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Related research has shown that collaborating with Intelligent Virtual Agents

(IVAs) embodied in Augmented Reality (AR) or Virtual Reality (VR) can improve

task performance and reduce task load. Human cognition and behaviors are

controlled by brain activities, which can be captured and reflected by

Electroencephalogram (EEG) signals. However, little research has been done

to understand users’ cognition and behaviors using EEG while interacting with

IVAs embodied in AR and VR environments. In this paper, we investigate the

impact of the virtual agent’s multimodal communication in VR on users’ EEG

signals as measured by alpha band power. We develop a desert survival game

where the participants make decisions collaboratively with the virtual agent in

VR. We evaluate three different communication methods based on a within-

subject pilot study: 1) a Voice-only Agent, 2) an Embodied Agent with speech

and gaze, and 3) a Gestural Agent with a gesture pointing at the object while

talking about it. No significant difference was found in the EEG alpha band

power. However, the alpha band ERD/ERS calculated around themomentwhen

the virtual agent started speaking indicated providing a virtual body for the

sudden speech could avoid the abrupt attentional demand when the agent

started speaking. Moreover, a sudden gesture coupled with the speech induced

more attentional demands, even though the speech was matched with the

virtual body. This work is the first to explore the impact of IVAs’ interaction

methods in VR on users’ brain activity, and our findings contribute to the IVAs

interaction design.
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1 Introduction

People mainly communicate with each other using verbal

and non-verbal cues, such as eye gaze, facial expressions, and

hand gestures, to solve problems collaboratively. Previous

research shows that Intelligent Virtual Agents (IVAs)

embodied with human-like characteristics (e.g., human

appearance, natural language, and gestures) in Virtual Reality

(VR) or Augmented Reality (AR) could be treated like an actual

human in human-agent collaboration (Hantono et al., 2016; Li

et al., 2018). Thus, it would be interesting to explore efficient

interaction modes in IVAs for human-agent collaboration in VR

and AR scenes.

Neuroscience research has shown that different brain areas control

human brain activity. Electroencephalogram (EEG) has been shown

effective in recording brain activity (Oostenveld and Praamstra, 2001),

and thus has been widely used as an objective measurement in human

computer interaction research (Lécuyer et al., 2008; Fink et al., 2018;

Gerry et al., 2018). Our research is particularly interested in how IVA

representation affects brain activity.

Prior research showed that IVAs embodied in AR could be

helpful in improving human-agent collaboration by reducing

task load (Kim et al., 2020), enhancing a sense of social presence

(Wang et al., 2019), and improving task performance (de Melo

et al., 2020). However, there has been little research on whether

interacting with IVAs in VR/AR can affect users’ physiological

states by measuring their brain activity.

In this paper, we conduct a pilot study to explore how the IVAs’

communication methods influence users’ EEG signals. Inspired by

the AR desert survival game (Kim et al., 2020), we developed a VR

version where participants worked collaboratively with IVAs to rank

15 desert survival items in three conditions: 1) working with a voice-

only agent providing verbal cues only, 2) working with an embodied

agent communicating through both verbal cues and eye gaze, and 3)

working with a gestural agent expressing information by looking and

pointing at the object while talking about it. We focus our research

on understanding the effects of visual cues exhibited by IVA’s

behaviors on users’ brain activity and subjective user experiences.

Compared to prior work, our research makes two key

contributions. Firstly, it is the first research that explores the

effects of IVA’s interaction approaches on users’ brain activity for

a collaborative task in VR. Secondly, we present a pilot study to

examine the relationship between IVAs’ interaction methods and

the user’s EEG signals.

2 Related work

We focus our review of previous work on three categories.

First, we highlight the importance of multimodal communication

of embodied IVAs in AR and VR. Second, we present the theory

of cognitive load. Third, we introduce the current methods of

using EEG to measure cognitive load.

2.1 Multimodal communication of
embodied intelligent virtual agents in
Augmented reality and Virtual reality

Designing anthropomorphic IVAs to communicate with

users using both verbal and non-verbal cues in VR and AR

has gained much attention (Holz et al., 2011; Norouzi et al., 2019;

Norouzi et al., 2020). Visual embodiment and social behaviors

like the agent’s gesture and locomotion could improve perceived

social presence in both AR (Kim et al., 2018) and VR (Ye et al.,

2021). Li et al. (2018) investigated how embodiment and postures

influence human-agent interaction in Mixed Reality (MR), in

which they found people treated virtual humans similar to real

persons. Such humanoid IVAs in AR have been proven to be

useful for helping people with real-world tasks (Ramchurn et al.,

2016; Haesler et al., 2018). In the context of VR training, Kevin

et al. (2018) explored interaction with a gaze-aware virtual

teacher where the virtual agent reacted differently to students’

eye gaze in a variety of situations. They found this type of

interaction resulted in an overall better experience, including

social presence, rapport, and engagement. These exemplify the

importance of visual cues coupled with voice information for the

virtual agent interaction design.

