is the
user’s linear velocity, and u2 � _κT is the curvature change rate. If the
variables φ, κ, u1, u2 are known, a clothoid is fully determined and
can be constructed with the corresponding parameters. Here, the
user velocity and heading are directly acquired from the smoothed
HMD data buffer, while the current curvature κ and control input u2
are determined from the general definition of a curvature (Eq. (3))
and its derivative (Eq. (4)).

The general parametric definition of a curvature κ given a curve
γ(t) � (x(t), y(t)) is

κ � _x€y + €x _y

_x2 + _y2( )32 (3)

and its derivative _κ � dκ
dt is given by

_κ � 2 _x2 + _y2( ) x 3( ) _y + 2€x€y + y 3( ) _x( ) − 6 €x _y + _x€y( ) _x€x + _y€y( )
2 _x2 + _y2( )52 ,

(4)
where the primes in both equations refer to derivatives with respect
to time; the prime(3) corresponds to the third derivative.

Finally, in accordance with Wilde (2009), the clothoid constant
ACl is related to u2 as follows:

ACl � 1
u2

� 1
_κ
. (5)

To solve Eq. (2) using Eqs. (3–5), the derivatives of x and y need
to be computed. These first- to third-order derivatives can naturally
be found by various methods, such as the finite difference
approximation of derivatives (Wilmott et al., 1995; Olver, 2014).
Following the basic method of central finite differences (CFD)
(Fornberg, 1988), the derivatives of the differential equations are
numerically approximated with the coefficients CCFD,x (with x � d1
for the first derivative, and analogs for second and third) given by

CCFD,d1 � 1
280

− 4
105

1
5

−4
5

0
4
5

−1
5

4
105

− 1
280

( )
CCFD,d2 � − 1

560
8
315

−1
5

8
5

−205
72

8
5

−1
5

8
315

− 1
560

( )
CCFD,d3 � − 7

240
3
10

−169
120

61
30

0 −61
30

169
120

− 3
10

7
240

( ).
(6)

The CFD method allows computing the derivatives within the
given time steps from t to t − 8, with the resulting derivatives
corresponding to the time step t − 4 (c.f. “central”). Accordingly,
the position vectors �x and �y are read from the HMD data buffer as

�x �

xt−8
xt−7
..
.

xt−1
xt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and �y �

yt−8
yt−7
..
.

yt−1
yt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (7)

Once the coefficients CCFD,x are determined and positional
vectors �x and �y are available, the derivatives are computed as

_xt−4 � CCFD,d1 · �x
€xt−4 � CCFD,d2 · �x
x 3( )
t−4 � CCFD,d3 · �x

and
_yt−4 � CCFD,d1 · �y
€yt−4 � CCFD,d2 · �y
y 3( )
t−4 � CCFD,d3 · �y.

(8)

These derivatives in Eq. (8) often manifest evident oscillations or
other tracking noise originating from amplifications through the CFD
method. Hence, the tracking inputs are smoothed more rigorously at
risk of losing relevant data or the derivatives are alternatively treated
again with the extended double-exponential smoothing filter. To
avoid the risk of data loss, the latter option is preferred and
applied, which eliminates the occurrence of high-frequency content
even while introducing a slight but tolerable latency.

FIGURE 2
Demonstration of scene awareness in LPP. The previously
traveled path is highlighted in red, the ground truth is in yellow, and the
collider edges of the virtual obstacles are in green. All paths are
smoothed. (A) Applying scene awareness removes infeasible
trajectories early on and only retains valid ones (white). Here, a
symmetric prediction to the left is discarded due to a collision with the
left-hand wall. (B) From the limited feasible set, the best prediction is
identified using the path similarity measure. The origin of the
prediction (magenta) lies slightly in the past.
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By substituting the smoothed derivatives from Eq. (8) into Eqs. (3,
4), the clothoid curvature κ and control input u2 are fully determined.
Furthermore, using Eq. (5), the clothoid constant ACl is computed.
Utilizing Curves, the predicted clothoid is constructed through a
different method that requires the starting position (x,y), heading
φ, curvature κ, clothoid constant ACl, and clothoid length L. By
definition, the clothoid length is inversely linear to the curvature; thus,
the length L is simply clamped between a maximum length
Lmax � 3m (for consistency with the LPP) and inverse of κ as

L � min Lmax,
1
κ

( ). (9)

The final FPP with its single prediction is demonstrated in
Figure 3. Notably, the FPP approach neglects the virtual architecture
in its prediction but is faster than the LPP despite the calculation of
multiple derivatives as effectively fewer computational steps are
required in the determination of a single prediction instead of many.

