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Long duration space exploration is no longer a fantasy, with Elon Musk claiming to
launch astronauts to Mars as early as 2029. The substantial increase in spaceflight
duration required for a Mars mission has resulted in a stronger focus on
behavioural health outcomes at NASA, with increased interest in using virtual
reality countermeasures to both monitor and promote psychological wellbeing.
From the perspective of a practitioner psychologist, this paper first considers the
utility of virtual reality assessment of emerging behavioural health concerns for
remote monitoring purposes. Key opportunities include using virtual reality for
functional cognitive testing and leveraging the predictive abilities of multimodal
data for personalised insights into symptomology. Suggestions are given as to how
astronauts can self-monitor usage of virtual leisure activities that facilitate positive
emotional experiences. Secondly, the potential to develop virtual reality
countermeasures to deliver semi-structured therapeutic interventions such as
collaborative cognitive-behavioural formulation in the absence of real-time
communication is discussed. Finally, considerations for the responsible
implementation of psychological monitoring tools are reviewed within a
context of fostering psychological safety and reducing stigma.
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Introduction

Long-duration space exploration (LDSE) is no longer a fantasy, with Elon Musk claiming to
launch astronauts toMars as early as 2029 (Musk, 2022). Current estimates suggest that a round-
trip toMars will take at least 650 days (NASAVideo, 2022, 24:24), whereas the longest number of
consecutive days spent in space to date is 437 (ESA-K Oldenburg, 2010). Extending spaceflight,
however, means extending the cumulative impact ofmultiple stressors, pushing the boundaries of
human coping (Leach, 2016). Kanas and Manzey (2008) outline these stressors including lack of
space, privacy, and resources; microgravity; radiation; monotony; sleep disruption; and isolation.
A Mars mission is further complicated by communication delays, a disappearing Earth, and the
inability to receive additional supplies or assistance.

While there are no reports of serious behavioural incidents occurring in space to date, a
deterioration to wellbeing during LDSE appears probable (Alfano et al., 2018). Extrapolation
from Antarctic analog data means that there is a 53.4%–89.3% likelihood of a severe behavioural
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health issue occurring during LDSE depending on whether incidence
rate remains constant or not (Stuster, 2010). No matter how carefully
astronauts are vetted for pre-existing resilience, contextual factors such
as stressor severity and availability of coping resources influence
psychological wellbeing in isolated, confined, and extreme (ICE)
environments (Palinkas and Browner, 1995). Likewise, extended
spaceflight may increase the possibility of mild to moderate affective
changes. Kanas (2016) explains that adjustment disorders presenting via
symptoms of depression and anxiety are themost common behavioural
health issues observed in space. Likewise, Vessel and Russo (2015) share
that subclinical levels ofmood disorder have frequently been reported in
ICE settings. While not immediately threatening to mission success,
subtle affective shifts may insidiously impact upon individual wellbeing,
crew cohesion, and performance over time (Slack et al., 2016). A
preventative approach is optimal, with increased focus on
monitoring behavioural health for early identification of issues in the
absence of real-time communication with ground support, as well as
developing countermeasures to promote salutogenesis (Slack et al.,
2016).

Virtual reality (VR) can help to fill these research gaps (Salamon
et al., 2018). Countermeasures include virtual exposure to natural
and urban scenery (Lyons et al., 2020) and virtual windows
(Kearney, 2016). There is substantial evidence supporting the
health benefits of nature exposure, for example, improved
cognitive function, psychological wellbeing, and physical activity
levels (Jimenez et al., 2021). Stress recovery occurs even when
viewing natural scenery indoors (Jo et al., 2019). However, in
three ICE environments including two Mars analog studies,
dynamic urban scenery was valued too, particularly after long
periods of isolation (Anderson et al., 2022). Similarly, virtually
simulated Earthscapes are being tested in the SIRIUS-21 analog
to facilitate self-transcendent emotions under conditions of
prolonged isolation (Stepanova, 2021). Earth gazing is a favourite
leisure activity for several NASA astronauts and has been repeatedly
associated with positive affective experiences (Johnson, 2010).

Another critical countermeasure is A Network of Social Interactions
for Bilateral Life Enhancement or ANSIBLE (Wu et al., 2015; Wu et al.,
2016). ANSIBLE is an immersive virtual ecosystem where astronauts
participate in activities like meditation, shared messaging with family,
and revisiting positive memories. Wu et al. (2016) found that ANSIBLE
improved social connectedness in conditions of delayed
communications with Earth. As AI capabilities progress, ANSIBLE
will be populated with socially intelligent virtual agents to provide
stimulation and monitor affective changes via speech and text
interactions (Wu et al., 2015). Choukér and Stahn (2020) report that
isolation and confinement is one of themost serious but least understood
risks of spaceflight. Social isolation and loneliness on Earth have been
consistently associated with decreased psychological and cardiovascular
health (Leigh-Hunt et al., 2017). Furthermore, hippocampal and
prefrontal cortex volume losses observed in Antarctic expeditioners
were attributed to isolation and monotony (Stahn et al., 2019).
Relatedly, multisensory VR stimulation is under development (Carulli
et al., 2019) since sensory deprivation increases the potential for conflict,
negative affect, and impaired performance (Palinkas and Suedfeld, 2008).

