
Aided target recognition visual
design impacts on cognition in
simulated augmented reality

Aaron L. Gardony1,2*, Kana Okano2, Gregory I. Hughes1,2,
Alex J. Kim2, Kai T. Renshaw3 and Aldis Sipolins4

1U.S. Army Combat Capabilities Development Command (DEVCOM) Soldier Center, Natick, MA,
United States, 2Center for Applied Brain and Cognitive Sciences (CABCS), Medford, MA, United States,
3Tufts University, Medford, MA, United States, 4Draper, Cambridge, MA, United States

Aided target recognition (AiTR) systems, implemented in head-mounted and in-

vehicle augmented reality (AR) displays, can enhance human performance in

military operations. However, the visual appearance and delivery of AiTR may

impact other important critical aspects of human performance like decision

making and situational awareness (SA). Previous research suggests salient visual

AR cueing, such as found in Computer-Aided Detection diagnostic systems,

orient attention strongly toward cued targets leading to missed uncued targets,

an effect which may be lessened by providing analog information about

classification uncertainty and using less visually salient cueing techniques,

such as soft highlighting. The objective of this research was to quantify the

human performance impacts of two different types of AR AiTR visualizations in a

simulated virtual reality defensive security task. Participants engaged in a visual

camouflage discrimination task and a secondary SA Task in which participants

observed and reported a peripheral human target. Critically, we manipulated

the type of AiTR visualization used: 1) a traditional salient bounding box, 2) a

softly glowing soft highlight, and 3) a baseline no-AiTR condition. Results

revealed minimal impacts of the visual appearance of AiTR on target

acquisition, target categorization, and SA but an observable reduction in

user experience associated with soft highlight AiTR. Future research is

needed to explore novel AiTR designs that effectively cue attention,

intuitively and interpretably visualize uncertainty, and deliver acceptable user

experience.
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1 Introduction

The United States Army intends to leverage advances in

artificial intelligence and machine learning (AI/ML) in future

warfighter systems, including its combat vehicles and augmented

reality (AR) displays (Army.mil, 2022; Larkin et al., 2019; Sam.

gov, 2022). For emerging head-mounted AR displays, AI/ML can

enable a decisive edge to rapidly detect and classify potential

threats. Such Aided Target Recognition, or AiTR, technologies

use computer vision algorithms, such as the widely used You

Only Look Once class of object detection algorithms (Sultana

et al., 2020), to detect, label, and highlight potential targets. In

military settings, AiTR can assist with a myriad of mission

functions including fire control, surveillance, reconnaissance,

intelligence, persistent surveillance, and situational awareness

(Ratches, 2011). The speed at which AiTR algorithms can detect

and highlight potential targets is a significant asset to Soldiers

battling in the kinetic, fast-paced multidomain operations of the

future (US Army TRADOC, 2018). However, improperly

designed AiTR may interfere with other aspects of task

performance, leading to increased false alarms, attentional

tunneling, and degraded situational awareness (SA) (Geuss

et al., 2019). The present study addresses these issues,

investigating the cognitive impacts of AiTR through

quantitative assessments of human performance in a virtual

reality (VR) lethal force decision making scenario

incorporating simulated AiTR AR overlays.

Current implementations of AiTR typically highlight

potential targets of interest via opaque, colored bounding

boxes. This highly salient display readily captures human

attention, serving the main purpose of AiTR well. However,

such salient cues can lead to attentional tunneling, drawing

attention away from the presence of unexpected targets (Yeh

& Wickens, 2001; Wickens, 2005; Chen & Barnes, 2008).

Moreover, in the medical domain, such as in the fields of

surgery and radiology, researchers have found Computer-

Aided Detection diagnostic systems that use salient AR cueing

can draw attention away from other important information

during visual search or lead diagnosticians to prematurely

cease active searching, especially under conditions of low

target prevalence (Krupinski et al., 1993; Philpotts, 2009;

Drew et al., 2012, 2020; Cain et al., 2013; Dixon et al., 2013).