3.3 Predictive redirection

Conceptually, the predictive RDW entails a simple approach:

• it predicts a single path Tpred;
• Tpred is redirected based on an action setU consisting of multiple
redirection techniques and different gains, resulting in Tred;

• a cost-based analysis of Tred is used to identify the best
redirection πoptimal ∈ U;

• πoptimal is applied to the user.

In this work, we present two predictive approaches, PredRed
LPP and PredRed FPP, which differ in their predictive components;
thus, Tpred originates from the respective LPP and FPP algorithms.

3.3.1 State update

The action set U of redirection techniques utilized in our
approach consists of rotation gains, translation gains, curvature
gains, and a combination of translation and curvature gains
(Grechkin et al., 2016). Each gain π ∈ U is only applied within
its respective noticeability thresholds (Steinicke et al., 2009), as
shown in Table 2. Naturally, resets are applicable above the
respective rotational thresholds depending on the
requirements determined for each reset. The specific process
of injecting the particular redirection gains is included in the
Redirected Walking Toolkit (Azmandian et al., 2016) and
employed identically in our case. It is important to note that
the size of the state space in which redirection is applied is
manually limited by allowing only a single redirection action
along the complete predicted path. Although the predicted path
could potentially be divided into shorter segments, with each
being subject to a separate evaluation, the computational demand
grows exponentially with the size of the action setU, which would
in turn linearly propagate with the number of segments that a
path is divided into. Therefore, a finer segmentation of the path
was rejected, and the state space was restrained in favor of faster
iterations. The action set finally contains a null redirection gain
and six different gain values per gain, i.e., the upper and lower
noticeability threshold values (Steinicke et al., 2009) with a
uniform distribution in between.

3.3.2 Redirection vector
In accordance with the performance comparison results of APFs

in subsection 3.1, non-harmonic APFs are utilized (Bachmann et al.,
2019; Thomas and Rosenberg, 2019), and a redirection vector �Fred is
defined. This redirection vector �Fred is a total force vector and is the
sum of all repulsive forces exhibited by the obstacles i in the physical
space O, as shown in Eq. (10):

�Fred � ∑
i∈O

�Frep,i, (10)

where the magnitude ‖ �Fred‖ denotes the total force acting on a
specific place in the physical environment and is considered as its
APF value.

The contribution of a single repulsive obstacle i is formulated as
in Eq. (11):

FIGURE 3
Demonstration of the FPP. The previously traveled path is
highlighted in red, the ground truth is in green (i.e., the path the user
took afterward), and the individual prediction is in yellow. All paths are
smoothed. (A) Using the FPP method, only a single predicted
clothoid is generated. The clothoid extrapolates the past walking
trajectory by computing the derivatives of the motion. (B) As seen
here, the prediction naturally does not account for unexpected future
turns, which is expected and attenuated by keeping the prediction
frequency high.

TABLE 2 Various redirection gains contained in the action set U.

Gain Lower bound Upper bound

Translation 0.86 1.26

Rotation 0.8 1.49

Curvature −7.5 7.5

Null redirection 1 1
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�Frep,i � ao · exp −bo · d2
o( ) · �eo, if do ≤dd

0, else
{ , (11)

where ao defines the maximum APF value generated by a single
obstacle, and the constant bo denotes the distribution width with respect
to how quickly the APF value dissipates and approaches zero with
increasing distance from the obstacle i; do describes the Euclidean
distance between a specific obstacle’s position pi and the evaluated
positionpeval; do � ‖pi − peval‖ anddd is the threshold rangewithin the
repulsive force that is considered to still contribute to the total force.
Here, �eo is the normalized direction vector from the evaluation position
peval to the obstacle position pi and is given as