VR is also being utilised to enhance fitness routines and track
stress levels by incorporating biofeedback of respiration and heart
rate (Josh, 2020). Choukér and Stahn (2020) mention several
research efforts to combine exercise with VR to encourage brain

plasticity and provide sensory stimulation during isolation and
confinement. Keller et al. (2022) investigated the addition of VR
to an exercise device and protocol already tested on the International
Space Station and found positive trends for motivation, affect, and
mood restoration. Lower negative affect and fatigue levels were
reported during VR high intensity interval training. VR enhanced
exercise was similarly reported to have a positive effect on mental
and physical wellbeing outcomes during the COVID-19 lockdowns,
where vast numbers of people were housebound for prolonged
periods (Siani and Marley, 2021).

Evaluating and enhancing performance is another area of VR
research. Neurotracker is a tool that has gathered interest in the
space community (Smith, 2023a), which uses object tracking for
cognitive training and has been employed by military populations
(Vartanian et al., 2021). VR has been used to test aspects of
astronauts’ perceptive and psychomotor functions in space (Gaskill,
2021) and is used as a pre-flight trainer to induce and reduce symptoms
of space motion sickness and spatial disorientation in microgravity
(Stroud et al., 2005). Finally, due to the sense of presence and ecological
validity afforded by VR, VR is commonly used for maintaining or
enhancing job skills in safety critical roles. Examples include lunar
surface training for astronauts (NASA, 2020, 11:44), stress
management training for military personnel (Pallavicini et al., 2016),
and firefighter training (Wheeler et al., 2021). This paper expands upon
the possible uses of VR to both monitor and support wellbeing during
LDSE from a practitioner psychologist perspective. Responsible
implementation of behavioural monitoring at an organisational level
is reviewed in the discussion.

Behavioural Health Monitoring in Virtual
Reality

Basner et al. (2015) are currently expanding the range of cognitive
performance measures beyond the traditional Space Cognitive
Assessment Tool for Windows (WinSCAT; Kane et al., 2005), which
presents an opportunity to develop VR measures for use in LDSE. VR
has advantages when assessing domains of executive functioning,
visuospatial abilities, and sensorimotor functions, because it captures
user movement in 3D and simulates functional activities within
dynamic and representative environments in an stimulating manner
(Kane and Parsons, 2019). These domains rely heavily on brain regions
that are vulnerable to damage during LDSE, including the prefrontal
cortex, striatal memory systems, the hippocampus, and basal ganglia
(Strangman et al., 2014). Furthermore, from clinical experience, there is
not always clear alignment between the cognitive strengths and
limitations indicated by the results of brain imaging or standard
neurocognitive tests with actual performance. Assessment in VR
offers one way to capture real-world equivalent performance in a
controlled manner to offer predictive insights into behavioural
health problems in remote monitoring situations (Bell et al., 2020).
For instance, Voinescu et al. (2021) predicted symptoms of depression
and anxiety beyond the abilities of classical testing methods by using
Nesplora Aquarium, a lifelike test of attention and inhibitory control in
a noisy virtual aquarium.

Another advantage is that VR captures multimodal data in one
pass, which can be input into machine learning (ML) models to
predict aspects of user behavioural health beyond traditional
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methodologies. Consequently, there is an emerging presence of VR-
based psychiatric assessment tools, summarised by Chitale et al.
(2022); Freeman et al. (2017); Lindner et al., 2019; Geraets et al.
(2022). This body of research is in the early stages but Wiebe et al.
(2022) declare that there is a growing evidence base for the
assessment and treatment of anxiety disorders and phobias in
particular, which have received the most attention. Nevertheless,
the predictive strength of multi-modal data is already being
demonstrated in the computerized assessment platform created
by Thymia1; Fara et al. (2022a) discuss the improvement in
accuracy of depression diagnosis when fusing modalities from
performance features of the n-Back Task with linguistic and
acoustic characteristics. Fara et al. (2022a) discovered that
individual items from the depression questionnaire PHQ-8
(Kroenke et al., 2009) aligned to different features across these
modalities, allowing symptoms to be predicted independently. Fara
et al. (2022b) observed that model performance increased with extra
modalities and the use of a Bayesian network enabled the generation
of explainable model predictions. Multimodal data gathered in VR
could thus assist in painting a detailed symptom profile across issues
such as depression, generalised anxiety, or neurasthenia while
providing a fun experience. This data could inform targeted and
personalised treatment recommendations before reaching a clinical
level of need. This level of specificity is of interest for the space
community (Alfano et al., 2018).

