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Real walking is the most natural locomotion method for exploring Virtual
Environments (VE), enhancing the immersion of Virtual Reality (VR). Redirected
Walking (RDW) is employed to enable real walking within limited tracking spaces in
large VEs by subtly manipulating the mapping between the virtual and real
environments. However, the effectiveness of RDW is greatly influenced by the
convex shape and size of the manually defined physical tracking space,
subsequently impacting the user’s immersive experience. To improve
performance, one strategy is to integrate exploration methods from mobile
robotics with RDW. This will expand the usable tracking space, facilitating
dynamic environments and rapid exploration. For this, we adapted a Unity
framework for an RDW algorithm to facilitate simulations for such an
exploration. We conducted a simulation with artificially created non-convex
explorable tracking spaces and pre-recorded path elements, simulating two
adapted RDW artificial potential field (APF) concepts. Three conceptualized
modes were applied: repulsive APF, exploration APF, and exploration APF with
a distance threshold. Additionally, one APF was extended with a frontier-based
exploration approach that utilized the path between the user’s position and a
targeted frontier. The analysis revealed a significant trade-off between exploration
and immersion. APF combined with frontier-based the exploration technique
showed the fastest exploration speed, but - however - resulted in the lowest
distance between resets.
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1 Introduction

Real walking in virtual environments (VE) has been shown as the most effective
navigation technique for achieving high levels of immersion and presence (Usoh et al.,
1999). However, utilizing walking to explore virtual worlds imposes limitations on the
size of the VE, being constrained by the physical space. Overcoming this restriction can
be achieved by altering the mapping between user movements in the VE and the physical
environment (PE) described as redirected walking (RDW) (Razzaque et al., 2001). The
main target of RDW was initially to steer the user away from boundaries. Some research
has tried to employ this method to allow haptic feedback, where the user can be
redirected towards objects in the PE that ideally match the same location of the objects in
the VE (Thomas et al., 2020). However, it has never been employed to redirect the user to
the unknown spaces around them. This aspect is quite important since it could be
applied to allow ad hoc systems where the user does not need to define the empty space
around them. Instead, they could directly run the system and detect the walkable space

OPEN ACCESS

EDITED BY

Jerald Thomas,
University of Wisconsin–Milwaukee,
United States

REVIEWED BY

In-Kwon Lee,
Yonsei University, Republic of Korea
Sang-Bin Jeon,
Yonsei University Seoul, Republic of
Korea, in collaboration with reviewer I-KL
Evan Suma Rosenberg,
University of Minnesota Twin Cities,
United States
Tongyu Nie,
University of Minnesota Twin Cities,
United States, in collaboration with
reviewer ES

*CORRESPONDENCE

Mathieu Lutfallah,
mlutfallah@ethz.ch

RECEIVED 16 July 2023
ACCEPTED 15 December 2023
PUBLISHED 08 January 2024

CITATION

Lutfallah M, Ketzel M and Kunz A (2024),
Redirected walking for exploration of
unknown environments.
Front. Virtual Real. 4:1259816.
doi: 10.3389/frvir.2023.1259816

COPYRIGHT

© 2024 Lutfallah, Ketzel and Kunz. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Virtual Reality frontiersin.org01

TYPE Original Research
PUBLISHED 08 January 2024
DOI 10.3389/frvir.2023.1259816

https://www.frontiersin.org/articles/10.3389/frvir.2023.1259816/full
https://www.frontiersin.org/articles/10.3389/frvir.2023.1259816/full
https://www.frontiersin.org/articles/10.3389/frvir.2023.1259816/full
https://crossmark.crossref.org/dialog/?doi=10.3389/frvir.2023.1259816&domain=pdf&date_stamp=2024-01-08
mailto:mlutfallah@ethz.ch
mailto:mlutfallah@ethz.ch
https://doi.org/10.3389/frvir.2023.1259816
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://www.frontiersin.org/journals/virtual-reality#editorial-board
https://doi.org/10.3389/frvir.2023.1259816


while exploring the VE. RDW for exploration also allows the user
to continuously update the map of their surroundings and thus
have a more arbitrary space.

In RDW, the mapping between the user’s movement in the PE
and the VE is manipulated. By slightly modifying this mapping,
users do not notice these changes since they mainly rely on their
visual sense for orientation. The magnitude of such modifications is
also named “gain”. Several different gains exist to generate a subtle
mismatch between the user’s visually perceived trajectory and the
physical path that he is really walking.

“Rotational gains” indicate the injection of small rotations while
the user is standing still or turning on spot. “Translation gains”
change the mapping between the linear speed of a user while walking
on a straight line, allowing them to either walk slower or faster.
“Curvature gains” lead the user to walk along a curved line by
injecting rotations into their movement while walking straight.
These different alterations of the mapping can be used
interchangeably and to a certain extent, meaning the change in
mapping is limited to certain thresholds so that the user does neither
notice it nor experience any cybersickness. Therefore, many studies
have tried to determine these thresholds (Steinicke et al., 2010;
Williams and Peck, 2019).