However, it is controversial on designing visual cues for

virtual agent interaction. Some research has shown IVA visual

embodiment causes distractions, especially when the task

difficulty increases (Miller et al., 2019). And the realism level

of the agent’s appearance may also induce uncanny valley effects

(Reinhardt et al., 2020). Therefore, understanding the effects of

virtual agent’s non-verbal cues (Wang and Ruiz, 2021) on user

experience and cognition is important.

Current research involving user experience on interacting

with IVA embodied in VR and ARmainly use questionnaires and

system logged user behaviors as measurements (Norouzi et al.,

2018). For example, Wang et al. (2019) conducted an user study

to explore how the visual representation of virtual agent affects

user perceptions and behavior. Participants were asked to solve

hidden object puzzles with four types of virtual agents in AR:

voice-only, non-human, full-size embodied and miniature

embodied agent. They logged user-agent interactions such as

user and agent utterance, times the user gazed at the agent and so

on. Except for the logged interaction behaviors, they also

collected questionnaires on user preference and ratings on

helpfulness, presence, relatability, trust, distraction, and

realism. Similarly, Kim et al. (2020) designed a miniature IVA

in AR for assisting users to make decisions on ranking items for

the desert survival task through speaking, body postures, and

locomotion. In their study, participants performed the task under

three conditions: 1) working alone, 2) working with a voice

assistant, and 3) working with an embodied assistant. The

embodied virtual agent was most helpful for reducing task

load, improving task performance, and the feeling of social

presence and social richness.
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As a common knowledge, user behaviors and perceptions are

controlled by brains. Prior research has demonstrated the effects

of interacting with humanoid robots (Suzuki et al., 2015) and

IVAs embodied in two-dimensional screens (Mustafa et al., 2017)

can be reflected in users’ brain activity. However, little research

has been done to investigate the impact of interacting with IVA in

AR and VR (three-dimensional virtual world) on users’ brain

activity. To fill this gap, we ran a pilot study to explore the impact

of agent interaction methods in VR on user’s brain activity as

measured by EEG signals. Similar to (Kim et al., 2020), we

developed a VR version desert survival game and asked

participants to play this game in VR with the help of a virtual

agent. Except for measuring EEG signals, we also used

questionnaires and system logged data to capture users’

cognitive load, feeling of being together with the virtual agent

(copresence) and task performance. We expected the results of

EEG signals, subjective questionnaires and system logged data

can have identical or complementary results in describing the

user perceptions during the interaction.

2.2 Cognitive load theory

Cognitive load theory (CLT) was originally developed to

address the interaction between information architecture and

cognitive architecture in the fields of educational psychology

and instructional design (Sweller, 1988; Sweller et al., 1998;

Paas et al., 2004). The CLT focuses on the learning process of

complex cognitive tasks, where learners are often faced with

overwhelming amount of interactive information elements

and their interactions required to be processed parallelly

before meaningful understanding can commence (Paas

et al., 2004). This complex information architecture was

thought to have driven the evolution of cognitive

architecture which consists of long-term memory (LTM)

and working memory (WM) (Paas et al., 2003a). The

effectively unlimited LTM contains vast number of schemas

which are cognitive constructs that incorporate multiple

elements of previously acquired information into a single

element with a specific function. For example, the rules of

matrix multiplication integrate the elements of basic

numerical multiplication and addition. In contrast, the

WM, in which all conscious cognitive activities occur, is

very limited in both capacity and duration.

Based on the interaction between LTM and WM, the CLT

identifies three types of cognitive load: intrinsic, extraneous and

germane (Paas et al., 2003a; Paas et al., 2003b). The intrinsic

cognitive load is imposed by the number of information elements

and their interactivity whereas the extraneous and germane

cognitive load is imposed by the manner in which the

information is presented and the learning activities required

of the learners. For example, adding two numbers less than

ten causes much less intrinsic cognitive load than multiplying

two three-digit numbers. The extraneous cognitive load is

generated by the manner in which the information is

presented. For example, learning the structure of three-

dimensional (3D) geometry with 3D models induces less

extraneous cognitive load than learning with two-dimensional

(2D) geometry views. The germane cognitive load is the load

contributes to the construction and automation of schemas. For

example, the cognitive load in understanding the operational

rules of matrix multiplication is germane cognitive load as it

dedicates to the schema construction of the matrix

multiplication.

The CLT has been integrated and developed in the Human

Computer Interaction (HCI) research field (Hollender et al.,

2010). In the HCI context, the CLT is concerned with the

cognitive load in completing HCI tasks. Therefore, measuring

cognitive load or work load in HCI research is popular. For

example, Jing et al. (2021), adopted SMEQ questionnaire (Sauro

and Dumas, 2009) to measure workload in evaluating three bi-

directional collaborative gaze visualizations with three levels of

gaze behaviors for co-located collaboration. The cognitive load in

their research task is extraneous cognitive load as the researchers

manipulated the manner of communicating cues. Dey et al.

(2019) used the N-back game (participants have to allocate

WM resources to memorize and recall the correct information

appeared N-rounds ago) to induce intrinsic cognitive load and

adopted EEG to measure that type of cognitive load.

