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Digital twins (DTs) and eXtended Reality (XR) are two core technological enablers for
engineering in the Metaverse that can accelerate the human-centric Industry
5.0 transformation. The digital twin technology provides a digital representation
of a physical asset with data linkages for inspection, monitoring, and prediction of
complex processes or systems, while eXtended reality offers real-and-virtual
combined environments for human users to interact with machines. However,
the synergies between digital twins and eXtended reality remain understudied.
This work addresses this research gap by introducing a novel method “TwinXR”
that leverages ontology-based descriptions of Digital twins, i.e., digital twin
documents, in industrial eXtended reality applications. To ease the use of the
TwinXR method, we publish a Unity package that allows data flow and
conversion between eXtended reality applications and digital twin documents on
the server. Finally, the work applies the TwinXR method in two industrial eXtended
reality applications involving overhead cranes and a robot arm to demonstrate the
use and indicate the validity of themethod.We conclude that the TwinXRmethod is a
promising way to advance the synergies between digital twins and eXtended reality:
For eXtended reality, TwinXR enables efficient and scalable eXtended reality
development; For digital twins, TwinXR unlocks and demonstrates the potential
of digital twins for data interchange and system interoperation. Future work includes
introducingmore detailed principles of Semantic Web and Knowledge Graph, as well
as developing factory-level TwinXR-compatible applications.
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1 Introduction

The fourth industrial revolution (Industry 4.0) originated in 2011 (Vogel-Heuser and Hess,
2016), and has since become a globally-adopted term and focus of significant research, with
Smart Factories (Zuehlke, 2010) among the key initiatives. The next industrial revolution
(Industry 5.0), meanwhile, recognizes the power of industry to achieve societal goals and to
support the long-term service of humanity (Breque et al., 2021), with the arrival of the “Age of
Augmentation” (Longo et al., 2020). Numerous promising technologies and applications are
expected to accelerate Industry 5.0 transformation. Among those, the Metaverse, a concept
proposed in 1992, which has recently also become a popular paradigm in public (Sparkes, 2021),
can play a critical role in Industry 5.0 by bringing stunningly immersive digital landscapes to
enrich the human experience on factory floors. Industry 5.0 towards the Metaverse features two
core technologies, Digital Twins (DTs) and eXtended Reality (XR), which empower humans
with access to critical insight and control over diverse machines, systems, and processes (Lee
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et al., 2021). The DT technology provides a digital representation of its
physical counterpart with data linkages between the two, which
enables inspection, monitoring, and prediction of complex
processes or systems (Autiosalo et al., 2020), while XR, including
Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality
(MR), offers real-and-virtual combined environments for human
users to interact with machines (Chuah, 2018).

We identified the significance of combining the DT and XR
technologies. A user interface is a critical component for any DT
system to bring its value to and get inputs from human users.
However, the increasing amount of DT data within different
formats and from different resources creates a challenging context
for the user interface design (Zhu et al., 2019). XR technologies have
the exact potential to enable informative and intuitive interfaces.
Meanwhile, DTs bring with them a rich amount of data, which
serves as the foundation for creating digital content in XR
interfaces (Ma et al., 2019). Industrial solutions combining the
technologies of DT and XR have been proposed in several research
works: Begout et al. (2022) implemented a DT in the context of a
reconfigurable factory with the help of an AR authoring tool; Podder
et al. (2022) leveraged a DT and its models in VR to enhance the
learning experience and productivity of energy efficiency construction
workers; Weistroffer et al. (2022) proposed a framework to evaluate a
cobotic workstation, by simulating a physics-based DT and using XR
to display the DT and its associated data. Besides, our previous
research explored the DT-XR combination by creating XR
interfaces for a DT-based overhead crane: Tu et al. (2021)
implemented a Mixed Reality interface for on-site crane operation,
while Yang et al. (2022) proposed an XR development framework with
crane virtual training and remote monitoring use cases. However,
these works only focused on proof-of-concept technical design and
implementation of industrial XR applications for DT systems.
Systematic methods are still missing to achieve the synergies
between DTs and XR, which are critical in the context of Industry
5.0 towards the Metaverse.

As a primary step to approach XR-DT synergies, common
knowledge representation among XR interfaces and machine DTs
seems to be necessary. Ontologies have long been considered as a
framework for representing and managing shareable and reusable
knowledge across domains (Brewster and O’Hara, 2004), and are
therefore used in our work to link DTs and XR. In particular, we
leverage ontology-based descriptions shared among knowledge-based
XR interfaces and information management-oriented DTs.

Górski et al. (2019) presented an approach for knowledge
formalization and management in industrial VR applications:
Replacing the traditional paradigms of closed VR development
with hard-coded knowledge, the proposed open solution could
record the product/process knowledge in an application formally
and store it outside the application for easy access later. Flotyński
(2020) proposed knowledge-based explorable XR environments to
open new opportunities for knowledge exploration with the
capabilities of monitoring, analyzing, comprehending, examining,
and controlling XR environments, as well as users’ or assets’
behaviors. In addition, it reviewed the existing XR development
solutions that were limited to 3D representation purposes, and
suggested employing ontology approaches in XR scene creation.
Flotyński (2022) suggested that semantically configurable XR
environments would unlock the possibility to modify XR
application states, and launch the environment from an altered state.