Various steering paradigms have been presented that allow for
choosing where the user should be steered to and with what gains.
Initial approaches could be distinguished in reactive, scripted, and
predicted RDW. Reactive approaches only take into account the
current location and orientation of the user in the PE. These
methods include techniques such as steer-to-center (S2C)
(Razzaque, 2005), where the user is always steered towards the
center of the room that is assumed be convex. In the scripted
approach, the walkable paths are predefined, and the gains are
also pre-calculated (Azmandian, 2018; Yu et al., 2018). Predictive
approaches are the most recent approaches and rely on a prediction
of a user’s intended path to then apply redirection accordingly. One
of the earliest algorithm was RFED (Peck et al., 2012), which
describes the paths in walkable corridors by line segments and
connecting nodes between them. Taking a user’s head orientation
into account, the prediction to the next node was calculated. A
skeleton graph was also used by Zmuda et al. (Zmuda et al., 2013).
The score of a predicted path was then calculated using probabilities
assigned to the nodes in this graph. Also MPCRed (Nescher et al.,
2014) also used a skeleton graph, but calculates a cost function based
on the applied redirections.

Recently, more advanced techniques have been proposed, such
as artificial potential fields (APFs), which relax the constraints
presented by earlier methods, such as convex and static spaces.
With artificial potential fields, it is possible to have a non-convex
and dynamic space. Multiuser environments can also be
considered in the context of APFs, where multiple users are
walking and exploring the VE (Bachmann et al., 2019; Thomas
and Rosenberg, 2019). State-of-the-art methods present a new
variation of reactive algorithms (Williams et al., 2021a; Williams
et al., 2021c; Williams et al., 2022), where the user movement is not
predicted, so no computational effort is needed. However, the
position and orientation in the VE are also taken into account to
enable alignment between the two spaces. A comprehensive
overview of existing algorithms is given by Li et al. (2022) and
by Nilsson et al. (2018).

So far, RDW algoritms were only applied to redirect the user to
avoid collisions with the physical boundaries of the tracking space,
but not to guide a user towards yet unknown spaces in the tracking
area to explore them further. Thus, the goal of the presented work is
the combination of exploration methods from mobile robotics with
RDW, as introduced in Lutfallah (2023). Our system dynamically
constructs a map based on user movements, and with the inclusion
of attractive frontiers, actively directs users to uncharted territories,
ensuring a fast exploration. Following a comprehensive map-
building phase, users can then transition to other conventional
RDW algorithms for further experience refinement.

In this paper the main contributions are the following:

• Design of a simulation framework that would allow testing
various RDW algorithms with unknown spaces.

• Development of an exploration logic that can could emulate a
user walking in large VEs while exploring their surroundings.

• Adaptation of RDW with APF algorithms to allow fast
exploration of virtual environments.

• Design of an APF with a frontier base exploration logic that
could allow faster exploration of the physical space.

2 Related work

2.1 Redirected walking in unknown spaces

Nescher et al. (2016) present an approach that combines
simultaneous localization and mapping (SLAM) with
redirected walking (RDW), allowing free walking in VEs
within arbitrary physical environments without the need for a
convex dedicated tracking space. In their paper they discuss the
use of the Google Tango tablet with MPCRed to have RDW in an
unknown space.

An ad hoc method for virtual reality systems was presented in
the work of Hirt et al. (2017) by allowing the user to map the walls
and not having to define the walkable area beforehand. The paper
presents a confidence filter that allows going from the point cloud to
density on a 2D plan grid. Then - based on the points in the cell -
they detect if a cell-area correspond to a wall or not. The Ransac
algorithm (Fischler and Bolles, 1981) is then used to find the line and
the boundaries. Another work by Hirt et al. (2018b) allows having
dynamic objects in the space by creating an occupancy map
in the grid.

Another adaptation to support non-convex tracking spaces and
multi-user applications is proposed by Thomas and Rosenberg
(2019) and Bachmann et al. (2019) by utilizing artificial potential
fields originating from the path planning in mobile robotics. The
main principle of these RDW methods is to apply an potential
within the known tracking space. Hereby, a high potential at the
boundaries and obstacles is applied and a low potential in the inner
free area of the tracking space. Then, the redirection gains are
computed by taking the difference vector between the negative
gradient and the previous walking direction at the current user’s
position. Both showed that their RDW APF algorithms are reliable
in non-convex tracking spaces with simulations. However, the
tracking spaces were static and predefined, so no extension
during the simulation was possible. Li et al. (2022) developed a

Frontiers in Virtual Reality frontiersin.org02

Lutfallah et al. 10.3389/frvir.2023.1259816

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1259816


taxonomy for RDW and then analyze both, the benefits and
shortcomings more in detail.