Such attentional cueing effects can have grave consequences for

Soldier users of AiTR systems, reducing their SA for non-cued

features in their environments, such as potential threats (Endsley,

1995). To address attentional tunneling issues associated with

salient AR cueing, researchers have developed a variety of subtle

cueing techniques that modulate background luminance, color

temperature, contrast, and opacity with demonstrated benefits in

target identification (McNamara et al., 2008; Bailey et al., 2009;

Lu et al., 2012, 2014).

One such technique is soft highlighting, which cues areas of

interest with a soft blur. Kneusel and Mozer’s (2017) initial

experiments testing soft highlighting demonstrated consistent

visual search performance advantages over hard highlighting.

Given these findings, soft highlighting could be used in AR

systems, as proposed by Larkin et al. (2019), to display AiTR

cues in a non-distracting manner. Moreover, in contrast with the

salient hard highlighting of bounding boxes, soft highlighting

may be preferable in situations with multiple overlapping

highlighted targets, distinguishing probable targets from the

environment while reducing visual clutter and missed uncued

targets (Fenton et al., 2007; 2011). Notably, subtle AR cueing

techniques, like soft highlighting, have been developed and

validated in low-stakes visual search contexts rather than the

high-stakes contexts in which AiTR systems are intended to be

used (e.g., military operations). Moreover, extant research

examining human performance impacts of AiTR has primarily

examined visual search of static images rather than dynamic

scenes involving the type of tasks and decision making military

operators using future AiTR systems would potentially

encounter.

In the present study we investigated the human performance

impact of simulated AiTR AR cues in a VR Lethal Force Decision

Making (LFDM) task, focusing on three performance areas:

target acquisition, target categorization, and SA. Participants

categorized a single animated Soldier avatar advancing

towards them amongst non-combatant civilians as friendly or

enemy based upon their worn camouflage pattern, deciding to

shoot them or let them pass using handheld VR controllers.

Participants completed the LFDM task in three blocks, two with

AR AiTR overlays (bounding box, soft highlight) and one

without. As a first step we rendered AiTR without

incorporating uncertainty information but subtly varied AiTR

appearance and included incorrect civilian overlays (i.e., false

alarms) to reflect limitations of current AiTR systems. We also

incorporated a simultaneous secondary detection task (“SA

Task”) in which participants responded when they observed a

non-combatant civilian in their periphery. We measured

multiple quantitative metrics, including behavioral responses

(e.g., accuracy, response time) and eye tracking metrics (e.g.,

dwell time, glance latency) to assess how AiTR impacted

performance in the LFDM and SA Tasks.

2 Materials and methods

2.1 Participants

Forty-one male active-duty Soldiers (Mage = 22.2, SDage = 3)

voluntarily participated. Human use approvals were reviewed

and approved by the United States Army Combat Capabilities

Development Command Soldier Center Human Research

Protection Program Office and the Tufts University

Institutional Review Board. Written informed consent for

participation was not required for this study in accordance
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with the national legislation and the institutional requirements.

This study was conducted during the SARS-CoV-2 pandemic. All

researchers and participants followed safety protocols approved

by U.S. Army and Tufts University safety committees (e.g.,

masks, sanitization). All participants possessed 20/

25 binocular distance visual acuity or better as determined by

the Snellen eye chart and normal color vision as determined by

the Color Vision Testing Made Easy test (Cotter et al., 1999). One

participant was removed from analysis due to an error in data

collection. Forty participants (Mage = 21.76, SDage = 2.86) were

ultimately included in the analysis.