Information management-oriented DTs focus on semantic
connections and information flow among different assets and
linked applications (Liu et al., 2021). Several machine-readable
ontologies can be used for DT communication, such as Schema.org
(2022), SAREF (2021), and GS1, (2021), which are typically formatted
in JSON-LD (Sporny et al., 2020) or other Linked Data formats. In this
article, we refer to the general concept of a document describing a DT
with common data ontology as a “DT document.” Several
specifications for DT documents have been created, including
Digital Twin Definition Language (Microsoft, 2020), Web of
Things Thing Description (Kaebisch et al., 2020), and Asset
Administration Shell (Plattform Industrie 4.0, 2020). These DT
document specifications, among others, are compared in Jacoby
and Usländer (2020). For development efficiency, this work
leverages the one that the authors previously drafted in Ala-
Laurinaho et al. (2020). Nevertheless, the TwinXR method is
generic and compatible with different specifications. With DT
documents describing different DTs and relations among them, we
can expect the emergence of a global network of interlinked DTs, the
“Digital Twin Web” (DTW) (Autiosalo et al., 2021). Resembling the
World Wide Web (WWW), the DTW is expected to have similar
standards of open availability, connectivity, and extendability. The
Feature-based Digital Twin Framework (Autiosalo et al., 2020) formed
a conceptual foundation for the DTW, followed by the design practices
specified in Ala-Laurinaho et al. (2020). Based on these, the authors
introduced a platform “Twinbase” (Autiosalo et al., 2021), the first
implementation of a DTW server, for managing and distributing DT
documents, which is leveraged in the implementation of this work.
Mattila et al. (2022) demonstrates the use of DT documents and
Twinbase in controlling a Smart Factory.

The previous works of the authors can be summarized into two
tracks: One was focused on industrial XR application development for
DT systems, which is limited to technical design and implementation
of XR applications for certain use cases; The other track was focused
on creating, connecting, and managing DTs, which can be a powerful
tool for information management among machines and connected
applications, yet has not been employed in the XR application
development practices. A systematic approach to combining XR
and DTs to advance the synergy is still missing. With existing
solutions, XR application development is a laborious process: One
XR application is often tailored to one specific purpose and
environment. On-demand composition and modification of XR
applications require using specific XR development tools, which are
rarely accomplished only by domain experts who oversee the
requirements of XR applications from certain machines and their
operating environments. Furthermore, data mapping between the
physical layer of machines and the XR application layer is often
done in an instance-by-instance tedious manner. This work
proposes the TwinXR approach that systematically combines
information-management DTs and knowledge-based XR. Following
the architecture and workflows of the proposed approach, a TwinXR-
compatible application can be created once and centrally, then
efficiently scaled to new instances according to new machine or
environment specifications by simply modifying the associated DT
descriptions, without repeating the XR development step. DT
descriptions serve as an intermediate layer connecting machines
and XR applications, ensuring data interchange and system
interoperation. The TwinXR approach enables building generic XR
solutions for industrial purposes involving multiple types of users.
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The main contribution of this work lies in advancing the synergies
between DTs and XR through proposing a novel method TwinXR that
leverages DT descriptions in industrial XR applications. The
contribution can be further detailed in the following three points.

• Introduce the TwinXR method, which uses descriptions of DTs
of Smart Factory devices in creating and instantiating their XR
applications.

• Develop a publicly available Unity package (Tu, 2022b) to ease
TwinXR-compatible application development.

• Apply the TwinXR method in two industrial XR use cases to
demonstrate the usage and validity of the method.

As a known limitation, our current TwinXR method
implementation does not use any specific ontology tools, which
remain to be developed in the future to enable the widespread
adoption of the method.

2 Materials and methods

This chapter starts with introducing a three-layered architecture of
the TwinXR method, with the materials for each layer provided. Next,
we present the workflows of TwinXR-compatible application
development, including their creation and instantiation. Finally, the
work provides step-by-step processes of users’ initializing applications,
as well as the two scenarios of an XR application reading and
modifying a DT document.

2.1 TwinXR setup

This section describes the architecture and the materials used for
implementing the TwinXR method. As illustrated in Figure 1, the
architecture consists of three layers, from the Smart Factory layer,
through the DT document layer, to the XR application layer, with

FIGURE 1
Overall architecture of the TwinXR method setup, with three layers from Smart Factory, DT document, to XR application.
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bi-directional data flow between them. This section covers the general
options for hardware or software setup, as well as the specific ones used
in the implementation of Chapter 3.

2.1.1 Smart factory layer
The Smart Factory layer contains physical machine instances,

connected with DTs and equipped with XR interfaces. The machines,
such as cranes, robot arms, and mobile robots are diverse, but their XR
applications can still contain similar parameters, such as the name of
the device, weight of the load, and location in relation to factory
coordinates. In the TwinXR method, the metadata of these machines,
including the customizable parameters of their XR interfaces, are
described in their corresponding DT documents on the server. In the
future, whole machine-specific XR application modules could be
fetched via addresses in the DT documents.

The implementation of TwinXR-compatible applications,
described in Chapter 3, involves two use cases, one with overhead
cranes, and the other with a robot arm.We use the industrial overhead
crane named “Ilmatar” at the Aalto Industrial Internet Campus as a
reference model for the crane use case. “Ilmatar” is a Konecranes CXT
family crane with Siemens PLCs and can lift 3.2-ton loads along three
dimensions using its subsystems of the bridge, trolley, and hoist.
“Ilmatar” functions as a DT-based platform for students and
researchers to conduct experiments on Smart Factory-related use
cases and are equipped with various external digital solutions,
including XR interfaces (Tu et al., 2021; Yang et al., 2022) for user
interaction, and an OPC Unified Architecture (UA) server for data
access. The metadata of such cranes includes the range of their
operationally safe zone, the location for their target positioning
control, as well as the basic information on their equipped external
applications. For the robot arm use case, we use the Universal Robots
e-Series robot, UR5e, as a reference model. UR5e robot arm is
equipped with six joints and a wide scope of flexibility. It can
handle end effectors and fixtures, process and transfer products.
The robot arm is typically connected to and controlled with
external software such as Robot Operating System (ROS). The
metadata of such robot arms includes the speed range, orientation
range, and offset of each joint, elbow, and end effector.