2.2 Exploration in robotics

A lot of research has been put into exploration of unknown
spaces in robotics. Although the findings from this research area
cannot directly be mapped to RDW, because of humans’ walking
behavior is less predictable than for robots, some exploration
strategies might still be adaptable to RDW. Different approaches
have been proposed to allow robots explore unknown spaces in
an efficient way. “Topological methods” (Rekleitis et al., 1999) are
applied for mobile robots with a limited sensing capability or
when metric measurements (e.g., distances, orientation) about
the unknown environment are redundant. Hereby, the robot
creates a non-directional connectivity graph of its
environment. The graph consists of vertices and edges. A
vertex represents a unique marker in the surrounding which is
placed by the robot. Therefore, an edge represents a closed path
between two landmarks. This exploration method is probably not
applicable for RDW steering techniques, since the steering
algorithms heavily rely on spatial information such as the
current user’s position. More recently, a hierarchical topology
was used for path planning of a robot, which was then combined
with a pedestrian model to achieve a safe motion (Han, 2022).

“Gap navigation trees” (Nasir and Elnagar, 2015) are another
class of exploration methods. The method’s main idea is to enable
exploration with a minimal amount of information. Therefore, the
algorithm is designed to function with a single sensor which should
be capable of detecting gaps in the environment. During the
exploration process, a tree structure is then built starting from
the initial position. The robot is then guided to these gaps
iteratively and new nodes are added to the tree after the gaps
were explored. This method could be applicable to RDW, as it
saves information such as positions in the nodes and uses them as a
target for RDW algorithms such as steer to multiple targets
(Hodgson and Bachmann, 2013).

“Potential fields” are also used in mobile robotics for path
planning, to avoid collisions with obstacles and also explore
unknown environments (Andrews et al., 1983; Khatib, 1986;
Prestes et al., 2002). The APF methods in RDW are inspired by
this concept. By defining a high potentials at obstacles as well as

starting positions and a low potential at the target positions in a
potential function model f(x, y), it is possible to navigate a mobile
robot by always following the negative gradient vector −∇f. In
robotics, it is necessary to avoid local minima in the potential
field function. The reason for this is that a robot might become
trapped between two local minima, leading to oscillations without
ever reaching an external point from which the field would guide it
towards a new position. This concern is not present in RDW, owing
to the chaotic behavior of the user. Such behavior renders the user’s
movement non-deterministic; therefore, even if the user is
consistently steered to the same minima, they might still move in
an opposite direction. This is in contrast to the robot, which strictly
follows the gradient. Moreover, past research in mobile robotics and
RDW (Thomas and Rosenberg, 2019) has already shown that
potential fields work reliably in non-convex tracking spaces.
These factors motivated the usage of potential fields for the rest
of this work.

“Frontier-based exploration” (Yamauchi, 1997; Gao et al.,
2018) is a concept in mobile robotics that involves moving the
robot towards the boundary of unknown areas, where the sensor
then can register the surrounding and expand the map. This
method typically requires the generation of an occupancy grid
map. Hereby, the algorithm creates an occupancy grid map
consisting of cells which are classified as free, occupied, or
unknown. The algorithm then extracts the frontiers and applies
possible targets. Subsequently, with the help of the defined reward
function, one of these targets is chosen and a path from the current
robot’s position to the target is computed in the next step. One of
the easiest methods to choose a frontier as target is identifying the
closest voxel to the robot’s current position. The robot is then
moved to this place with a path planning algorithm and scans its
surrounding. After the frontier is explored, another frontier is
chosen based on this cost function and the process repeats until no
further frontiers remain.

3 Methods

The goal of this work is to adapt RDW for use in unknown
spaces. To achieve this, we have developed new algorithms for
redirection. In the following section, we will describe the various
components required for testing these algorithms, including their
development and the setup of the simulation environment. It

FIGURE 1
Different types of extensions. (A) Vertex Extension, (B) Edge Extension, (C) Corridor Extension.
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should be noted that simulations have been demonstrated to
provide a robust platform for evaluating and benchmarking
various implementations against one another (Azmandian et al.,
2022). As a basis for this work we rely on the OpenRDW
framework (Li et al., 2021). This library was extended to
generate random, non-convex spaces. Further, an exploration
algorithm was developed that allows to progressively expand
the map while the user is walking. The implemented APF
algorithm was also adapted from that library.

3.1 Random room generator

Since the current state of the OpenRDW framework was limited to
a set of pre-defined tracking spaces, various arbitrary spaces needed to
be created to test our new RDW algorithm for unknown spaces in a
simulation and for generalizing the findings. Therefore, a random room
generator was implemented. The random room generator started from
a small initial room and then gradually extended the tracking space and
shape by adding rectangular spaces at different positions of the previous
room. Each new rectangular space comes with a center point that will
used later for the exploration strategy as seen in Section 3.5. The size of
the initial room was predefined to be a square of 3 × 3 m. Then, the
number of extensions was randomly chosen from a uniform
distribution. To avoid meaningless extension steps, also the
minimum and maximum extension lengths (MinLength,
MaxLength) were defined, as well as the minimum and maximum
corridor widths (MinCorr, MaxCorr) (see Figure 1). By doing so, the
size of the new corridor or room was always above a certain size to
ensure that the added part contributes a reasonable space. The type of
the extension was also randomly chosen from the three types Vertex
Extension, Edge Extension, Corridor Extension, as well as the vertex
where the extension has to be attached. Three different extensions are

shown in Figure 1. The generator consecutively expanded the room by
adding an overlapping extension box to the map. The algorithm is
presented in Algorithm 1.