This work is dedicated to explore the effects of IVA’s

representations on human cognitive load and brain activity.

We designed a VR version desert survival game, in which a

virtual agent was integrated. This game involved both intrinsic

cognitive load (making decisions on the order of desert survival

items) and extraneous cognitive load (interacting with different

types of virtual agent). We also adopted both EEG and

questionnaires to measure cognitive load.

2.3 Electroencephalogram and cognitive
load

Measuring cognitive workload from EEG signals has been

researched for a long time (Klimesch, 1999; Antonenko et al.,

2010). EEG signals can be decomposed into four components in

the frequency domain, including Beta (> 13 Hz), Alpha

(8–13 Hz), Theta (4–8 Hz), and Delta (0.5–4 Hz) bandwidths

(Teplan, 2002). The power spectrums of these bands obtained

from different brain locations can reflect different types of

cognitive load (Kumar and Kumar, 2016). For example, delta

power has been showed to increase as the intrinsic cognitive load

induced by mental calculation and short-term memory tasks

increased (Harmony et al., 1996). Much research has reported

frontal theta power tended to increase with the increasing task

difficulty whereas the alpha power in parietal lobe tended to

decrease (Gevins and Smith, 2003; Holm et al., 2009).
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Compared with using beta and delta band to measure

cognitive load, using theta and alpha are better researched

(Klimesch, 1999; Antonenko et al., 2010). However, theta

band power is mainly prominent at frontal lobe (Klimesch,

1999; Freeman, 2002; Antonenko et al., 2010) while the alpha

band power can be prominent at frontal lobe, parietal lobe and

occipital lobe (Lang et al., 1988; Klimesch, 1999; Fink and

Benedek, 2014). Besides, alpha rhythm is the dominant

rhythm in normal human EEG and is most extensively

studied (Teplan, 2002; Antonenko et al., 2010). Therefore, in

this work we mainly focus on the alpha band frequency.

Using alpha band power to measure cognitive load induced by

interacting VR scenes has attractedmore andmore attention (Zhang

et al., 2017; Gerry et al., 2018; Gupta et al., 2019; Gupta et al., 2020).

Dey et al. (2019) explored a cognitively adaptive VR training system

based on real-time measurement of task related alpha power. They

used the N-back game to induce cognitive load and calculated alpha

power with data collected from prefrontal cortex, parietal lobe and

occipital lobe. The task complexity adapted according to the rule of

“lower alpha power, higher task difficulty”. Similarly, Gupta et al.

(2020), used alpha power calculated with data collected from the

same brain areas to measure the cognitive load of interacting with a

virtual agent.We followed these two research and collected EEGdata

from prefrontal cortex, parietal lobe and occipital lobe as well.

Except for measuring cognitive load using spectrum power

directly, the Event Related (De-)Synchronization (ERD/ERS) was

proposed to calculate the changes in EEG signals (e.g., alpha band

power) caused by a certain event (Antonenko et al., 2010). The

positive value of ERD/ERS in alpha band represents a decrease in

alpha power (ERD) and the negative value means an increase in

alpha power (ERS) (Klimesch et al., 1992). Since ERD/ERS could

reflect shifts in alpha band power between pre-stimulus and post-

stimulus, it could be used to measure cognitive load as well. For

example, Stipacek et al. (2003)varied the cognitive load of

memory tasks to test the sensitivity of alpha band ERD in

reflecting levels of cognitive load. They reported that ERD in

the upper alpha band grew linearly with increasing

cognitive load.

In this paper, we were interested in both alpha band power

and alpha ERD/ERS in participants’ EEG signals by varying

the virtual agent’s interaction methods. We expected the alpha

band power could reflect the general cognitive load or level of

neural relaxation during interacting with the virtual agent.

And ERD/ERS would be used to reflect the sudden visual/

audio changes in cognitive load or attentional demands at a

specific event moment.

3 Materials and methods

In this section, we present the IVAs, the VR environment,

and the implementation of our prototype system. We developed

three different IVA types for the experiment: a voice-only agent,

an embodied agent with head gaze and eye gaze, and a gestural

agent with a pointing gesture.

3.1 Intelligent virtual agents

Voice-only agent: Like most commercial assistants, such as

Amazon Alexa, Microsoft Cortana and Apple Siri, our voice

agent has no visual representation while only providing help to

users while being asked through speech input. For example, the

voice agent captures customized keywords in users’ voices, and

then responds to the recognized keywords according to

predefined configuration files by incorporating IBM Watson

Speech to Text1 and Text to Speech services2 into the agent

communication system.

Embodied agent: A full body of a 3D male character was

generated through Ready PlayerMe3 for the embodied agent. The

character’s blend shapes contained fifteen Lipsync

visemes4 which were used for synchronizing the agent’s lip

shapes with the agent’s voices. Tiny body movement

animation was applied to the character, and a live shadow

was projected on the ground in front of the agent to make it

look realistic. Before talking about an object in VR with the user,

the embodied agent will look at it with the upper limb and head

slightly turning toward it. In short, the Embodied Agent is an

agent embodied with eye gaze and head gaze.