�eo � pi − peval

‖pi − peval‖. (12)

3.3.3 Cost function
The cost function is a crucial element in determining the best

redirection among the redirected trajectories Tred. Generally,
minimizing the total cost Jtotal over all redirection actions π

within the action set U results in the best redirection πoptimal, as
shown in Eq. (13):

πoptimal � argmin
∀π∈U

Jtotal π( ) (13)

The overall cost function Jtotal thus consists of the sum of all
individual costs Ji over the complete redirected path Tred, which is
evaluated for each data point from t1,. . .tN, with N being the final
point of the trajectory. To incorporate the increasing uncertainty
along the prediction into the cost function, a discount factor α � 0.8
is implemented similar to that in literature (Nescher et al., 2014), as
shown in Eq. (14):

Jtotal � ∑N
i�1

αi · Ji. (14)

The cost for each point is designed by separately considering the
APF, the user’s current heading penalization owing to deviation
toward the redirection vector, and the resets and redirection gains.
The cost for the individual data point is thus given by Eq. (15):

Ji � JAPF,i + JHeading,i + JReset,i + JGain,i, (15)

where JAPF,i denotes the APF value and is given by the magnitude of
the redirection vector �Fred:

JAPF,i � ‖ �Fred‖. (16)

Accordingly, the magnitude of the redirection vector directly
translates the user’s proximity to the obstacles and thereby penalizes
the positions in danger of collisions. Furthermore, JHeading,i is given
by the dot product between �Fred and current heading �θi:

JHeading,i � h0 · 12 · 1 − �Fred

‖ �Fred‖
·

�θi

‖ �θi‖
( ). (17)

With this definition, the heading cost is limited between 0 and
1 as well as multiplied by h0, which is considered as the design
parameter for heading penalization. This later offers the option to
vary the weighting balance between the heading and APFs, with low

heading costs to steer users toward open spaces rather than favoring
positions closer, yet parallel to the boundaries with low APF costs.
For the current implementation, h0 was chosen to be 1.

The resets are penalized through a binary decision of whether
the evaluated data point lies within the tracking room boundaries or
not, as shown in Eq. (18). Through this approach, collisions that
unavoidably invoke a reset upon first impact are delayed as the
collisions accumulate costs linearly with the amount of path lying
outside the walkable space. Therefore, a late reset induces a lower
cost in contrast to an early reset.

JReset,i � 1000, if outside tracking roomboundaries
0, otherwise

{ . (18)

Finally, the cost results from the different gains are formulated in
JGain,i. Accordingly, JGain,i and JHeading,i were set to 0 for simplicity,
but it would be reasonable to provide containers for these in the
initial formulation of the PredRed implementation for later
investigations. We aim to include psychometric functions (Neth
et al., 2012; Steinicke et al., 2008) or similar means to account for the
noticeability in deciding the redirection strength.

With all components elaborated, the two new predictive RDW
algorithms PredRed LPP and PredRed FPP are complete. Along with
these, three more conditions were implemented, namely NULL as
well as the two reactive variations of the APF RDW steer-to-center
(S2C) (Razzaque, 2005) and steer-to-gradient (S2G) (Thomas and
Rosenberg, 2019; Bachmann et al., 2019). Although S2C has been
established over the years as a simple yet powerful algorithm that is
popular for its adequate performance comparisons in literature, S2G
appears to be an obvious choice owing to its APF-based algorithmic
proximity and inherently powerful premise. In both reactive
approaches, the algorithms compare the current real user state to
the redirection vector �Fred and apply the redirection that best closes
the deviation between the two. In the case of S2C, �Fred is
implemented by placing the coordinate system’s origin at the
center of the tracking space and inverting the user’s position
vector, which inherently forces �Fred to always point toward the
center of the space. In the case of S2G, �Fred is simply calculated as
shown in Eq. (10). NULL naturally refrains from applying any
redirection while walking and only utilizes resets to prevent
collisions. For all conditions, the reset algorithm was maintained
consistently as reset-to-gradient (R2G) (Thomas and Rosenberg,
2019; Bachmann et al., 2019), which recalibrates the user by aligning
their heading with �Fred via the reflex angle of the initial deviation. In
our case, the reflex angle is specifically chosen over the acute and
obtuse angles since it allows weaker rotational gains, consequently
placing less strain on the user perceptions. Notably, applying R2G to
a NULL redirector seems inappropriate at first since it also
incorporates the potential influence of a second user, but we
intended to maintain the conditions in addition to the redirectors
consistent rather than implementing a simplistic alternative like the
original 2:1-turn reset (Williams et al., 2006).