2.1.2 DT document layer
The DT document layer contains various DT documents hosted

on one or more servers. As a middle layer, the DT document layer is
connected to the Smart Factory and XR application layers with the bi-
directional data flow. Different DT documents are one-to-one mapped
with different machine instances. Meanwhile, multiple DT documents
can share one XR application, in which case these DT documents
would have the same data structure of their shared XR-related
parameters, so that the XR application can interchangeably fetch
parameters from different DT documents in the same way. The
shared parameters from different DT documents are likely of
different values, determined by their associated machine instances
and operating environments. These parameter values with DT features
then flow to the XR application and are linked to other XR
components, which eventually customize an instantiated application.

In practice, this work leverages the DT document standard
developed in the authors’ previous work Ala-Laurinaho et al.
(2020). Under this standard, each DT document describes the
metadata and features of a single DT in the format of YAML and
JSON. A DT document contains mandatory fields, such as name,

identifier, and description of the DT, as well as optional fields, such as
manufacturer, location of the physical product, and connected
services. The document is designed to function along with a Data
Link that connects the DT features behind a single access point.

This work further extends the fields in DT documents to include
the identified customizable XR features. The XR-related fields are
categorized into design and control parameter types: Design
parameters are typically those related to XR components’
appearance, such as the color, shape, size, opacity, and style, while
control parameters are those critical for machine operation, such as
the target location, subsystems’ moving range, operational zone, and
marker location. This work provides two examples of the descriptions
of terms for the DT document of the overhead crane and the robot arm
with XR-related fields, which is publicly available in the GitHub
repository (Tu and Autiosalo, 2022). Chapter 3 will elaborate on it
along with the TwinXR-compatible application implementation. The
data that is passed from the DT document layer to the XR application
layer includes both customizable XR features and selected general DT
information. The former is used to customize XR applications to fulfill
both design and control specifications, while the latter includes Twin
ID which is used for the mapping between external applications and
DT documents, and other general DT information that is visualized
and displayed in XR applications.

Regarding the server implementation, the work leverages
Twinbase (Autiosalo et al., 2021), a git-based open-source platform,
for managing and distributing DT documents. Twinbase development
is hosted by Aalto University and initiated as a result of multiple DT-
related projects. Twinbase leverages free-of-charge GitHub services,
including GitHub repository, GitHub Actions, and GitHub Pages.
New Twinbase server instances can be created by copying the template
repository and DT documents can be added with a provided template.
A static website hosted by GitHub Pages functions as the primary
human user interface of Twinbase, which allows browsing of Twinbase
or a selected twin, as well as directs users to a correct GitHub website
for creating or modifying a Twinbase or a twin. Chapter 3 will show a
Twin page of the “Ilmatar” crane with XR application features. Each
DT document contains its Twin ID that is used for referring to the
twin and can redirect to the hosting URL of that document. With a
Twin ID, machine users or external applications can fetch the
corresponding hosting URL and DT document, which is supported
by a Python client library (Autiosalo et al., 2021). To further adapt the
solution to common XR development environments, this work
develops a Unity package containing a C# script JsonReader.cs of
similar functionality for accessing the Twinbase server. The source
code of the package is publicly available in the GitHub repository (Tu,
2022b).

2.1.3 XR application layer
The XR application layer consists of a DT-doc module and

common XR components. The DT-doc handler in the DT-doc
module enables bi-directional data flow and data format
conversion between DT documents on the server and their local
copy in the XR application. A Twin ID input is required to
determine the mapping from an XR application toward its targeted
DT document. Common XR components, such as visualization,
networking, control, and registration modules, contain
customizable parameters that correspond to the ones in the local
copy of the DT document. The values of customizable XR parameters
can flow in both directions between the DT document and other XR
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modules: Other modules can read data from the DT document to
determine certain customizable features, while users can modify the
DT document through XR interactions. This article uses the term
“TwinXR-compatible” to describe an XR application of such thus
being compatible with the TwinXR method.

Common XR components of this layer can be developed
leveraging existing solutions, including 3D formats like X3D,
programming languages like Java and C#, libraries like OpenGL
and WebGL, 3D modeling tools like Blender and 3ds Max, and
game engines like Unity and Unreal Engine. The established
applications can run on various XR devices, such as Meta Quest 2
(formerly Oculus Quest 2) for VR, Microsoft HoloLens 2, and Varjo
XR-3 for MR, and mobile devices with Android or iOS operating
systems for AR. Among these options for software and hardware
setup, this work utilizes the development platform Unity and Trimble
XR10 with HoloLens 2 edition for the implementation in Chapter 3.

This work creates an open-source Unity package publicly available
in Tu (2022b) to ease the DT-doc module establishment. As shown in
Figure 2, the package contains four C# scripts, which together enable
bi-directional data flow and conversion between a DT document on a
Twinbase server and its local copy in an XR application:

• GlobalInstance.cs that creates a global instance living across
different scenes of an XR application to store the Twin ID
and the local copy of a DT document so that the parameters can
be easily accessed by other XR components;

• JsonReader.cs that fetches a DT document (in JSON String
format) from a Twinbase server via a get request, converts
the DT document into a local copy (in JSON node-tree
format), and assigns it to the global instance in the XR
application;

• JsonWriter.cs that reads the local copy of the DT document (in
JSON node-tree format) from the global instance, converts it

into JSON String format, and uses it to update the DT document
on the Twinbase server via a put request;

• SimpleJSON.cs (Göbel, 2022) that defines the JSON node-tree
format and provides the function of a JSON parser, which are
used by the other scripts GlobalInstance.cs, and JsonReader.cs.

2.2 Developing and using TwinXR-compatible
applications

This section presents the workflows of developing and using
TwinXR-compatible applications. The development includes the
creation and instantiation of TwinXR-compatible applications,
conducted by developers. Once an application is established, users
can then initialize it and follow the two workflows of reading and
modifying DT documents with XR applications.