1: Define BaseSize

2: for i = 1 to num_extensions do

3: Randomly choose an extension type and a vertex for

the extension

4: Chose vertex where extension is added

5: if corridor width is within (MinCorr,

MaxCorr) then

6: extension_length ← U(MinLength, MaxLength)

7: Compute remaining points of the extension

8: end if

9: Add extension points to the current

tracking space

10: end for

11: Save all extension points and current tracking space

Algorithm 1. Tracking Space Extension Algorithm

The spaces created can then be stored using text files. The starting
rectangle vertices are stored. Then the extending points are stored
consecutively as well as the center of the newly created box. The center
will later on be used for one of the new RDW algorithms. The
parameters employed in this study included a base size of 3 m,
augmentation with up to 29 extensions, an extension length ranging
between 1.0 and 1.2 m, and a corridor width defined between 1.4 and
1.6 m. These values were selected through visual inspection of multiple
generated rooms to ensure their practicality and coherence.
Additionally, the chosen corridor width was determined to align
with typical dimensions observed in residential homes. An example
of a generated room is seen in Figure 5.

FIGURE 2
New path generated by stitching elements from two other previously recorded real user paths.
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3.2 Path generation

To run our simulations we need a large number of paths.
While artificial paths from the “Redirected Walking Toolkit”
could be used (Azmandian et al., 2016), this would have resulted
in an unnatural faceted walking trajectory. Using real user paths
was essential to get reliable results that would translate to real
user studies (Hirt et al., 2022). Thus, we used paths from previous
studies conducted in the research group. To have a broader data
set, we also combined portions of these recorded paths by cutting
them and stitching the resulting elements to new paths while
adding a certain rotation at the stitching of the parts. This
allowed us to have a large number of paths that are later used
for the simulations. In Figure 2, a representative stitched path is
depicted with two segments merged. For clarity, the image
presents only two paths with extended durations to outline
their general shapes. For the simulations, segments from paths
were selected with a duration of 30 s and were subjected to
random rotations ranging from −30 to 30°. Segments
continued to be extracted and stitched until the desired

duration was achieved. The specified parameters were
determined based on visual analysis of the paths to ensure
their appropriateness.

3.3 Exploration strategy

As a subsequent step in our implementation, we developed an
exploration algorithm designed to continuously update the
surrounding map. This ensures that the simulated agent follows
previously generated paths, steered by the RDW algorithm, while
consistently exploring the boundaries. The mapping process follows
the methodology outlined by Hirt et al. (2018a). To simulate the
progressive expansion of the map by exploring previously unknown
regions, we utilized the simulation environment provided by the
OpenRDW library (see Figure 3). We incorporated a cone-shaped
ray casting mechanism with the aperture angle α in the facing
direction of the user to detect unknown boundaries is the
environment. Initially, the simulation begins with a small
exploration map, corresponding to a limited area around the

FIGURE 3
Concept of the exploration logic. In (A) it shows the cone and the measured distance of each raycast facing an unknown frontier. This is then
explored and marked as “occupied” as shown in (B). In (C), at least one ray hits an exploration trigger, so the space is updated as shown in (D).
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user. The boundaries of the map are classified as initially unknown
frontiers. The unknown boundaries are labeled as the “exploration
trigger layer” indicating that these frontiers are openings to more
expansive spaces. As the user approaches a boundary and the rays
intersect with the yet unknown frontier that corresponds to a wall
within a distance smaller than the predefined threshold distance dT,
the frontier is labelled as “occupied”. In case a raycast hits an
exploration trigger layer within the distance, the space is
extended by the random room generator, then consecutively the
new frontiers of the new space are either labeled as unknown
boundaries or exploration triggers. The threshold distance dT was
set to 3 m, which was found to be reliable for SLAM to function
effectively with the Google Tango. However, it’s worth noting that
the Google Tango is an older device, making this threshold a
conservative choice. As for the aperture angle α, a value of 55°

was chosen, providing a field of view of 110°. This decision is

supported by the fact that the camera found in Pico Neo 4 offers
a FOV of 130°1, and the Intel RealSense camera also has a FOV of
163° ± 5° for both cameras combined2. Since we assume instant
detection and extension of the map, a more conservative angle
was preferred.

3.4 Applied artificial potential field algorithm

Once the simulation framework was established, it allowed for
the evaluation of the RDW algorithms. Due to the promising

FIGURE 4
The three different modes of APFs. (A) APF mode 1, (B) APF mode 2, (C) APF mode 3, (D) APF mode 4.

TABLE 1 RDW model parameters applied in the optimization procedure.