4 User study

To validate the newly presented PredRed redirectors, a user
study was conducted to acquire relevant data. The participants
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used a wireless HTC Vive Pro driven by two desktop towers, each
with an i9-10900K and 64 GB of RAM as well as an NVIDIA
GeForce RTX 3090, and handheld controllers were not provided.
This setup ensured a steady frame rate of 90 fps and full resolution
for both eyes. The system implemented SteamVR but the safety
chaperones were deactivated to increase the presence of the users,
with the only safety measure being a reset prompt that asked users
to stop and perform a reset (see Figure 4A). Naturally, the reset
direction is governed by the redirection vector and can either
indicate clockwise or counterclockwise reorientation. The
physically available tracking space was 5.5 m × 8.0 m, with a
0.2 m reset margin.

4.1 Study design

The participants were invited in pairs and explored separate
yet identical virtual environments colocated in the same physical
tracking space. The separation of the virtual environments was
particularly chosen to avoid any bias from the users interacting
with each other in VR (e.g., avoiding virtual collisions). Each pair
of participants experienced only a single RDW condition to avoid
learning or accommodation effects. All participants followed the
same study protocols and filled a pre-questionnaire, were
instructed before being exposed to the VR, and answered a
post-questionnaire. The pre-questionnaire consisted of general
demographic information, a self-assessment of their
susceptibility to motion sickness, their experiences with VR
systems, and a simulator sickness (SS) questionnaire (Kennedy
et al., 1993). In the instructional part, the participants were
introduced to the VR system, their task, and their expected
behavior of collecting stars (see Figure 4B). They were further
instructed to be especially responsive to the reset prompts,
take short steps (since only their head was tracked), and avoid
passing through virtual walls. The participants were aware
that they shared a common tracking space, that they cannot
see each other in the virtual environment, and that only
their physical positions were exchanged between the
systems to prevent collisions. They were not informed about
the purpose of the study regarding RDW, so that the advance
questions were unanswered. After receiving instructions, pairs
of participants started their virtual experiences in opposite
corners of the tracking space facing the center and
aligned with the initial virtual corridor. Following the virtual
task, they filled the post-questionnaire consisting of another
round of the SS questionnaire and the standardized
questionnaires on the simulation task load index (SIM TLX)
(Harris et al., 2020) and cognitive absorption (CA) (Agarwal and
Karahanna, 2000).

4.2 Study environment

The study environment consisted of seven rooms, each with
distinctly different architectures varying from corridors and
maze-like environments to local obstacles like pillars and
mostly or even fully open spaces, as shown in Figure 5 (in
order: Hallway, Yellow01, Yellow02, Red01, Red02, Blue01,

and OpenSpace Forest). Although this delivered some variety
to the participants to make the exploration more interesting, the
rooms were also evaluated separately to highlight the
performances in each of the architectural layouts. In addition
to the aesthetics, the floor colors helped with orientation and
provided some feedback regarding study progression to the
investigators. The participants were asked to gather
collectibles distributed throughout the environment by simply
walking over them. Overall, the 27 stars that were to be collected
were carefully distributed in the five rooms connected to the
starting point (i.e., Yellow01, Yellow02, Red01, Red02, and
Blue01), ensuring that the users explores the full environment
without missing any corners or corridors. All the stars in a room
were visible simultaneously, while the various rooms were
connected by sliding doors that opened automatically after all
the stars in a room were collected. The participants were always
informed through an interface in the HMD regarding the number
of stars they had already collected and that remaining to be
discovered in a given room. The final area of the study was
populated with trees and stones, suggesting independent
exploration without a clear goal.