Figure 3 presents the workflows for using the TwinXR method for
XR application development, from creating the first TwinXR-
compatible application instance, i.e., the origin, to adapting it into
new instances, with a focus on the transition and linkages between the
two workflows. The creation workflow is conducted once and
centrally, involving actions both for a DT document server origin,
and an XR application origin. Leveraging the outcomes of the creation
workflow, new developers can directly modify DT documents on their
own server instances according to the specifications from new
machines or operating environments, and consequently, have their
own XR application instances with customized features.

The creation of TwinXR-compatible application follows the
process below: First, customizable XR parameters are identified
from the existing XR application; Then, a DT document that
includes the identified parameters is created; Meanwhile, a DT-doc
module is added to the XR application; Finally, the XR application is
modified to connect XR features with parameters from the DT

FIGURE 2
Technical desciption of the TwinXR package consisting of four scripts, namely, GlobalInstance.cs, JsonReader.cs, JsonWriter.cs, and SimpleJSON.cs.
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document. Any TwinXR-compatible application origin can then be
instantiated for a new machine instance. It is only required to create a
DT document that contains values of the instance-specific parameters.

To initialize the TwinXR-compatible application, users input the
Twin ID stored in the DT document of the targeted machine, whereby
the application is linked to the previously established DT document.
Once the TwinXR-compatible application is initialized, users can
follow the workflows below to read and modify a DT document:
Once the application is launched, users first input the Twin ID,
through which, the DT-doc module fetches the corresponding DT
document; Then, other XR modules read parameters from the fetched
local copy of the DT document, which is then used to customize the
application; Hereby users can start to use the customized application.
Meanwhile, users can modify the local copy of the DT document
through XR interactions; Then, the DT-doc module sends the
modified local DT document to the server and confirms that the
DT document on the server has been modified successfully.

3 Results

This chapter demonstrates the use of the TwinXR method in
industrial applications with proof-of-concept implementation for
operating typical devices in a Smart Factory setup, including
overhead cranes and a robot arm. Following the workflows
presented in the previous chapter, the work first defines the XR
ontology in the DT documents, then implements a Twinbase server
with the DT documents, as well as TwinXR-compatible XR
applications. The source code of the implementation is publicly

available in the GitHub repositories of the Twinbase (Tu and
Autiosalo, 2022) and the Unity MR project (Tu, 2022a).

We use the industrial overhead crane named “Ilmatar” at the Aalto
Industrial Internet Campus as a reference model for the crane use case,
and the Universal Robots e-Series robot, UR5e, as a reference model
for the robot arm use case. Figure 4 depicts the architecture of the
TwinXR method implementation for crane operation. The robot arm
case follows a similar architecture of the TwinXR method
implementation to the crane case. The implementation consists of
two parts: A Twinbase server with the DT documents, as well as anMR
application running on the Trimble XR10 with HoloLens 2 device.

A scenario of using the crane or robot arm application goes as
follows: First, users would scan either the QR code of the Twin ID of
the “Ilmatar” crane, the demo crane, or the robot arm, and press “Read
DT doc from server” virtual button; This step triggers the DT-doc
module to send a get request to the URL redirection services, which
then redirect the Twin ID to the corresponding DT document on
Twinbase; Consequently, the DT-module fetches the DT document
and converts it to a local copy; Then, the visualization and control
modules read parameters from the local DT document; Accordingly,
the application is customized in terms of, e.g., the content DT
document dashboard, the coverage of the safety zone indicator, the
location of the target hologram (for the crane case), the speed range,
orientation range, and offset of each joint (for the robot arm case), etc.
For the crane case, users can also move the target hologram and press
the “Write to DT doc to server” virtual button to confirm; This step
leads to an update on the local DT document with the current target
location; The DT-doc module sends the modified local DT document
to replace the one on Twinbase. The steps above are repeatable while

FIGURE 3
Workflows of creating a TwinXR-compatible application origin and adapting it to new instances. (A) TwinXR-compatible application creation workflow.
(B) TwinXR-compatible application instantiation workflow.
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using the application. In other terms, users can scan the QR code of
another Twin ID, and fetch or modify the DT document on the
Twinbase server anytime according to need.

3.1 XR ontology in DT documents

The work first identifies the customizable XR features and defines
the XR ontology in the DT documents. A full list of the descriptions of
terms in the DT document, including both XR ontology and general
DT terms, can be found in the GitHub repository (Tu and Autiosalo,
2022).

Tables 1, 2 list the XR-related terms with their types, descriptions,
and data formats in the crane and robot arm DT documents
respectively. We categorize the terms into design and control types:
The design terms determine the user interface (UI) and experience
(UX) related features, while the control terms determine operation-
critical features. The design terms include the color, shape, size, angle,
scale, style or visibility of XR components like the dashboard, target,
and safety zone indicator, as well as the instruction about using the
application. There is often a need to tailor these terms according to the
specifications of machines, operating environments, and processes for
user-friendliness and safety reasons. The control terms include the
location of a marker for spatial registration that enables an XR
application to pose holograms in relation to the physical world,
and the range of a safety zone indicator that outlines the
operationally safe area for the crane or robot arm movement. For
the crane case with target positioning for crane movement, the control
terms also include the location of a target; For the robot arm case, the

control terms include the offset orientation, speed range, and
orientation range of the six robot joints. As the marker location,
safety zone range, target location, offset orientation, speed range, and
orientation of each joint often vary in different operating
environments, updating them through DT documents eases the
instantiation of a new XR application.

3.2 Twinbase with DT documents

The work implements the Twinbase server with the provided
template and therefore shares the same components that were
elaborated by Autiosalo et al. (2021): a GitHub repository, GitHub
Actions, and GitHub Pages, as illustrated in Figure 4. The GitHub
repository contains DT documents and other files, which are updated
by the GitHub Actions and deployed to the GitHub Pages for
distribution. For Twin IDs, this work uses the URL redirection
service at dtid.org, hosted by Rebrandly and introduced by
Autiosalo et al. (2021). The Twin IDs are redirected to the
corresponding twins on the GitHub Pages. As a special measure
due to a bug in the url property in UnityWebRequest class, the
Twin IDs used in this article also have an accompanying
redirection toward the JSON version of the DT document. The
implemented Twinbase server is then used to host DT documents
for both crane and robot arm cases.