2.2 Materials

2.2.1 Apparatus
The VR LFDM task was developed using Unity3D software

(Unity Technologies, 2021). The task was rendered and displayed

using SteamVR andVarjo Base software (Valve Corporation, 2021;

Varjo, 2021) on the high resolution Varjo VR-3 head-mounted

display (HMD) which has a display resolution of 70 pixels-per-

degree, a 90 Hz display refresh rate, a 115° horizontal field of view,

and advertised sub-degree 200 Hz eye tracking. Participants were

seated during the experiment and participant responses were

tracked using HTC Vive VR controllers (HTC, 2021). The

experiment was run on a Lenovo ThinkStation

P920 Workstation with an Intel Xeon Gold 6,246 processor and

NVIDIA Quadro RTX 8000 dedicated graphics card. Behavioral

and eye tracking data were logged via custom Unity scripts and

Varjo’s Unity XR SDK.

2.2.2 Virtual reality scenario
2.2.2.1 Overall scenario design and trial structure

The LFDM task was designed to evaluate the impact of AiTR

overlays on target acquisition, target categorization, and SA in a

Soldier-relevant task. The task approximated a defensive security

task (DST) in which the participant is stationed on patrol at an

Entry Control Point and tasked to defend it from potential

threats. Threats took the form of a Soldier advancing toward

the Entry Control Point and participants had to make lethal force

decisions about whether to shoot the Soldier or let them pass.

This task captured metrics related to target acquisition and

categorization. A simultaneous secondary task (“SA Task”)

involved “radioing in” non-combatant civilians who appeared

in nearby windows in the periphery. This task captured metrics

related to SA. Below, we describe implementation details for each

embedded task, in turn.

The DST was inspired by similar research tasks that probe

decision making under conditions of perceptual uncertainty

(Brunyé & Gardony, 2017; Brunyé and Giles, under review).

In this task, participants distinguish between friendly and enemy

versions of a camouflage pattern worn by a walking Soldier

avatar. We developed two distinguishable grayscale camouflage

patterns using a binary space partitioning algorithm (Åström,

2011) and then introduced uncertainty by layering them and

systematically altering the top layer opacity in photo editing

software. This procedure resulted in six blended patterns with

varying uncertainty: 100% friendly, 65% friendly, 51% friendly,

51% enemy, 65% enemy, and 100% enemy. Each pattern had an

objectively correct answer (i.e., ground truth). We then used

Unity3D to texture a Soldier avatar with each pattern. Figure 1

shows an example trial of the DST (A) and example Soldier

avatars with overlayed camouflage patterns (B).

Concurrently with the DST, the SA Task involved

participants monitoring for the appearance of a single non-

combatant civilian (“SA Target”) in the windows of nearby

buildings. On each trial the SA Target could appear randomly

in one of four windows; two located in central vision (12° and 14°

visual angle) and two located in near-peripheral vision (25° and

31° visual angle). After appearing, the SA Target would

continuously and randomly move slightly in the window to

attract attention. Figure 1A shows an example SA Target and

the four possible spawn locations.

A LFDM trial consisted of a single Soldier avatar emerging

from one of four locations adjacent to the scenario’s central

corridor and walking toward the participant at a brisk walking

pace. The near-distance and far-distance Soldier spawn locations

were positioned approximately 50 m (approximately 16 s from

spawn position to red line) and 100 m (approximately 22 s from

spawn position to red line), respectively, from the participant on

either side of the central corridor. To prevent predictable

stimulus timing, the Soldier spawned after a random delay

ranging from 1 to 5s following the start of the trial. Similarly,

the SA Target’s spawn times were randomly delayed based on the

Soldier spawn location: the SA Target spawned 3–12 s following a

near-distance Soldier spawn and 3 – 18 s following a far-distance

Soldier spawn. Notably, 50% of the time, the SA Target would not

spawn unless the random delay had elapsed and the participant

was currently gazing at the Soldier. Such gaze-contingent SA

Target spawns were designed to encourage attentional focus on

the DST and to prevent visual scanning strategies of the adjacent

buildings and windows. Additionally, throughout the trial

15 civilian non-player characters walked around the

environment, in and out of view, to provide an element of

realism and visual clutter. This resulted in ~10 civilians being

in view at any given time on average. Civilian movements were

restricted to areas outside the central corridor to prevent

significant overlap with the advancing Soldier. The trial ended

once the Soldier was categorized as friendly or enemy or if the

Soldier crossed the red line directly in front of the participant,

which marked the trial as a non-response. Practically, this meant

that a trial could end prior to the SA Target appearing.