Model parameter Values tested

θ0 {0.009, 0.018, 0.027}

θ1 {2.5, 3, 4}

θ2 {3, 5, 8, 20}

TABLE 2 Optimal parameter values for modes 1, 2, and 3 with the optimization
dataset.

Mode θ0 θ1 θ2 μMapCompletenessn μDbR[m]

1 0.009 4 20 0.63 ± 0.10 4.78 ± 1.13

2 0.009 2.5 20 0.80 ± 0.16 4.10 ± 0.87

3 0.009 2.5 8 0.77 ± 0.14 4.193 ± 0.67

1 https://www.picoxr.com/global/products/pico4e/specs

2 https://www.intelrealsense.com/tracking-camera-t265/

Frontiers in Virtual Reality frontiersin.org06

Lutfallah et al. 10.3389/frvir.2023.1259816

https://www.picoxr.com/global/products/pico4e/specs
https://www.intelrealsense.com/tracking-camera-t265/
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1259816


robustness of RDW APF algorithms in non-convex tracking spaces,
we decided to adapt chosen RDW models to potential field
exploration. The RDW algorithms were implemented based on
the main idea of potential field exploration in robotics.
Therefore, by applying a high potential on occupied walls and
low potentials to frontiers is it possible to redirect the user to
unknown areas of interest and enforce exploration. Furthermore,
we considered the possible necessity to keep the RDW algorithm
versatile. For this purpose, we modeled the RDW APF models with
three parameters θ0,1,2 following the definition by Messinger et al.
(2019). As proposed from Bachmann et al.(Bachmann et al., 2019),
the redirection vector t (see Eq. 1) is a sum of individual force
vectors. In the initial implementation, the force vector was
computed based on the field coming from users as well as
boundaries. However, since we are not considering a multi-user
application, we only keep the component coming from boundaries.

t � ∑
ns

i�0
wi x( ) (1)

Hereby, wi is a force associated with segment i of a boundary
with in total of ns segments and depending on the current user
position x. The force vector used in this work is shown in Eq. 2.

wi �
δi · θ0 · Li · edi

|di|θ1
if n · edi ≥ 0 and |di|< θ2,

0, otherwise.

⎧⎪⎪⎨
⎪⎪⎩ (2)

The parameters are defined as follows:

• δ specifies the nature of the boundary force: a value of
1 corresponds to a repulsive force, while a value
of −1 indicates an attractive force

• θ0 is the maximum potential
• θ1 is the slope distance of the potential base function
• θ2 distance threshold between the user and the wall
• Li is the length of the boundary
• di is the Euclidean distance between the center of the boundary
segment and the current user position

• edi is the difference unit vector between this segment center i
and the user’s position

• n represents a unit-length vector perpendicular to the
boundary, pointing towards the side that faces the
tracking area.

Based on the equation we derived, there are three different
modes of APF. An illustration of these modes is shown in Figure 4.

1. Repulsive APF: In this mode, only a repulsive field is available,
which matches the previous implementation. This means that
both unknown frontiers and walls have a δ = 1. This will be
referred to as mode 1 or APFrep.

FIGURE 5
Sequential snapshots of a simulation showcasing the user’s movement as they progressively explores the environment. The exploration rays are
shown in blue.

TABLE 3 Results of the best performing models on the test dataset.

Mode μMapCompleteness μExplorationTime μExplorationRate μDbR

[s] [min−1] [m]

1 0.63 ± 0.14 884 ± 37.6 0.04 ± 0.01 4.80 ± 1.18

2 0.83 ± 0.12 764 ± 197.1 0.07 ± 0.04 4.15 ± 1.15

3 0.79 ± 0.13 780 ± 199.6 0.07 ± 0.05 4.25 ± 0.91

4 0.85 ± 0.11 703.9 ± 208.6 0.08 ± 0.04 3.89 ± 0.72

FIGURE 6
Average exploration rate versus distance between resets.
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2. Repulsive and Attractive APF: The second mode introduces both
repulsive and attractive fields. Here, the unknown frontiers
present an attractive field with a δ = −1. This will be referred
to as mode 2 or APFatt.

3. Repulsive and Attractive APF with limited boundary and frontier
effects: In the third mode, the effect of boundaries is limited to
only nearby ones, and the same goes for frontiers. This will be
referred to as mode 3 or APFatt,τ.

Once the total force vector was determined by summing the
different individual repulsive and attractive vectors, the gains needed
to be applied for the user were computed based on the method
developed in the OpenRDW library.

3.5 Artificial potential fields with
path planning

The previously described modes of APF exhibit certain
limitations. One limitation occurs when the environment
contains narrow corridors, as the repulsive field generated by the
walls consistently directs the user away from the entrance to these
corridors. Furthermore, in situations where a user is located in a
room that is distant from another room with unexplored
boundaries, the APF fails to provide any guidance towards that
distant room. Even when utilizing APF mode 2 (the mode without a
distance threshold), a decay factor arises due to the inverse
relationship with the distance di, which implies that the impact
of a more distant frontier or wall is reduced. Another limitation
arises when an attractive frontier lacks a direct path, necessitating
the user to be steered towards multiple waypoints before reaching
the frontier. Consequently, to address these limitations, the APF
method was combined with frontier-based exploration.