Based on the defined XR ontology in Table 1, we create two crane
DT documents on Twinbase. One is for the “Ilmatar” crane, which
corresponds to a DT document origin as the one in Figure 3 described
in the previous chapter. The other is for a demo crane of the same type

FIGURE 4
Architecture of the TwinXRmethod implementation for crane operation with a TwinXR-compatible MR application, and a Twinbase server with crane DT
documents.

Frontiers in Virtual Reality frontiersin.org07

Tu et al. 10.3389/frvir.2023.1019080

http://dtid.org
https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2023.1019080


as the “Ilmatar” crane but located in a different operating
environment, thus with a different safety zone, target location, etc.
The demo crane DT document corresponds to an instance that is
adapted from the “Ilmatar”DT document. Similarly, we create a robot
arm DT document based on the identified XR ontology in Table 2.

3.3 TwinXR-compatible MR applications

The work implemented two TwinXR-compatible MR applications,
“HoloCrane” and “HoloRobot.” Figures 5, 6 show the two applications
in the Unity developer view. The applications are deployed to and
running on the Trimble XR10 with HoloLens 2 device in this
implementation, but it can also be possibly deployed to other
devices such as Meta Quest 2.

The “HoloCrane” application enables users to monitor and
control a virtual crane, while the “HoloRobot” application enables
users to view the arm robot status, and can be connected to and
controlled with external software such as Robot Operating System
(ROS). Both applications enable users to view the real-time status of
the machine via a virtual dashboard, including the real-time data of
the crane and target locations along three dimensions, or the
orientation and speed of each joint of the arm robot. The linked
DT document content is also presented on a dashboard, with basic

information about the crane or the robot arm, including its name,
description, manufacturer, and owner. In addition, the robot arm
application also reads and displays the orientation range, speed
range, and offset of each joint from the DT documents. When
the “Move Robot Arm to Origin” virtual button is triggered, all six
joints will be recovered to the offset orientations defined in the DT
documents. The defined orientation range and speed range set limits
when the robot arm is controlled by external software. With the
crane application, users can interact with virtual joysticks for moving
the trolley, bridge, and hoist of the crane, or moving the virtual target
hologram for target positioning of the crane hook. Both applications
share several common functionalities: The safety zone indicator
outlines the operationally safe range for the crane movement in
three dimensions and therefore improves users’ situational
awareness. Instructions are available to guide users through the
basics of using the application. Interface adjustment allows
configuring the visibility of certain holograms. Through scanning
the QR code of a Twin ID, the corresponding DT document will be
linked to the application.

As shown in Figure 4, the crane application consists of a DT-doc
module, two common XR modules, i.e., a control module and a
visualization module, as well as the QR code scanning
functionality. The robot arm application shares a similar modular
architecture.

TABLE 1 Descriptions of terms for XR ontology in the crane DT documents.

Category Term Description Format

Design targetColor The color of the target hologram, by default yellow String

Design targetShape The shape of the target hologram, by default sphere String

Design targetSize The size of the target hologram (cm), by default 20 (diameter) Float

Design targetOpacity The opacity of the target holograms (%), by default 70 Float

Design dashboardPosition The position of the dashboard center with regard to the user (m), by default (1, 0, 0) Array of three floats

Design dashboardScale The scale of the dashboard, by default 1 Float

Design dashboardAngle The angle between the dashboard and the plane that is vertical to the user’s sight line, by default 0 Float

Design visibilityUI—dashboard Whether the dashboard UI is visible, by default true Boolean

Design visibilityUI—target Whether the target UI is visible, by default true Boolean

Design visibilityUI—instruction Whether the instruction UI is visible, by default true Boolean

Design Instruction Instruction text about using the XR application String

Design safetyZoneDisplayStyle The hologram style of the safety zone indicator, either “fill” or “outline,” by default “outline” String

Control markerLocationBridge The location of the registration marker in the crane’s bridge dimension (cm) Float

Control markerLocationTrolley The location of the registration marker in crane’s trolley dimension (cm) Float

Control markerLocationHoist The location of the registration marker in crane’s hoist dimension (cm) Float

Control safetyZoneHoist The range of the safety zone in crane’s hoist dimension (cm) Array of two floats

Control safetyZoneTrolley The range of the safety zone in crane’s trolley dimension (cm) Array of two floats

Control safetyZoneBridge The range of the safety zone in crane’s bridge dimension (cm) Array of two floats

Control targetLocationHoist The location of the target in crane’s hoist dimension (cm) Float

Control targetLocationTrolley The location of the target in crane’s trolley dimension (cm) Float

Control targetLocationBridge The location of the target in crane’s bridge dimension (cm) Float
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• The DT-doc module includes a DT-doc handler that enables the
data flow and conversion of the DT documents on the server and
its local copy in the MR application;

• The control module includes the features of virtual joystick
control and target positioning. The value of the target position
can flow in both directions between the control module and the
local DT document;

• The visualization module includes the features of the crane real-
time dashboard, the DT document dashboard, the safety zone
indicator, the instruction, and the interface adjustment option.
The DT document content for the dashboard, the safety zone
range for the indicator, the instruction text, and XR component
visibility for interface adjustment are determined by the values
stored in the local DT document.

TABLE 2 Descriptions of terms for XR ontology in the robot arm DT documents.