2.2.2.2 AiTR augmented reality overlays

We developed two simulated AR AiTR overlays, a bounding

box and a soft highlight overlay, leveraging a commercially-

Frontiers in Virtual Reality frontiersin.org03

Gardony et al. 10.3389/frvir.2022.982010

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.982010


available Unity asset package (Kronnect, 2021), depicted in

Figure 1C. Consistent with previous research demonstrating

its utility, we rendered AiTR overlays in yellow (Tombu et al.,

2016; Reiner et al., 2017; Larkin et al., 2019). Bounding boxes

surrounded the Soldier without overlaying their body or the

camouflage pattern. Similarly, the soft highlight emanated from

the Soldier without overlaying their body or the camouflage

pattern. To approximate current technological limitations, we

introduced random dynamic jitter to the AiTR display, subtly

shifting the X and Y scale of the bounding box overlays and the

“glow width” parameter of the soft highlight every 0.25s. We also

introduced error in the form of false alarm AiTR. On any given

trial, each civilian had a one third chance of being assigned an

AiTR overlay. Practically, this resulted in three to four civilians in

view being highlighted at any given time on average. This design

choice was intended to increase visual clutter and reflect

inconsistency of the AiTR accurately extracting the Soldier

from the civilians.

2.3 Factors and performance measures

The LFDM task manipulated several factors of interest. The

advancing Soldier was either friendly or enemy (Soldier Type:

Friendly, Enemy) and was wearing one of three camouflage

pattern mixtures which influenced the underlying uncertainty

of the categorization process (Camo Clarity: 51, 65, 100%).

Across blocks, the AiTR was manipulated such that the

advancing Soldier (and “false alarm” civilians) either had No

AiTR overlays, a Bounding Box overlay, or a Soft Highlight

overlay.

The LFDM task recorded several performance measures

across the embedded DST and SA Tasks, encompassing

participants’ behavioral response (i.e., button responses) and

measures of visual attention derived from eye gaze. For the DST

task, the behavioral dependent variables were Categorization

Error of the advancing Soldier (i.e., the proportional rate of

error responses in the friend-foe categorization task) and

Categorization Distance (i.e., how far away the Soldier was

in meters from the participant at response). Soldier Glance

Latency was recorded as the latency (in seconds) from when the

advancing Soldier first appeared in view and when the

participant glanced at the Soldier. We also recorded Relative

Dwell Time as the proportional amount of time the

participant’s gaze point overlayed or “dwelled” on various

features of the VR scenario, including the advancing Soldier,

the adjacent buildings’ windows, the civilians, and the general

environment (e.g., roads, buildings, sky, etc.). It should be noted

that the accuracy of gaze-based measures is influenced by the

distance of the gaze target; further gaze targets subtend a

smaller visual angle leading to reduced accuracy. To address

this, the task implemented a dynamically sized gaze intersection

zone surrounding the advancing Soldier, SA Target, and

civilians that continuously subtended 2° visual angle (vertical

and horizontal). For the SA Task, we measured 1) P(SA

Response), the response rate of the SA Target, 2) Task

Response Time, 3) P(SA Glance), the rate at which the

participant glanced at the SA Target, given the target

appeared during the trial, and 4) SA Target Glance Latency,

the latency (in seconds) from when the SA Target first appeared

in the windows and when the participant glanced at the SA

Target.