Gestural agent: Based on the embodied agent, we further

developed the agent to be capable of pointing at an object in VR

with the left hand while commenting on it. The hand was put

back to the rest position once the agent speaking stopped. In

short, the Gestural Agent is an agent embodied with pointing

gesture, head gaze and eye gaze.

Since the agent speech system relays on IBM cloud service,

there is around 2~3 s delay between user request and agent

speech response due to the internet transfer. This time delay

is allowed in our design for two reasons. First, this delay can be

useful to simulate the thinking process like a real human

normally does before given suggestions to partners in

collaborative decision-making scenarios. Second, participants

will rest shortly with least body movement during this period

to wait for the agent’s suggestions. EEG signals captured during

this period can be used as baseline interval data for calculating

ERD/ERS (see Section 8 for more details).

1 https://cloud.ibm.com/catalog/services/speech-to-text

2 https://cloud.ibm.com/catalog/services/text-to-speech

3 https://readyplayer.me/avatar

4 https://developer.oculus.com/documentation/unity/audio-
ovrlipsync-viseme-reference/
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3.2 Virtual reality environment

To reduce distractions from the surrounding environment,

we constructed a simple house with bare walls in VR. At the

house center, there was a transparent plane, with a 5 × 3 pattern

with 15 desert survival items and another similar pattern with

15 numbered target placeholders (see Figure 1). For the

embodied or gestural agents, a virtual character would stand

behind the transparent plane with its entire body being seen

through the gap between the two patterns. A label above the

transparent plane would indicate the remaining help requests

with a default value of 10 in all conditions.

3.3 Prototype implementation

For hardware, we used a Neuracle5 NSW364 EEG cap with

64 wet channels working at a 1000 Hz sampling rate, and the

default reference electrode was CPz. We also used an HTC VIVE

Pro Eye VR headset to display the VR environment running on a

laptop powered by the Intel Core i7 8750 CPU and the NVIDIA

GTX 1070 GPU. For software, we used the Neuracle EEGRecoder

V2.0.1 for recording EEG signals and the Unity game engine for

the game logic implementation and the VR application

rendering.

4 Pilot study

We conduct a pilot study to evaluate the impact of the IVAs

interaction method on users’ EEG signals and experience. We

recruited 11 right-handed participants (10 male and 1 female)

with their ages ranging from 22 to 37 years old (M= 25.4, SD=

4.3). All of them had some experience with VR interfaces, and

none of them reported a history of neurological disorders or had

experience with playing the desert survival game.

The experiment used a within-subject design, and the

independent variable was the types of IVA forming three

conditions: 1) Voice-only Agent (baseline) communicating

through speech, 2) Embodied Agent interacting with speech,

head gaze and eye gaze, and 3) Gestural Agent embodied with a

pointing gesture based on the Embodied Agent (see Figure 2).We

used a Balanced Latin Square to balance the learning effect. In our

study, we would like to explore the following research question:

How does the IVA communication approach affect the users’

brain activity?

Our research hypotheses are:

1) H1Compared to the baseline, working with visually

embodied IVAs would improve collaboration in VR (as

measured by task performance, copresence and workload)

2) H2EEG signals will be significantly different among the

three agent interaction conditions (as measured by EEG alpha

band mean power and alpha ERD/ERS).

We made the H1 for two reasons. First, prior research has

shown the visually embodied virtual agent in AR could improve

task performance and social presence and reduce task load in a

similar desert survival game (Kim et al., 2020). Thus, we expected

some of these effects carry on in our experiment. Second, we

expected the results of copresence and workload in H1 could

FIGURE 1
These two figures demostrate the VR setup and environment, (A) is the VR configuration with EEG sensor added, (B) is the VR environment with
an embodied virtual agent.

5 https://www.crunchbase.com/organization/neuracle
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support the analysis of EEG results examined in the H2. As we

described in Section 2.3, the EEG alpha suppression could reflect

cognitive load or wakeful relaxation. Combining the results of

H1, we hoped the results of H2 could answer the research

question we proposed.

5 Experiment set-up

The experiment was conducted in an isolated space with

minimum radio interference with three computers for running

our VR program, collecting questionnaires, and recording EEG

signals, respectively. Participants wearing both EEG cap and HTC

VIVE headset (see Figure 1) were seated 1 m away from the real-

world table and around 2 m away in front of the virtual transparent

plane, opposite to the virtual human positioned around 0.8 m away

behind the transparent virtual plane.

6 Experimental task

We designed a VR version of the desert survival game. The

main game logic was identical to the reference, except for how

agents provide help and the scoring method. Participants’ goal

was to rank the 15 desert survival items by dragging them from

the left pattern to the right side numbered target placeholders. At

the beginning of each session, the initial positions of the 15 items

in the left-hand pattern were randomized while the numbers of

the target placeholder always started from 1 to 15, representing

the most critical position to the least. Participants used an HTC

VIVE controller with a virtual ray attached for object selection.

Items could be attached to the ray’s end and moved when

participants held the controller trigger. Once the selected item

was placed on top of the target place, it would be automatically

attached to that placeholder when the trigger was released.