Category Term Description Format

Design dashboardPosition The position of the dashboard center with regard to the user (m), by default (1, 0, 0) Array of three floats

Design dashboardScale The scale of the dashboard, by default 1 Float

Design dashboardAngle The angle between the dashboard and the plane that is vertical to the user’s sight line, by default 0 Float

Design visibilityUI—dashboard Whether the dashboard UI is visible, by default true Boolean

Design visibilityUI—instruction Whether the instruction UI is visible, by default true Boolean

Design Instruction Instruction text about using the XR application String

Design safetyZoneDisplayStyle The hologram style of the safety zone indicator, either “fill” or “outline,” by default “outline” String

Control markerLocationX The location of the registration marker in the pre-defined X dimension (cm) Float

Control markerLocationY The location of the registration marker in the pre-defined Y dimension (cm) Float

Control markerLocationZ The location of the registration marker in the pre-defined Z dimension (cm) Float

Control safetyZoneX The range of the safety zone in the pre-defined X dimension (cm) Array of two floats

Control safetyZoneY The range of the safety zone in the pre-defined Y dimension (cm) Array of two floats

Control safetyZoneZ The range of the safety zone in the pre-defined Z dimension (cm) Array of two floats

Control offsetOrientationJoint The offset orientation of a joint (degree) Float

Control speedRangeJoint The speed range of a joint (degree per second) Array of two floats

Control orientationRangeJoint The orientation range of a joint (degree) Array of two floats

FIGURE 5
Screenshot of the implemented MR application “HoloCrane” (Unity developer view on desktop).
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• The QR code scanning functionality enables Twin ID input
through scanning the corresponding QR code. The inputted
Twin ID is further forwarded to the DT-doc module and used to
map the application to the corresponding DT document on the
Twinbase server.

4 Discussion

This chapter first discusses the advantages of the TwinXR method
that advances the synergies between DTs and XR for higher efficiency,
scalability, interchangeability, and interoperability. In particular, the
advantages of applying the method in the crane and robot arm cases
are also discussed to make the justification more concrete. Next, we
discuss TwinXR method from the viewpoint of generality. Finally, we
address the limitations of the work and propose the future research
directions of introducing more detailed principles of the Semantic
Web and Knowledge Graphs into the TwinXR method, as well as
developing factory-level TwinXR-compatible applications.

4.1 Synergies between DTs and XR

The TwinXR method responds to the challenge of synergies between
DTs and XR. Through the method, DTs and XR function as enablers for
each other to achieve higher efficiency, scalability, interchangeability, and
interoperability, which are fundamental characteristics of Industry
5.0 towards the Metaverse. The advantages of the TwinXR method are
manifested in both directions: DTs optimize and scale XR application
development, while TwinXR-compatible applications also unlock and
demonstrate the potential of DTs for data interchange and system
interoperation.

4.1.1 Efficient and scalable XR application
development

This section discusses the efficiency and scalability aspects of using
the TwinXRmethod. The use of DT documents can optimize and scale
XR application development by enabling standard central
development of an application origin, as well as flexible local
modification on its instances. In other terms, XR solutions can be
initiated once, then scaled and delivered widely. The central
development of DT document and XR application origins requires
technical skills in XR development tools like Unity, and domain
knowledge on certain machines and their operating environment,
while the on-demand composition of XR applications can be
conducted solely based on domain knowledge through modifying
the established DT document, without knowledge or effort required
for XR development.

In addition, this work provides a publicly available Unity package
(Tu, 2022b) for data flow and conversion between XR applications and
DT documents on the Twinbase server, which eases the application
development and use of the TwinXR method. Meanwhile, the
composable architecture of a TwinXR-compatible application
ensures the autonomy and robustness of the workflows, as each XR
component can be modified without affecting the overall structure of
the application. Furthermore, the Git-based approach for hosting DT
documents ensures the discoverability and reusability of the solutions,
as new developers and users can easily harness the repositories of
established ones.

The existing XR solutions are rather tailored for a single purpose,
while TwinXR-compatible applications can be adapted to new
versions according to the requirements of new machines or
operating environments that are defined in the corresponding DT
documents. Hence, our approach makes it possible to build generic XR
solutions for industrial purposes and different applications, as well as

FIGURE 6
Screenshot of the implemented MR application “HoloRobot” (Unity developer view on desktop).
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opens up opportunities for multiple types of users from design
engineers to machine operators.

4.1.2 Data interchange and system interoperation
with DTs

This section discusses the interchangeability and interoperability
aspects of using the TwinXR method. TwinXR-compatible
applications unlock and demonstrate the potential of DTs as an
intermediate layer for data integration and information sharing
among machines and their linked applications, which enables data
interchange and system interoperation.

The shared ontology in DT documents ensures knowledge flow
across the domains of meaning and presentation. Through common
data ontology, certain fields of a DT document can be shared among
several applications linked to one machine instance. Consequently, a
TwinXR-compatible application can communicate and work with its
linked machine and other applications through the DT documents.

Information-management-oriented DTs can bridge data silos,
increase data visibility, and transparency of production and
operation processes, as well as boost collaboration across different
applications, which ultimately leads to improved efficiency and
decision-making in a Smart Factory. The TwinXR method allows
bi-directional data flow and conversion between applications and DT
documents of machine instances. Viewing and editing a DT document
via its linked XR application enables intuitive and user-friendly
workflows of information presentation and modification.

4.1.3 Advantages of using TwinXR in the crane and
robot arm cases

This section discusses the advantages of using the TwinXRmethod
in the crane and robot arm cases. We elaborate and compare the two
scenarios of developing XR applications with traditional approaches
and applying the TwinXR method.

The crane and robot arm in the selected cases represent two
common yet diverse machines in a Smart Factory setup. There can
typically be multiple cranes or robot arms of the same or similar type
in one factory. As an example, our selected case includes the “Ilmatar”
crane, and the demo crane of the same type as the “Ilmatar” crane but
located in a different operating environment, thus with a different
safety zone, and target location. With traditional approaches, one XR
application is tailored to one specific machine instance. Developing
XR applications for a new crane/robot arm instance requires repeating
the process every time. Furthermore, any later updates in the crane/
robot arm systems or their operating environment require using
specific XR development tools to modify the implementation of the
application scripts or scenes. Besides, machine data typically comes in
different formats and from different systems in the physical layer. For
example, the real-time status of the crane movement can be accessed
from its connected OPC UA interface, while the movement data of the
robot arm is in ROS. Hence, data mapping between cranes/robot arms
and their XR applications is a tedious instance-by-instance process.