While VR countermeasures are already being employed in ICE
settings, VR for routine behavioural health monitoring has some
inherent limitations that need to be resolved first. Simulation
sickness from VR has reduced participation in some analog studies
(Anderson et al., 2022). Gravity transitions contribute to sensorimotor
dysfunctions like space adaptation syndrome (Roy-O’Reilly et al., 2021)
and LDSE can increase risk for conditions like spaceflight associated
neuro-optical syndrome (Lee et al., 2020). Preliminary evidence suggests
that visuospatial abilities and attentional resources can remain impacted
at later stages of spaceflight, without signs of cognitive adaptation
(Takács et al., 2021). All of these factors may decrease willingness to
engage with VR and interfere with assessments that are not explicitly
testing for this. Consequently, in the author’s view, tools that focus on
emerging symptomology likely to occur in spaceflight and those that can
provide information across multiple domains of behavioural health at
once have the most promise for LDSE. The aim is to minimise time
investment while maximising data collection and enjoyment since the
behavioural health of astronauts is already extensively monitored and
testing needs to occur regularly to capture fluctuating levels of
psychological adaptation (Alfano et al., 2021).

Therapeutic applications of virtual reality
countermeasures

In addition to assessment, VR can support formalised treatment
interventions for behavioural health issues during prolonged stays in
ICE settings. Accordingly, immersive VR is under consideration for
the delivery of asynchronous therapy in LDSE (Gonzalez, 2022).

There is evidence that VR can integrate well with cognitive-
behavioural therapy (CBT) to support treatment for anxiety and
depression (Baghaei et al., 2021). Virtual environments have been
utilised for behavioural exposure and cognitive restructuring
exercises, for example, virtually manipulating negative self-
referential thoughts to reduce their power and believability
(Prudenzi et al., 2019). CBT is the most evidence-based approach
(David and Christea, 2018) and effects are demonstrable across
diverse conditions and populations (Fordham et al., 2021), making
this suitable for astronauts. Several components of ANSIBLE are
commonly leveraged within CBT including gratitude journaling and
mindfulness. This means that as well as being preventative, these
aligned activities may be prescribed as part of a recovery treatment
plan if required.

Likewise, formulation is an integral first step in CBT and could be
included within asynchronous VR therapy. Formulation is a co-
created visual map of specific cognitive, behavioural, bodily,
emotional, and situational factors that feed into and maintain
difficulties for an individual (Kuyken et al., 2011). Astronauts
could be guided using pre-programmed reflective questions and
templates to elicit relevant information for review and feedback by
a psychologist. Drag and drop features for common safety behaviours,
unhelpful thinking styles, and positive emotional regulation strategies
could be available to assist in creation of the formulation. Formulation
can also be strengths driven if preferred, focused on leveraging existing
personal resources and positive strategies (Padesky and Mooney,
2012). The formulation process in itself builds metacognitive
awareness, which is implicated for wellbeing at both an individual
and systems level (Varshney and Barbey, 2021). Furthermore, in the
author’s experience, collaborative formulation is empowering, acts as
a personalised treatment guide, and fuels the therapeutic alliance. The
therapeutic alliance is a core mediator of therapeutic change (Baier
et al., 2020), reciprocally linked to symptom reduction (Flückiger
et al., 2020), and highly predictive of CBT outcomes for patients
without a psychiatric history (Lorenzo-Luaces et al., 2017), the typical
astronaut profile.

Moreover, there is growing interest in passive monitoring during
spaceflight (Smith, 2023b), which refers to continuous unobtrusive
digital observation (Sheikh et al., 2021). For instance, the Astroskin
Bio-Monitor Vest tracks vital statistics like blood oxygen saturation
Hexoskin2. With regards to psychological health, the focus has
historically been centred on anxiety and stress management (Gatti
et al., 2022), usually for discrete performance monitoring (Johannes
and van Baarsen, 2020). However, to truly understand wellbeing, a
holistic view is required to capture behaviour across multiple contexts
including leisure time, which is pertinent when remaining in the same
environment. One tool that could help astronauts self-manage their
behavioural health is a virtual dashboard that automatically captures
time spent across different VR-based leisure activities including
sections of ANSIBLE. Computerised health dashboards have been
trialled previously to feedback on behavioural and physiological
parameters like heart rate (Mollicone, 2011; Mollicone, 2012). A
virtual dashboard could determine the distribution of time devoted
to VR activities that are personally meaningful and rewarding. For

1 https://thymia.ai/ 2 https://www.hexoskin.com/
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example, pre-flight, astronauts could give wellbeing importance
ratings to all available virtual activities alongside how much time
they typically spend on each per week. Individual baseline ranges
could already be established from previous space or analog missions.
The dashboard may be presented at a self-selected time span and
reflective questions triggered when consistent deviations from
baseline occur to help astronauts identify and question changes in
their usage patterns.