5 Results and discussion

In this section, we present and discuss the analytical results of
the data acquired from the user study entailing the study population

FIGURE 4
Key components from the study environment—safety measures
and collectibles. (A) The reset prompt is the only safety measure
implemented to prevent collisions among the study participants and
with the tracking boundaries. The signs “<< ” indicate the
direction of the reset, which is counterclockwise in this case. (B)A total
of 27 collectibles were distributed throughout the complete
environment, and the study participants were tasked to find all by
walking over them.
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followed by the subjective and objective metrics. The video
(Supplementary Video S1) displays a simulated top-down view of
the tracking space using the recorded positions of two simultaneous
study participants.

5.1 Study population

In total, 150 subjects participated in the user study (25.5 ±
5.5 years, 45 females). Since the participants enrolled in pairs, each
condition was encountered 15 times, with an overall number of
30 recordings per condition. Among the participants, 31 wore
contacts, 37 used glasses, and none of them experienced any
remarkable issues with the VR system. The participants were
recruited through university channels, which was reflected in the
138/150 participants who were currently studying. The complete
study procedure roughly required an hour, for which the
participants were compensated fairly. Even though the
participants’ experiences with VR varied considerably (15 without
VR experience, 103 below 20 h, 35 above), apart from the distinctly
different navigation speeds, all participants collected all 27 stars
each. Furthermore, although some of the participants considered
themselves to be exceptionally susceptible to motion sickness, none
of the study procedures were interrupted or aborted because
of sickness.

5.2 Subjective metrics

The SS, SIM TLX, and CA questionnaires were filled out by the
participants during the different study phases, and the results are
clustered by redirection condition and summarized in Table 3.
None of the participants aborted the study, which is confirmed by
the fact that none of the collected delta values ΔSS between the pre-
and post-exposure conditions indicate significant occurrence of SS.
Furthermore, the SIM TLX scores (0–100) and CA (0–30) were all
clustered around similar values without apparent advantages for
any of the conditions, indicating that the new PredRed LPP and
FPP methods can be integrated well with existing and proven
algorithms. With the exception of presence and CA, lower values

are deemed better for all conditions. Based on more qualitative
feedbacks, the study participants notably complained that the
NULL condition required them to spin a lot, which was hardly
unexpected considering that some of the participants registered
100 or even more resets during their exposure time. On the other
hand, the study participants at the lower end of reset counts,
especially in PredRed LPP conditions, were often surprised with
the size of the explored environment compared to the tracking
space since they lost track of their real surroundings quickly.
Furthermore, some participants realized and noted that they
could feel the redirection, especially in the S2C and S2G
conditions, but not in an overly disturbing sense.

5.3 Objective metrics

To assess the performances of different RDWconcepts and steering
algorithms, a popular measure for comparison is the mean distance
between resets dReset. Unlike the total number of resets, which was
commonly used in early performance evaluations, dReset normalizes the
number of resets over the total walking distance for each user and
thereby better accounts for varying walking speeds, including stand still
or other personal human walking traits like veering. On average, each
participant covered 381 m during their exploration, but dReset was
calculated for each participant separately based on their individually
covered distance. Figure 6 shows the overall distribution ofdReset against
the different RDW conditions, and Table 4 presents the respective
numerical mean values. Notably, in rare occasions, the participants who
reset very quickly would overspin their initially indicated reset,
instantaneously provoking a second successive reset. In such cases,
these back-to-back resets were summarized into a single reset and
applied to all conditions consistently.

Evidently, the newly introduced predictive RDW algorithm
PredRed LPP managed to outperform the remaining algorithms
overall. This is further emphasized by the one-tailed t-test on the
normally distributed data, evaluating dReset in the presented order
(PredRed LPP–PredRed FPP–S2G–S2C–NULL). The numerical
results of the p-values are shown in Table 5, and a significance of α �
0.05 was chosen from RDW literature. With this, we confirm that
PredRed LPP showed statistically significant best performance (p< α),

FIGURE 5
Study environment, in which a participant starts at the red dot in the yellow area and subsequently makes their way through the various rooms
(Yellow01, Yellow02, Red01, Red02, Blue01, and blue OpenSpace Forest). Each room varies in obstacle density, while the rooms are separated by sliding
doors that automatically open after all the stars in the present room are collected.
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while PredRed FPP and S2G performed similarly (p> α) even as they
significantly outperformed S2C and NULL redirection (p< α in both
cases). Noticeably, S2C showed no statistical superiority over NULL
redirection. Given that only resets were employed in NULL redirection,
this may indicate that continuous application of redirection is less
powerful or less effective than usually agreed upon in literature, and we
speculate that the resets may possibly have a much larger significance
than commonly expected.