The virtual agent in each condition provided help for up to ten

times. When at least one item was placed on one of the target

placeholders, participants could ask for help by saying “help”. After

2~3 s time delay caused by the internet transfer, the virtual agent

would then suggested one item tomove, helping participants achieve

a better score. For both embodied condition and gestural condition,

the virtual agent would look at the target placeholder area once the

participants requested for help. The gestural agent’s pointing gesture

is coupled with the speech.

The virtual agents’ speech was made up of positive or negative

reasons and weak or strong movement suggestions. For example, the

positive reason with the weak suggestion for the coat would be “the

coat could slow down the dehydration process, I suggestmoving it up

a bit”. In contrast, the negative reason with the strong suggestion for

the vodka would be “the vodka is almost useless except for starting a

fire, I think it should be placed at the end”.

The task score was recalculated every time the items in

placeholders were changed. We gave 15 points to the most

important items and 1 point to the least important ones. We

summed the points of 15 items getting 120 as the total score,

and then calculated the participant’s final score by reducing the sum

of absolute difference values between the expert answer (Kim et al.,

2020) and the participants’ choice. Once the participants complete

the game, the final task score will be saved in each session.

7 Experimental procedure

Initially, participants entered the testing room to fill out a

consent form with an opportunity to ask questions about the

study. Once they agreed to participate in the experiment, a video

clip was played to demonstrate an extreme desert environment and

fifteen objects for the desert survival game. The investigator

explained the task goal and the three different experimental

conditions in detail. Afterward, participants sat in front of a table

with two computers for running the VR scenes and recording EEG

data. They wore the HTC VIVE headset to practice dragging and

placing virtual pictures of desert survival items to different given

placeholders using a controller shooting a virtual ray on the object.

FIGURE 2
These three figures show the three agent types, (A) is the Voice-only Agent, (B) is the Embodied Agent, (C) is the Gestural Agent.
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Once they felt confident interacting with the virtual pictures,

the investigator helped them take off the VR headset and put on

the EEG cap. Then we injected gel into nine interested electrodes

(GND, REF, Fp1, Fp2, P3, P4, Pz, O1, and O2) to reduce the

impedance level below 40 KΩ (Luck, 2014; Gupta et al., 2020).

After filling the gel, we double-checked each channel’s state by

observing signals on the EEG data capture computer while

participants was told to blink, clench their jaw, close their

eyes for several seconds and open suddenly.

Afterward, participants waited for 5 minutes allowing the gel

to settle in. We then helped the participants put on the VR

headset and start the main task. At the end of each session,

participants were asked to fill out the Copresence questionnaire

(Pimentel and Vinkers, 2021), the Subjective Mental Effort

Questionnaire (SMEQ) (Zijlstra and Van Doorn, 1985; Sauro

and Dumas, 2009) and the NASA Task Load Index (NASA-TLX)

questionnaire (Hart and Staveland, 1988). We also interviewed

the participants with open-ended questions to understand their

experiences and feelings on the IVA. Each participant took three

trails in total and the experiment mostly costs about 90 minutes.

8 Measurement

We collected raw EEG data from the prefrontal cortex (Fp1,

Fp2), parietal lobe (P3, P4, and Pz), and occipital lobe (O1, O2)

based on the 10–20 system (Oostenveld and Praamstra, 2001),

because these brain areas were proved to be about decision-

making (Miller and Cohen, 2001), attentional demands

(Klimesch, 1997), and vision processing (Malach et al., 1995),

respectively. We expected to measure the intrinsic cognitive load

caused by making decisions from the frontal cortex and the

extraneous cognitive load from the parietal and occipital lobe.

Due to technical reasons, one participant’s EEG data was not

recorded correctly and thus excluded from the EEG processing.

To remove EEG artifacts induced by wires, eye blinking, swallow,

the slight shift in the VR headset’s position, etc., wemanually checked

each participant’s EEG signals for each condition and removed bad

channels. Thenwe applied a bandpass filter (1~40 Hz) followed by an

independent component analysis (ICA). After the preprocessing, we

computed alpha band power and ERD/ERS for each channel with the

preprocessed data.

For calculating EEG alpha power, we only focused on the

EEG signals when agent was speaking. We made this decision

for three reasons. First, this research mainly focus on the effect

of agent’s interaction methods on users’ brain activity. The

agent-speaking time window is when the participants and

virtual agent were actually interacting. Second, the average

agent speech length was 5.1 s which is long enough for

containing meaningful information. Much EEG research

focused on milliseconds data (Luck, 2014). Third, the

remaining EEG signals might contain interference caused

by body movements for adjusting the object orders with

VR controllers.

Furthermore, we chunked each agent-speaking time

windows into 1 s epochs and used each epoch data to

calculate alpha band power. With regard to a single channel,

we averaged the alpha power for each agent-speaking window.

Before performing the statistical tests on alpha band power, we

grouped data from related channels into prefrontal (Fp1, Fp2),

parietal (P3, P4, and Pz) and occipital (O1, O2) groups.