Similarly, there may be benefit in tracking virtual movement and
interactional patterns with ANSIBLE avatars as a parallel form of
sociometric tracking for astronauts’ personal support networks.
Sociometric tracking was trialled in the 520 Mars analog study to
understand crew relationships and team cohesion (Johannes et al.,
2015). Benchmarkswould need to be adjusted formovement in a virtual
world and individual baselines from ICE environments already
established. Virtual data should be interpreted in context of in-
person crew social interactions, since withdrawal from social support
is common in missions with delayed ground communications (Landon
et al., 2022). This combination of insights may alert astronauts to early
indicators of affective change. Due to the intrusiveness of leisure time
monitoring, these suggestions are best suited for self-monitoring
purposes, otherwise they risk becoming a nuisance or even harmful.

Discussion

Several researchers have commented on the appropriateness and
design ofmonitoring tools, highlighting that they need to feel acceptable
to crew (Goemaere et al., 2019); transparent about reasons behind
recommendations (Smith et al., 2023); and primarily for crew use rather
than mission control (Johannes and van Baarsen, 2020). Some
astronauts dislike psychological monitoring and may even attempt
to give false results (Slack et al., 2016), likely because poor scores can
threaten their careers (Kanas and Manzey, 2008). There is evidence
from analog studies that self-report measures can become constant
partway through the mission, preventing a granular understanding of
affective states (Goemaere et al., 2019; Johannes et al., 2015, cited in
Johannes and van Baarsen, 2020, p. 427). Moreover, Temp et al. (2020)
discuss systematic underreporting of serious behavioural issues in the
polar analog literature, obscuring the scope of the problem.

Clinically speaking, any form of assessment is only meaningful if
partaken in willingly. Evidenced tools that utilise passive monitoring or
ML to determine health status have the potential to be sensitive and
revealing. These assessments are harder to impression manage since
they either track data continuously over a sustained period or track a
combination of co-occurring behaviours where the weightings of each
feature in the model output is not always apparent to the user. These
characteristics may equate to objective strength but low user
acceptability. Seeing as remote assessment tools act as a stand-in
professional, there needs to be a therapeutic alliance so that users
understand the purpose and bounds of the tool, as well as any feedback
provided. Hence fostering psychological safety should be paramount.

Psychological safety refers to an environment where all team
members feel safe to take interpersonal risks such as disclosing
mistakes and sharing concerns (Edmondson, 1999). Psychological
safety is recognised as being critical in hazardous workplaces like The
Armed Forces (Crown Copyright, 2022). It may be the single most
important contributor to high performing teams (Rozovsky, 2015) and is

positively and frequently linked to work satisfaction, engagement, and
learning behaviours (Newman et al., 2017). To achieve psychological
safety, fully informed consent should be acquired when using
monitoring systems. Information may be shared on a need to know
or voluntary basis with aligned medics and clinicians who have a wealth
of experience in diagnostic decision making and are bound to a code of
ethics from their respective professions. In a spaceflight scenario, the
crew commander or select ground personnel may need to be privy to
aspects of this information, but themeans bywhich this occurs should be
collaboratively agreed before disclosure. Crew should be allowed to
question the outcomes of assessment tools and be involved in the design
process from start to finish.

Another way to foster psychological safety is to review the
processes surrounding disclosure of a behavioural health problem
and the repercussions for future missions. It is the author’s hope that
building sensitive monitoring tools will empower users with
personalised insights into their wellbeing to help them nurture
emerging areas of need and track changes following participation
in activities that facilitate positive emotional experiences. Evidence
of meaningful engagement with such activities should be given fair
weight in medical reviews since these can act as powerful buffers to
promote wellbeing and performance even in the presence of
symptomology (Alfano et al., 2021). Ideally, monitoring tools
should serve to reduce stigma, provide a clearer picture of the
prevalence and trajectory of behavioural health problems in ICE
settings, and demonstrate progress and recovery to minimise any
negative impact on a user’s future career.

In summary, VR has the potential to enhance behavioural health
monitoring by providing nuanced insights into emerging
symptomology and by supplementing existing countermeasures for
therapeutic interventions during LDSE. The ability to capture
functionally representative and multimodal data while positively
stimulating the user are key benefits that should invite collaboration
and investment into VR research for ICE environments. However,
successful adoption will only be possible if designed and implemented
in a way that fosters comfort and psychological safety for all.
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