In this approach, a frontier can be selected in space based on a
cost function, which incorporates factors such as distance from the
user, length of the unknown frontier, and direction. Initially, we
assumed that the user would be redirected towards the furthest
frontier until reaching it, as seen in Eq. 3. Once the frontier was
chosen, a path planning algorithm was employed to determine the
shortest path for the user to reach that frontier. As mentioned earlier
in the generation of the spaces, the centers of the created rectangles
were stored. Subsequently, the paths were sampled by considering
the centers of all the rectangles within the explored area. The goal
was to find the path with the shortest distance from the user’s
starting position to the frontier. The closest center was then selected
as the next target point to steer the user towards.

Pp
j � argmax

j∈frontiers
|dj| (3)

where Pj* is frontier where the user should be steered and dj is the
distance between the user and the different frontiers.

Direct steering towards multiple targets has been demonstrated
to be less effective than other techniques (Hodgson and Bachmann,
2013). This led us to presenting a novel S2MT algorithm that can be
combined with APF (seen in Figure 4D). This approach involved
applying an attractive field to a specific target, which was added to
the repulsive field generated by the walls. This combination was
designed to prevent the user from becoming stuck and encourage

continuous movement away from boundaries. Thus the total force
vector on the user can be calculated by Eq. 4. This will be referred to
as mode 4 or APFatt, path.

t � ∑
n

i�0
wi x; ϕ; θ0; θ1; θ2( ) + αv x;xk+1( ) with xkxk+1 · xkx> 0

(4)
where the attraction vector v(x, xk+1) from the closest target point
xk+1 to the user position x is defined by Eq. 5 seen below:

v �
−θ3 · ed

|d|θ4 if |d|≤ θ5

0 otherwise

⎧⎪⎪⎨
⎪⎪⎩ (5)

The presented equation resembles Eq. 2, with the exception that
it omits the parameters L and δ. This omission is due to the fact that
the target point is inherently attractive and lacks a defined length.
The parameters θ3, θ4, and θ5 are analogous to θ0, θ1, and θ2
respectively. These were renamed to emphasize that they might
have different values, differentiating the properties of the force
vector originating from the boundaries from the one related to
the steering point. Nevertheless, for the scope of this study, identical
values are adopted for both parameter sets.

3.6 Parameter fitting

As previously described, the APF function used in this work has
three different parameters θ0,1,2 which are not specified. Previous
papers relied on pilot studies to determine these parameters. In this
work, we opted for an optimization procedure. For that, 45 tracking
spaces were generated with 20 different paths using the random
room generator and path generation method previously described.
Each tracking space was tested with a combination of four different
paths. The parameters were fitted to allow the fastest exploration
speed. This was measured using different parameters. Map
completeness was used as defined by Yan et al. (2015) which is
defined by the ratio of the area of the explored rectangles to the total
area of all rectangles constituting our space. We also took into
account the exploration time which is defined by the time needed to
reach 90% map completeness. Since there was not guarantee that we
would reach 90% map completeness we also introduced a metric
called “exploration rate” which is the ratio between map
completeness and the time. For practical usage, the “map
completeness” can measure how well a physical tracking space
can be used by a VR application using our new RDW algorithm.

Following the previously described procedure, the best
parameters were identified and used for the testing phase where
we used 60 different generated tracking spaces in combination with
24 different user paths. Each tracking space was again tested with
four different paths.

To find the best model parameters, we followed a grid search
approach. Each mode of APF was simulated with a different set of
parameters in the optimization set. The parameters tested are shown
in Table 1. The parameters chosen were initially derived from the
research of previous investigators Messinger et al. (2019); Bachmann
et al. (2019). For θ2, this parameter determines the maximum
distance between the user and the walls beyond which forces are
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no longer exerted. This effectively limits the rooms that can
influence the user, so values for θ2 were chosen with this in
mind. A preliminary evaluation of all the parameters was
conducted by testing various ones in a few rooms to identify
which required further investigation. In future studies, we plan to
conduct a comprehensive exploration across a broader range of
parameters.

3.7 Simulation conditions

For all the simulations, various parameters had to be defined.
First the reset algorithm employed in all of the simulation is based on
APF-R proposed by Bachmann et al. (2019). After the potential field
at the position of the user is computed, the user is rotated to face
toward that vector and the simulation continues. The translation
speed used in the simulation is set to 1 m/s and the rotation speed to
90°. This is inline with previous studies (Williams et al., 2021b;
Williams et al., 2021c). The reset is triggered when the user is 0.3 m
away from boundaries. The redirection gain thresholds employed in
both optimization and testing are based on the work of Steinicke
et al. (2010) and is widely used by researchers (Bachmann et al.,
2019; Williams et al., 2021c). The translation gain is bounded to be
between 0.86 and 1.26, the rotational gain between 0.67 and 1.24,
and the curvature gain between −7.5 and 7.5.