For calculating ERD/ERS, we used the following formula

(Stipacek et al., 2003):

ERD/ERS in alpha band

� baseline interval alpha band power − test interval alpha band power
baseline interval alpha band power

p 100%

(1)

We treated the time when agent started speaking as

stimulus onset. We selected -1 s pre-stimulus as baseline

time interval and 1 s post-stimulus as test interval (see

Figure 3). The ERD/ERS was only calculated with parietal

and occipital data as we did not expect any decision-making

cognitive load at the moment when the virtual agent started

speaking. Besides, the sudden visual/audio change would cost

demands in attentional and visual processing. Therefore, we

expected the parietal and occipital lobe could capture this type

of cognitive load.

Similar to Kim et al. (2020), we also collected data on task

performance, subjective ratings on task load and feeling of

copresence to understand whether the variety of the virtual

agent in our research would influence the collaboration. We

used the task score logged from each session to measure the task

performance. We also collected data using the Copresence

questionnaire (Pimentel and Vinkers, 2021), SMEQ (Sauro

and Dumas, 2009) and NASA-TLX questionnaire (Hart and

Staveland, 1988) to investigate subjective user experience on

the feelings of being together with virtual humans and the

workload of the collaborative task for each condition. Since

the SMEQ has only one question on the overall feeling of

cognitive load while the NASA-TLX has six items focusing on

both mental and physical efforts to finish the task, we used both

to obtain comprehensive understanding on the cognitive load of

our task.

9 Results

9.1 Electroencephalogram signals

9.1.1 Alpha band mean power
The Shapiro-Wilk normality test on the EEG alpha band

mean power indicated it was not following a normal distribution.

The Friedman test showed no significance difference among the
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three agent conditions in prefrontal, parietal and occipital brain

areas (see Figure 4).

9.1.2 Alpha band the event related (De-)
synchronization

The Shapiro-Wilk tests on alpha band ERD/ERS from the

interested brain areas revealed that the normality assumption

had been violated. Friedman tests revealed both the parietal (χ2(2)

= 15.48, p < 0.001) and occipital (χ2(2) = 13.60, p = 0.001) group

showed significant difference among the three agent conditions.

However, the follow-up Kendall’s W tests revealed both effect

sizes were small (W = 0.02 for parietal lobe and W = 0.06 for

occipital lobe).

As shown in Figure 5, the parietal alpha ERD/ERS value was

negative (ERS) of the Embodied Agent condition whereas the

values of Gestural Agent condition and Voice-only Agent

condition were both positive (ERD). For the occipital lobe,

both the ERD/ERS values of the Emobodied and Gestural

conditions were negative (ERS) while that of the Gestural

condition was positive (ERD).

Wilcoxon signed rank test with Boferroni correction was adopted

to perform pairwise comparisons between agent conditions in both

parietal and occipital brain areas. For the parietal lobe, we found alpha

band ERD values of the Gestural (Z = −3.29, p = 0.001) and Voice-

only (Z = −3.09, p = 0.002) condition was significantly different from

the ERS of the Embodied condition. No significant difference was

found between the ERD values of Gestrual and Voice-only agent

condition. For the occipital lobe, we only found significant difference

between the ERS of the Embodied condition and the ERD of the

Gestural condition (Z = −3.29, p = 0.001).

9.2 Task performance

One-way repeated measures ANOVA found no significant

difference (F(2, 20) = 1.05, p = 0.37, η2 = 0.08) among the three

conditions. Descriptive statistics showed the task score of the Gestural

Agent condition (M = 107.09, SD = 8.19) was highest, followed by the

condition of Embodied Agent condition (M = 106.36, SD = 11.67)

and the Voice-only Agent condition (M = 100.45, SD = 11.54).

9.3 Subjective results

A Shapiro-Wilk normality test showed that the copresence

data of all three conditions violated the normality assumption. A

significant difference in copresence over the three conditions was

found using the Friedman test (χ2(2) = 19.86, p < 0.0001). Large

effect size (W = 0.90) was found by the following Kendall’s W

test. Post-hoc Wilcoxon signed-rank test with Bonferroni

correction revealed that all the pairwise differences were

significantly different (p < � 0.001) (see Figure 6).

FIGURE 3
This figure demonstrates baseline interval and test interval for calculating the ERD/ERS. Each colorful bar represents a time window when the
agent was speaking.
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A one-way repeated measure ANOVA was performed on the

weighted NASA TLX score. We found a significant difference (F(2,

20) = 7.79, p = 0.003, η2 = 0.08) among the three conditions. Post-hoc

test showed the workload was significantly lower in the conditions of

Embodied Agent (M = 56.87, SD = 15.89, p = 0.008) and Gestural

Agent (M = 58.02, SD = 12.89, p = 0.048) compared with the Voice-

only (M = 65.95, SD = 12.94) Agent. No significant different was

found between the Gestural and Embodied Agent (see Figure 7).