Furthermore, dReset was evaluated by considering the different
architectural spaces separately (see Figure 7). On the left, the overall
values are shown as references, and the rooms are ordered from left
to right in consecutive order of exploration during the user study.
Notably, especially in the initial hallway, PredRed LPP’s strength of
integrating scene awareness was apparent. Even though the
performance was not the best for each room, PredRed LPP often
showed considerable advantage over the other algorithms; although
it suggested an apparent weakness in the final open space, the

TABLE 3 Results of the subjective questionnaires clustered by RDWcondition: simulator sickness (SS), SIM task load index (0–100), and cognitive absorption
(0–30). Aside from presence and CA, lower values are considered to be better.

RDW Condition Δ SS Mental
Demand

Physical
Demand

Task
Compl.

Stress Distr. Navig. Presence CA

PredRed LPP 15.7 25.3 13.3 9.3 12.0 18.0 21.7 72.0 22.4

PredRed FPP 9.2 25.0 13.7 8.0 13.0 17.3 18.0 71.3 23.6

S2G 12.3 22.3 16.3 6.0 8.3 15.7 21.0 76.3 23.4

S2C 8.6 32.3 16.3 7.0 12.0 18.3 28.0 70.7 22.2

NULL 9.6 24.0 20.0 8.7 10.0 20.7 21.7 77.7 22.2

FIGURE 6
Performances of the different redirectors are evaluated based on the mean distance between resets dReset. The distributions are given along the
horizontal axis, each with the median highlighted as a white dot. The interquartile ranges are given in boldface along the axis, with 1.5× the interquartile
range shown in non-boldface indicators.

TABLE 4 Results of the objective measure for each RDW condition over all
rooms: mean distance between resets dReset including standard deviation.

RDW Condition dReset

PredRed LPP 5.75 ± 0.26 m

PredRed FPP 5.60 ± 0.27 m

S2G 5.56 ± 0.26 m

S2C 5.42 ± 0.20 m

NULL 5.28 ± 0.39 m

TABLE 5 Results of a one-tailed t-test investigating the statistical
significances of the respective algorithms based on dReset. A significance
level of α � 0.05 is considered. The table is read from left to right, e.g.,
PredRed LPP vs PredRed FPP results in p � 0.031. Green indicates p < α, and
yellow is p > α.
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algorithm performed well for the other more open spaces in
Yellow02 and Red02. PredRed FPP, on the other hand, while
having only a slightly higher dReset over S2G, appeared to
struggle most with bent trajectories in guided environments (e.g.,
in Blue01 and Yellow01). Interestingly, S2C showed a particularly
high dReset in the straight hallway at the beginning but deteriorated
drastically in the two yellow rooms.

6 Conclusion

In this paper, we introduced two new RDW concepts
addressing challenges encountered in predictive RDW. These
mainly consist of implementing simplifications like virtual
constraints (e.g., mazes) to limit the choices of the predictive
components, thus lowering the computational demand and
ensuring real-time application, as well as applying prediction
in colocated multiuser environments. We present the detailed
implementations of the core elements and discuss how these are
connected to the overall concepts forming the redirectors
PredRed LPP and PredRed FPP. Both approaches combined
cost-based evaluations correlating with a non-harmonic APF
representation of the physical tracking space. The main
difference between PredRed LPP and FPP was in the technical
implementations of their respective path prediction algorithms.
While LPP relied on multiple clothoid trajectories contained in a
lemniscate shape, the application of a simple scene awareness to
sort out infeasible trajectories, and a path similarity measure, FPP
numerically approximated a single clothoid trajectory forecasting
the user path based on their recent explorative behaviors.