4 Results

The best simulation results based on the mean map
completeness are shown in Table 2. The APF combined with the
frontier based method (mode 4) was not trained under the
assumption that the same parameter from mode 2 should be
applicable since the same APF baseline is used. Additionally
example images from a simulation are shown in Figure 5.

Table 3 shows the results on the simulations with the test data
from the second dataset. Furthermore, it lists the mean values of
MapCompleteness, ExplorationTime, ExplorationRate, and
Distance between Resets (DbR) together with their standard
deviation. Additionally, it shows the test results from the model
combined with the frontier based exploration (Mode 4).

When comparing the results from the modes 1, 2 and 3 between
the optimization and test datasets, it is noticeable that the mean
values are quite similar. The standard deviation of the simulations
with the test dataset regarding the DbR is slightly higher. Therefore,
it can be assumed that the parameter fitted are adaptable to
unknown tracking spaces, regardless of the mode.

From the results it is clear that a trade-off exists between
exploration rate and DbR. This is further seen in Figure 6.
Having attractive fields lead to higher average exploration rate
but lower average DbR compared to having only repulsive forces.
Furthermore, it seems to be that the repulsive APF does not discover
the whole tracking space within the time window. This is clearly
visible in the ExplorationTime whose average is about the maximum
simulation time of 900s and the MapCompleteness with the small
standard deviation. In opposite to this, the APFs with mode 2-
3 often reached the threshold of 90% map completeness. Therefore,
as expected, adding an attractive component to unknown

boundaries led to faster exploration, meaning that the user
utilizes the available tracking space more quickly. The
exploration APF with the frontier based exploration (mode 4)
shows the highest mean values regarding the exploration. This
indicates that the additional attraction to a computed path to a
frontier works as expected and facilitates the redirection of the user
to unknown areas of the tracking space. On the other hand, mode
4 has the lowest DbR. Therefore, the expected additional redirection
to open spaces led to more resets.

We could not find a normal distribution in our results based on
the Shapiro-Wilk test. A significance level of 5% was employed. We
compared the three APF modes that included an attractive
component (modes 2, 3, and 4) to mode 1, which only consisted
of a repulsive field, regarding different metrics.

In terms of map completeness, we began by applying a Kruskal-
Wallis test among the different modes. This yielded a p-value of
2.96 × 10−13, indicating that there is a significant difference between
the groups. To further investigate the pairs, we employed the Mann-
Whitney U test with a Bonferroni correction to prevent occurrences
of type 1 error, given that we are conducting multiple successive
comparisons. As we have 3 tests, the new significance level becomes
5%
3 ≈ 1.67%. Assuming that modes 2, 3, and 4 have a higher map
completeness time compared to mode 1, we obtained the following
p-values using the Mann-Whitney U test:

• Mode 2 vs. Mode 1: p = 1.93 × 10−10 (CL: 0.8663),
• Mode 3 vs. Mode 1: p = 2.88 × 10−7 (CL: 0.7928),
• Mode 4 vs. Mode 1: p = 4.16 × 10−12 (CL: 0.8996).

This confirms that a statistically significant difference exists
between the distributions, supporting the previous hypothesis
that the attractive component of the algorithms aided in
exploration. We also compared modes 2 and 3 with 4 in terms
of map completeness. However, the p-values were significantly
higher than the corrected significance level, adjusted for multiple
comparisons. This suggests that further investigation is needed to
support the hypothesis that combining the APF with a frontier-
based approach allows for a more thorough exploration of the
environment.

In terms of DbR, we again first conducted the Kruskal-Wallis
test where we found p = 1.73 × 10−3 signaling a significant difference
between the modes. Thus we conducted a Mann-Whitney U rank
test with the Bonferroni correction comparing modes 2, 3, and 4 to
mode 1, which had no attractive component. The results were
as follows:

• Mode 2 vs. Mode 1: p = 0.006 (CL: 0.6460),
• Mode 3 vs. Mode 1: p = 0.009 (CL: 0.6389),
• Mode 4 vs. Mode 1: p = 1.04 × 10−4 (CL: 0.7176).

The Null hypotheses of all comparisons with APFrep were
rejected due to p < 1.67%, suggesting the performance regarding
the DbR of APFrep is significantly higher than an APF with attractive
components. It follows that applying attraction fields to facilitate
exploration can remarkably decrease DbR, thus accelerating
exploration of the tracking space. Comparisons between modes 2,
3, and 4 yielded p-values higher than the further more corrected
significance level, implying the Null hypothesis could not be
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rejected. Further investigation would be necessary to validate the
hypothesis that combining the APF with a frontier-based
exploration can lead to a smaller average distance between resets,
compared to the other two modes that included attractive
components.