The Friedman test followed by Kendall’sW test on the SMEQ

data on the three agent conditions showed significant difference

(χ2(2) = 12, p < 0.01) with large effect size (W = 0.55). The post-

hoc analysis with Wilcoxon tests revealed both the SMEQ results

for the Embodied condition (Z = −2.39, p = 0.017) and Gestural

(Z = −2.33, p = 0.02) condition had significant lower rating scores

than the Voice-only condition (see Figure 8).

9.4 Discussion

9.4.1 Task performance, copresence and
workload

Our findings on task performance, copresence and

workload partially support H1. Visually embodied agents

could create a stronger copresence feeling and achieve a lower

task load without influencing the task performance,

compared with the Voice-only Agent (baseline).

Furthermore, the Gestural Agent received a higher rating

score on copresence than the Embodied Agent and can

reduce task load in human-agent collaborative decision-

making tasks.

FIGURE 4
EEG alpha band mean power (Error bars represent the standard error of the mean).

FIGURE 5
Alpha band ERD/ERS (Error bars represent the standard error
of the mean; Statistical significance: ** (p < 0.01)).
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Wecouldnotfindany significantdifference in the taskperformance.

This could be because the small sample size andpotential learning effects.

Several participants reported they could guess and remember a few

general sequences the virtual agent suggested repeatedly inprevious trials.

Interestingly, the descriptive statistics results of task performance were

identical to the results of copresence.

Participants had the strongest feeling of copresence with the

Gestural Agent, followed by the Embodied Agent, compared with

the baseline. This could be because the non-verbal cues like gaze,

head movement, and gestures could improve the IVAs’

naturalness and believability (Hanna and Richards, 2016).

Most participants reported that they liked the Gestural Agent

best in the post-experiment interview. One participant said, “the

gestural agent’s pointing gestures coupled with its voice content

makes it more natural and real”. Another reported, “the pointing

gesture synchronized with the voice makes that agent feel

relatively more vivid”.

Both NASA-TLX and SMEQ revealed that the workload in

the Gestural and Embodied agent conditions was significantly

lower than that in the Voice-only agent condition. This agrees

with prior work (Kim et al., 2020), where an IVA in AR with

both gestures and body movement reduced the task load to

some extent. The task load in our experiment mainly came

from determining the order of 15 items and understanding the

suggestions from the virtual agents. All three agents provided

correct suggestions for participants, while the gestural agent

looked at the suggested item and pointed it while speaking,

which may reduce task load caused by understanding the

agent’s speech contents. One participant commented that

“the pointing gesture can make me understand easily which

item he (gestural agent) is talking about and quickly locate that

item”.

9.4.2 Alpha bandmean power and cognitive load
Our findings on alpha band mean power fails to support

H2. The cognitive load of our research task mainly originated from

making decisions on determining orders of the 15 desert survival

items (intrinsic cognitive load) and interacting with the virtual

agent (extraneous cognitive load). We will analyze these two types

of cognitive load in more detail and discuss possible reasons why

the alpha band power failed to show significant difference.

The cognitive load of making decisions in our research task

could be caused by retrieving experiences and knowledge of using

those items, comparing their importance and planning their

orders. Prefrontal cortex was showed to be related to LTM

retrieval (Buckner and Petersen, 1996) and relational reasoning

(Waltz et al., 1999). Therefore, we expected to capture this type of

cognitive load using the Fp1 and Fp2 EEG sites. However, the

alpha band power obtained from these sites showed significant

difference among the three agent conditions. This could be because

the alpha bandmean power was calculated with signals cropped by

the time window when the virtual agent was giving suggestions

FIGURE 6
Results of the Copresence questionnaire (5-point Likert Scale from 1 to 5; Statistical significance: *(p < 0.05), *** (p < 0.001)).
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whereas participants might also mentally compare the items’

importance while adjusting their orders.

The cognitive load originated from interacting with virtual

agents mainly comprises processing the coupled visual-audio

stimuli emitted by the virtual agent and visually searching the

object that the agent were talking about. Since parietal lobe was

proved to be related to selective attention (Behrmann et al.,

2004) and occipital lobe was thought to be in charge of visual

processing (Wandell et al., 2007), we expected to reflect this

type of cognitive load with the signals captured from P3, P4,

and Pz EEG sites located at parietal lobe and the O1 and

O2 sites located at occipital lobe. However, neither the parietal

nor the occipital alpha band mean power showed significant

difference among the three agent conditions. This could be

because both the Embodied and the Gestural agent only kept

tiny and monotonous body movement animation while

talking. People could roughly locate the suggested item with

the help of gazing direction when the Embodied agent and

Gestural agent started speaking. They would precisely lock the

suggested item when the agent’s speech reveals more

information about that item. However, it was also not hard

to tell which object the virtual agent was talking about with

speech only. Once they confirmed the location of the suggested

object, the only thing they expected from the virtual agent

would be the direction of adjusting. Therefore, people might

mainly focus on the speech content while not the agent body

after quickly locating the suggested item, which could explain

why there was no significant difference in both parietal and

occipital lobe among the three conditions.