Although machines in the physical layer are diverse from each
other, they can share common fields of data that are relevant to be
viewed, used, or controlled by their XR applications, such as the name,
location, movement, and safety zone of the crane or robot arm. The
TwinXR method utilizes DT documents to manage and distribute
these common data fields, among other heterogeneous machine data,
to different applications including the XR interfaces. Following the
architecture and workflows of the TwinXR method, a TwinXR-

compatible application can be created once and centrally, e.g., for
the “Ilmatar” crane, then efficiently scaled to new instances according
to new machine or environment specifications, e.g., for the demo
crane. This process can be done by simply modifying the associated
DT descriptions, without repeating the XR development step. For the
crane case, the DT documents of the “Ilmatar” crane and the demo
crane share the same data structure and fields with the same or
different values, while the DT documents of the crane and robot
arm contain different XR ontology. Nevertheless, we can organize and
host these DT documents in the same Twinbase server, and follow the
same practices of developing and using the TwinXR-compatible
applications. This demonstrates TwinXR’s capability of enabling
generic XR solutions for industrial purposes. In addition, on-
demand modification of TwinXR-compatible applications
responding to, e.g., the crane/robot arm system updates, or moved
location, can be easily done by updating corresponding fields in the
DT documents. This process does not require XR development
experience, and therefore enables multiple types of users, such as
field managers, design engineers, crane/robot arm operators, to
directly implement the changes quickly and flexibly.

4.2 Generality of the TwinXR method

Overall, TwinXR is designed to be a generic method that leverages
DT descriptions in industrial XR applications. To demonstrate its
usage and validity, we implement the method for two selected cases
with specific setups. Nevertheless, the specifications of the
implementation should not affect the overall generality of the
method. In other words, we would present TwinXR as a general
method that can be adapted to various industrial devices and
processes, rather than case studies. The focus of the work is to
propose the initial concept and design of the novel method. On the
other hand, we do not intend to prove its generality through
exhaustive use case implementation. The following discussion will
provide empirical evidence for the generality of the method.

First of all, we claim that the TwinXR architecture (Figure 1) is
generic. The framework consists of three layers of Smart Factory, DT
document, and XR application, with a wide range of options for
hardware and software setups proposed. The following content will
discuss the generality of each layer.

The Smart Factory layer is designed for a common Smart Factory
setup, which contains varied physical machine instances that are
connected with DTs and equipped with XR interfaces. In the
selected use cases, we involve an industrial crane and a robot arm
as reference models, since they are among the most commonmachines
in a Smart Factory. The workflows of the implementation are expected
to be easily transferable to other similar cases.

The DT document layer contains documents that describe DTs
with common data ontology, thus enabling information management-
oriented DTs. For development efficiency, we leverage the
specification of DT documents that the authors previously drafted
with a Git-based open-source server solution, Twinbase. Yet, the
TwinXR method is compatible with different specifications of DT
documents. Regardless of the diversity of associated machines, DT
documents are designed to contain common fields, such as the basic
information of a machine, including its name, description, location,
and manufacturer. The generality of DT documents’ content is also
reflected in the XR parameters, which are categorized into design and
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control parameters. Design parameters determine the UI/UX of an XR
application, such as the color, shape, size, opacity, and style of XR
components, as well as instruction text about using the application.
The values of the design parameters should be tailored according to
the specifications of machines, operating environments, and processes
to meet user-friendliness and safety requirements. Control parameters
affect machine operation, such as the marker location, target location,
safety zone, moving range, speed range, and offset location of moving
components. The control parameters can be shared with and used by
other applications that are connected to the same machine. For
instance, the cognitive firewall system for Internet of Things
proposed in Siegel and Sarma (2019) or the factory control
application proposed in Mattila et al. (2022) can also utilize the
safety zone parameter from DT documents.

The XR application layer presents TwinXR-compatible XR
applications that consist of the DT-doc module and common XR
components. We would claim the generality of the composable and
modular architecture of the TwinXR-compatible applications, which
is independent of specific tools or platforms for XR development and
deployment. The DT-doc module enables bi-directional data flow and
format conversion between a DT document on the server and its local
copy in the XR application. Other modules can read data from the DT
document to customize certain XR features. In our implementation,
we use the game engine Unity as the development platform and deploy
the application to the MR headset Trimble XR10 with HoloLens
2 edition. In addition, we provide a publicly available package to
ease the development of TwinXR-compatible applications in the Unity
environment. Among various types of user interfaces connected with
Smart Factory devices, this work focuses on XR interfaces, including
VR, AR, and MR. The specifications that are proposed in the DT
document content and the implementation in two industrial use cases
are therefore only consider XR. It is nevertheless possible to replace XR
with other types of interfaces such as web interfaces in the proposed
architecture and workflows. On the other hand, given the future work
of introducing the SemanticWeb property (which will be elaborated in
the next section), it is expected to develop a comprehensive XR
ontology for the Smart Factory context. Hence, narrowing down
the potential scope of “TwinUI” to “TwinXR” makes ontology
development more feasible.

Based on the proposed architecture, we present the workflows of
the TwinXR-compatible application development (Figure 3), from
creating an origin to adapting it into new instances, with a focus on the
transition and linkages between the two workflows. Last but not least,
we define the step-by-step processes for the creation and instantiation
of a TwinXR-compatible application by developers, as well as the
initiation of the application by users. The detailed technical workflows
while using an established application are elaborated for two scenarios:
one with a TwinXR-compatible application reading a DT document,
and the other with an application modifying a DT document. The
aforementioned processes and workflows are designed to be applicable
in most cases regardless of different setup choices.