Aside from the technical procedures, we designed and
conducted a user study involving 150 participants. In addition
to the two new concepts, we recreated three known RDW
concepts from literature using the presented APFs: NULL, S2C
(Razzaque, 2005), and S2G (Thomas and Rosenberg, 2019;
Bachmann et al., 2019). We matched all five conditions with a
consistent R2G reset strategy. For these five distinct conditions,
we invited pairs of participants to obtain 15 pairs, with
30 individual recordings per condition. None of the
participants aborted the user study due to sickness, and all
participants completed the given search and collect task fully.
Through recordings of the explorations, we showed that PredRed
LPP outperformed the other conditions statistically significantly
with regard to the mean distance between resets. Although
PredRed FPP showed superior results over S2G, S2C, and
NULL, it only showed statistical significant results over S2C
and NULL. Furthermore, both PredRed approaches could be
implemented well in locations with proportionally high amounts
of open spaces without apparent spikes in their computational
demands, other technical issues (e.g., dropping frame rate), or
obvious deteriorations in the RDW performances.

7 Outlook

Both PredRed LPP and FPP algorithms introduce a new take
on predictive RDW, enabling investigation of further
opportunities. For example, in the current implementation, the
second user was modeled as a simple, dynamic, and local obstacle
whose influence on the redirection vector was equally weighted

FIGURE 7
Individual performances in the form of dReset for the different RDW conditions broken down per room. On the left, dReset over all rooms is given as a
reference. From left to right, the different rooms are in the order presented to the study participants. The colors indicate the performance distribution and
are highlighted from yellow (best) to blue (worst).
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to the boundaries. A simple yet potentially powerful
consideration would entail a priority system, which in its
simplest implementation would contain a rigid order, in
which some of the users receive precedence over others.
Alternatively, since each user has their own velocity and
prediction, incorporating a stronger weight along the
expected motion axis or even full consideration of the
predicted trajectory in the APF propagation would
potentially improve the overall redirection strategy. This
implies that the APF can be locally propagated to better
reflect the effective future states of the environment in the
planning iteration and sharing the propagated APFs with
each other. Furthermore, as explained in subsection 3.3,
instead of firmly locking the state space in favor of
computational demand, segmenting the predicted path and
allowing the full action set to be considered for each
individual segment along the prediction would create a more
elaborate redirection. Naturally, this requires careful
integration into the cost function as changing the applied
redirection gains in rapid succession can potentially become
more noticeable and break a user’s presence quickly. On the
prediction side, in the case of FPP, an additional integration of a
system allowing scene awareness could create benefits with
respect to accuracy and precision of prediction. This clearly
imposes an algorithmic overhead and may most likely impair
the computational demand slightly; however, since FPP is
already less resource-intense, this should not pose a major
issue. The complete procedure also entailed elaboration of
many placeholder containers, such as ALem in Eq. (1) to
incorporate walking speed in the lemniscate prediction or
heading cost JHeading,i from Eq. (17) to address user
alignment with the boundaries. Each of these placeholder
containers, if calibrated properly, may again improve the
overall performances of the new predictive systems, but
further isolated investigations are necessary. As such, during
calibrations of the placeholder containers, an ablation study
could enrich understanding of the impacts of individual cost
terms on the global cost function Jtotal. Regarding the resets,
actively integrating the so-called predictive resets may
potentially improve the redirection strategy considerably by
preventing users from navigating into difficult situations,
such as a corner of the tracking space. Otherwise, predictive
resets could also take a user priority system into consideration
and could be employed to actively balance the number of resets
between the users or simply be integrated in a segmented
evaluation connected to an unrestricted state space.

The algorithms presented herein have only been tested in
virtually separated environments. Accordingly, including two
users in the same virtual environment could potentially increase
the users’ presence further, but we currently believe this to
occur regardless of the applied RDW condition and therefore
not affect the objective RDW performance measures, such as
the mean distance between resets. Another interesting
topic could be the incorporation of certain aspects of RDW
alignment (Williams et al., 2021; Thomas and Rosenberg,
2020), which would eventually allow the users to
physically interact with the real environment or even with
each other.
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