Although the alpha band power, NASA TLX and SMEQwere

all used to measure cognitive load, it is interesting to note the

difference between our alpha band power results and the two

subjective cognitive measures. First, the alpha power was

calculated with signals when the virtual agent was speaking

whereas the questionnaires were filled after each trial. As we

have mentioned, the alpha band power results might miss some

decision-making cognitive load when the agent was not talking.

However, the subjective measures were about the general feeling

of work load while performing the task. Second, the different

impressions on the three types of agents might influence their

feelings of the overall workload which could not be revealed by

our EEG alpha band power results. For example, as we have

mentioned in Section 9.4.1 people might like the Embodied and

Gestural agent because of their visual representations and the

FIGURE 7
Results of the NASA TLX weighted workload (Statistical significance: *(p < 0.05), **(p < 0.01)).
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indicating cues (gaze in both condition and the pointing gesture

in Gestural condition). This subjective feelings on visually

embodied agents might influence the subjective assessment on

overall cognitive load. This analysis could be supported by the

results of alpha band ERD/ERS discussed in the following

section.

9.4.3 Alpha band the event related (De-)
synchronization

Our alpha band ERD/ERS results partially support the H2. For

the ERD/ERS in alpha band, we found significant difference in both

parietal and occipital lobe. When the agent started speaking, the

alpha band power increased (ERS) in the EmbodiedAgent condition,

whereas that decreased (ERD) in both Gestural and Voice-only

Agents condition. In other words, the Gestural agent and Voice-only

Agents required more attentional demands compared to the

Embodied Agent. Before each agent started speaking, participants

would wait for 2 ~3 s without any sudden audio or visual changes.

Therefore, we assumed there were more alpha oscillations in

participants’ brain activity before the agent started speaking.

When the Embodied Agent started speaking, the speech was

matched with the virtual body and thus being expected by the

participants. However, the Voice-only Agent had no virtual body

and the sudden speech stimulus might cause the alpha

suppression. One participant commented that “the Voice-only

Agent’s sudden speech makes it feels abrupt”.

When the Gestural Agent started speaking, the coupled

pointing gesture attracted more visual attention and thus

caused the alpha suppression which could explain the ERD

in the Gestural Agent condition. Although the pointing gesture

increased the copresence of the Gestural Agent compared to

the Embodied Agent (see results for Copresence), it could

cause more attention when the Gestural Agent started

speaking.

9.4.4 Limitations
Our research had some limitations. First, we had difficulty

finding female participants due to their reluctance to wash their

hair after having EEG gel placed on it. We also recruited

participants from a mechanical engineering school where men

were overwhelmingly more available than women. Secondly,

similar to Gupta et al. (2019), we also encountered difficulties

mounting the HTC VIVE on the EEG cap. Fastening the VR

headset squeezes prefrontal, parietal, and occipital skull areas and

FIGURE 8
Results of the SMEQ (Statistical significance: *(p < 0.05)).
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may cause some electrodes to slide or even lose contact with the

scalp. This may result in poor EEG signals.

10 Conclusion and future work

In this paper, we explored the effects of virtual agent’s

interaction methods on users’ brain activity. We reported a

within-subject pilot study where participants were asked to

work collaboratively with a virtual agent on a decision-making

task in VR environment. Three types of virtual agents were

designed by varying the representation: 1) a Voice-only Agent

communicating through speech only, 2) an Embodied Agent with

a virtual body interacting through both speech and gaze, and 3) a

Gestural Agent embodied with a virtual body allowing to express

information through speech, gaze and a pointing gesture. We

recorded users’ EEG signals with which we calculated the alpha

band power and ERD/ERS, which were proved to be effective in

reflecting cognitive load. Except for the EEG signals, we also

collected subjective ratings of cognitive load and feelings of

copresence, and task performance to reveal the possible

significant difference among the three agent conditions from

different perspectives. No significant difference was found in

the task performance. Subjective results indicate that imbuing

an agent with a visual body in VR and task-related gestures

could reduce task load and improve copresence in human-

agent collaborative decision making. The alpha band power

showed no significant difference among the three agent

conditions in prefrontal cortex, parietal lobe and occipital lobe.

The result of alpha ERD/ERS in parietal and occipital lobe revealed

that the coherence in agent’s speech and body representation was

important. And the non-verbal cues like the task related pointing

gesture required more attentional demand, even though it was

helpful in locating objects and improving overall copresence.

Overall, virtual agent designers should be careful in designing

non-verbal cues for virtual agents by making trade-offs between

the benefits of such cues and the possible distractions or

increased attentional demands. We argue that interacting with

virtual agent can cause complex changes in users’ brain activity.

Understanding the impact of interacting with virtual agents in

AR and VR on users’ physiological states like brain activity could

help to improve the design of such agents. We call for more

attention to be paid on this important topic.

In the future, we plan to investigate if there is any difference

in other EEG bands using VR headsets with better EEG fit.

Furthermore, We will look into IVAs’ adaptive behaviors

according to users’ physiological states captured by various

physiological sensors like EEG, galvanic skin response, and

heart-rate variability simultaneously. Last, comparing the

effects of interacting with a virtual agent and an actual human

on users’ physiological states is also an interesting topic.
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