We have identified cases in which applying the TwinXR method
seems to be unreasonable. For instance, when a type of machine is only
used in a specific and static process and location, it might be sufficient
to develop its XR application with traditional approaches instead of
the flexible yet more costly TwinXR method, as there is no need to
further adapt and customize the XR application after the one-time
composition. In other words, we need to always consider the aspect of
cost-efficiency when applying the TwinXR method, as it requires extra

steps of designing the ontology, establishing the DT document layer,
and developing a DT-doc module in the XR application.

4.3 Future work

The TwinXR method greatly improves interoperability across
machines, DT documents, and XR applications. However, the
mapping of features between XR components and DT document
fields solely relies on the shared data structure of the DT
document. This results in the limitation that an XR application
origin for a certain machine can only be adapted to new instances
for machines of the same type. To boost the interoperability to the next
level, we propose the following directions for future work: introducing
the detailed principles and technologies of the Semantic Web and
Knowledge Graph, as well as developing factory-level TwinXR-
compatible applications.

First, the TwinXR method could be made compatible with the
Semantic Web. This work already includes descriptions of terms that
define the fields of a DT document and provide the context for
developers and users to communicate and utilize the ontology,
which, however, is readable only by humans. The Semantic Web is
a mesh of linked data that can be easily processed by machines
(Antoniou and Van Harmelen, 2004), and leveraging its
technologies could extend the widescale machine-readability of DT
documents. In practice, Twinbase currently uses the YAML format for
DT documents because of its user-friendliness. However, YAML is not
standardized as a linked data format. To introduce the Semantic Web
property, we recommend adopting a standardized linked data format
like JSON-LD (Sporny et al., 2020) as the master format of DT
documents in future implementations. (It may be possible to use
YAML in the future as YAML-LD is currently being specified by the
JSON-LD Community Group of W3C (Kellogg et al., 2022).) By
making the TwinXR method compatible with the Semantic Web,
we will be more ready to move towards the standardization of the XR
ontology for DT documents. Besides, future work could introduce the
property of Knowledge Graph, the knowledge base that use graph-
structured data models or typologies (Ehrlinger and Wöß, 2016). The
adoption of Knowledge Graph will facilitate access to and integration
of data sources across different machines. Consequently, the
composition of TwinXR-compatible applications will become more
efficient with minimum manual adaption for new machines and
operating environments.

Moving forward with achieving interoperation at an even larger
scale across multiple machines, future work could explore the
potential of developing factory-level TwinXR-compatible
applications. One factory XR application will be linked to one
factory DT, which can have multiple machine DTs as its children.
In this case, the balance among different DT documents should be
investigated. For instance, we shall consider defining operational
environment-related fields like safety zone only once in the factory
DT space so that they can be accessed by each of its associated machine
DTs. At the factory scale, an XR interface will likely be one of the many
associated external applications. Hence, a comprehensive semantic
description that covers different applications is needed for seamless
information exchange (Zillner et al., 2016).With the emerging concept
of Smart Factory Web (SFW) (Jung et al., 2017; Heymann et al., 2018),
a testbed of the Industrial Internet Consortium for improving factory-
to-factory interoperability, we will need to integrate the factory-level
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TwinXR method into the cross-site application scenarios with
heterogeneous manufacturing infrastructures. The future
development of the TwinXR method should consider utilizing
existing reference architectures driven by SFW, such as the one
proposed in Usländer et al. (2021) for open marketplaces for
industrial production.

5 Conclusion

This work proposes a novel method TwinXR that uses
descriptions of DTs of Smart Factory devices in creating and
instantiating industrial XR applications. The motivation comes
from the context of human-centric Industry 5.0 towards the
Metaverse with immersive digital landscapes to enrich the human
experience on factory floors. Interoperability and interchangeability
across different components and processes are critical properties of the
industrial Metaverse. DTs and XR, two core technological enablers for
engineering in the Metaverse, are therefore expected to seamlessly
interact and cooperate with each other. Numerous works have
indicated the significance of combining DTs and XR in industrial
use cases. However, a systematic method is still missing to achieve the
synergies between DTs and XR. The TwinXR method addresses this
research gap with common data ontology shared among knowledge-
based XR interfaces and information-oriented DTs.

We refer to the general concept of a document describing a DT
with common data ontology as a DT document. According to the
standard (Ala-Laurinaho et al., 2020) used in this work, a DT
document contains mandatory fields, such as name, identifier,
and description of the DT, as well as optional fields, such as
manufacturer, location of the physical product, and connected
services. In this work, we focus on the DTs with XR applications
as their connected services. Hence, the fields of a DT document are
extended to include identified customizable XR features. These XR
features cover design parameters that are related to the UI/UX of an
XR application, and control parameters that are critical to machine
operation. The data that is passed from DTs to XR applications
includes both customizable XR features and selected general DT
information. The former are used to customize XR applications to
fulfill both design and control specifications, while the latter includes
Twin ID which is used for the mapping between external
applications and DT documents, and other general DT
information which is visualized and displayed in XR applications.
The data flow and conversion between XR applications and DT
documents on the server are proposed to be handled by a DT-doc
module in XR applications. The work develops a publicly available
Unity package to ease the development of the DT-doc module. We
further demonstrate the usage and indicate the validity of the
TwinXR method with two industrial use cases in typical Smart
Factory setups, involving industrial crane operation, and robot
arm control.

The TwinXR method is regarded as a promising way to advance
synergies between DTs and XR, as well as a useful tool for both of
them: For XR, TwinXR optimizes and scales the XR application

development process; For DTs, TwinXR unlocks and demonstrates
the potential of DTs for data interchange and system interoperation.
We claim that TwinXR is designed to be a generic method that can be
adapted to various industrial devices and processes. Future works
include introducing more detailed principles and technologies of the
Semantic Web and Knowledge Graph, as well as developing factory-
level TwinXR-compatible applications.
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