We can conclude that the use of attractive forces to guide users
towards unknown areas leads to faster exploration; however, this
results in more resets. This outcome was anticipated and has been
validated in this study. It presents an opportunity to investigate the
trade-off between rapid exploration and optimal user experience,
where users encounter less resets. This suggests that a stopping
criterion could be implemented to eliminate the need for exploration
and switch to already-developed algorithms. Another intriguing
question is whether faster exploration could lead to a quicker
transition to existing algorithms, potentially enhancing the
overall user experience due to a reduced transition phase. We
hope this study paves the way for research in these two
emerging fields.

4.1 Limitations

The following work is based on simulations; therefore, further real
user studies are necessary to validate the results (Hirt et al., 2022).
However, this work presents an initial starting point, providingmethods
that could be employed to utilize RDW in unknown spaces. There are
certain differences between the simulations and the real world. Firstly,
the simulations utilize a discrete exploration of the spaces. As
mentioned earlier, a new section is added to the map after each
exploration, albeit small due to the overlap of the rectangles. This
discrete exploration approach contrasts with the continuous
exploration scheme typically found in the real world.

The second limitation of our methods lies in the absence of any
errors in the mapping algorithm, which does not reflect the reality of
a real-world scenario. Additionally, the spaces in our simulations are
static, assuming no changes occur to previously explored sections.
However, this assumption may not hold in the real world, where
objects can be moved. Moreover, despite utilizing real user study
trajectories, these may introduce biases in terms of what actual users
would do in a practical environment.

Another limitation is that current commercial standalone head-
mounted displays (HMDs) do not provide access to the point cloud
they produce for tracking. Consequently, a special license would be
required to extract this point cloud, which is essential for identifying the
empty spaces around the user. An alternative solution might involve
using an external camera, but this addition could introduce overhead
into the system. It’s crucial to highlight that all algorithm configurations
tested in this study operate in real-time. However, tests showcasing this
real-time capability did not include the component that converts the
point cloud into a 2D map representing the empty spaces.

5 Conclusion

This study aimed to adapt a previously established RDW
algorithms to the exploration of unknown physical spaces. To
achieve this, we developed a simulation framework capable of
creating random spaces and subsequent exploration. We tested

four different alterations of the APF RDW algorithm to assess
their effectiveness in facilitating exploration.

The first mode of the APF RDWalgorithm included repulsive fields
from both walls and unknown boundaries. The second variation
incorporated repulsive fields from walls and an attractive field
towards unknown boundaries. The third variation was similar to the
second, but it completely removed the effect from faraway boundaries.
Lastly, we combined the second variation with a frontier-based
exploration approach, guiding the user towards multiple
intermediate targets determined by a path planning algorithm,
where the final goal is to reach a far way frontier in the space.

Using the simulation framework, we conducted an optimization
phase to determine the best model parameters for each APF mode.
Subsequently, a testing round was performed to evaluate their
performance. Our main finding indicates that including an
attractive component towards unknown boundaries can lead to
faster exploration of the virtual space. However, this approach
also resulted in a lower average DbR.

While efforts were made to enhance the realism of the
simulations, certain limitations remain. The discrete nature of
space exploration within the simulation and uncertainties
regarding the generalization of the selected paths to real-world
experiments pose potential challenges. Future research should
address these limitations to further refine the redirected walking
algorithm and ensure its applicability in practical scenarios.

In summary, this work contributes to the understanding of how
different alterations of the APF RDW algorithm can impact the
exploration of new virtual spaces. By incorporating an attractive
component towards unknown boundaries, faster exploration is
achievable, albeit with an increased frequency of resets. These
findings provide valuable insights for researchers and developers
working on improving redirected walking techniques, ultimately
enhancing user experiences in virtual reality applications.

6 Future work

In future work, several potential directions and improvements can
be explored to enhance the algorithm’s performance and extend its
applicability in various scenarios. A next step which might improve the
results of the algorithm is to apply unsymmetrical forces to frontiers and
walls. This can be done by adjusting the parameter. Applying a smaller
beta would mean that the attraction fields to frontiers are weaker,
resulting in an increased DbR. Another interesting aspect could be to
construct this concept dynamically over time. For example, the value
could be large in the beginning to accelerate the exploration and then
lowered to adjust the DbR. Moreover, we could totally stop the
attraction field at a certain point where the map is satisfying. Thus a
stopping criteria need to be explored.

For future research, looking into the effect of the shape and size
of the tracking space could be also interesting. It might be worth to
investigate the conditions of a tracking space when a repulsive and
explorative algorithm do not significantly differ from each other.
Based on this, a decision-making could be embedded which could
decide if a tracking space should be extended or not by considering
the shape and/or the size of the tracking space. Furthermore, more
pertinent metrics and enhanced visualization tools, like heatmaps,
would be essential for evaluating different algorithms.
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To approve the simulation results, the algorithms could be
embedded in the framework on a setup with real walking. Then,
they can be tested and the data logged to check if simulation results
and real results are similar. Another interesting aspect for future work
will be a multi-user setup. In a multi-user setup to determine whether it
is possible to better utilize the available tracking space in the same time.
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