2.4 Procedure

Data were collected in a single 2-h experimental session. We

used a within-participants design with participants completing the

LFDM task across three AiTR blocks, the order of which was

counterbalanced across participants. At the start of the session,

the researcher instructed participants on how to don the HMD, use

the controllers, and briefly explained the task. Detailed task

instructions were given later in the HMD. The researcher

explained that participants would engage in a defensive security

task in which they were tasked with identifying whether an

approaching Soldier, embedded amongst non-combatant civilians,

was friendly or enemy based on the type of camouflage pattern on

their uniform. In the two AiTR blocks, advancing Soldiers were

highlighted in yellow. Participants were told that AiTR technology is

not perfect and that it may highlight civilians who are not wearing

camouflage. They were asked to ignore these civilians and only focus

on the advancing Soldier. No highlighting was present on either the

Soldier or civilians in the block without AiTR. Participants marked

Friendly Soldiers with a trigger button on the Vive controller in their

FIGURE 1
(A) Example trial of the Defensive Security Task (DST) from the
No AiTR condition. We have added arrows depicting the four
possible Soldier spawn locations and the four possible SA Target
spawn locations. Example SA Target is shown in top-right
window. (B) Example Soldier avatars in the six possible blended
camouflage patterns. From left to right, 100% Enemy, 65% Enemy,
51% Enemy, 51% Friendly, 65% Friendly, 100% Friendly. (C) Example
AR AiTR overlays. Left side depicts Bounding Box overlay (BB).
Right side depicts Soft Highlight overlay (SH).

Frontiers in Virtual Reality frontiersin.org04

Gardony et al. 10.3389/frvir.2022.982010

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.982010


left hand and Enemy Soldiers with the trigger button in their right

hand. Participants were also tasked to observe and report the

appearance of a civilian in the windows (SA Task), pressing the

left trackpad when they detected a civilian in a left window and the

right trackpad for a civilian detected in a right window. Each AiTR

block comprised 24 randomized-order trials that fully combined

four Soldier spawn locations near-distance (left/right), far-distance

(left/right) and six Camo Clarity levels (100% friendly, 65% friendly,

51% friendly, 51% enemy, 66% enemy, 100% enemy).

Prior to completing each AiTR block, participants completed

a VR sickness questionnaire (Kim et al., 2018) and donned the

HMD. 17-point calibration and validation of the eye tracker was

run to ensure accurate eye tracking (Merror < 2°). Participants

then studied the 100% friendly and enemy camouflage patterns

for 2 minutes and took a pattern identification test to ensure they

could accurately distinguish the friendly pattern from the enemy.

To pass this test, participants had to correctly identify

10 camouflage patterns. Participants also completed five

practice trials before the start of each condition to ensure they

understood the task. At the end of each AiTR block, participants

completed the VR sickness questionnaire (Kim et al., 2018) again

as well as the NASA Task Load Index (NASA-TLX) cognitive

workload assessment (Hart & Staveland, 1988) to assess

perceived workload associated with each AiTR condition.

Following completion of the three blocks, the researcher

debriefed the participant on the purpose of the study and

answered any questions.

2.5 Analysis approach

To analyze the data, we employed linear mixed models

(LMMs). We used R (R Core Team, 2022) and the afex

package (Singmann et al., 2020) to run the LMMs. We

approximated degrees of freedom (df) and computed p values

via the Satterthwaite method unless otherwise noted. We

conducted follow-up pairwise comparisons (with Tukey-

adjusted p values) with the emmeans package (Lenth, 2020)

and visualized the data with ggplot2 (Wickham, 2016). We

expected individuals would vary in their baseline performance

and we included by-participants random intercepts across our

analyses, e.g., model = DV ~ Factor1 * Factor 2. . . + (1|

Participant), unless otherwise noted.

3 Results

3.1 Defensive security task results

Prior to analysis we first removed non-response trials where

the advancing Soldier crossed the red line (<1%). Next, we

removed trials where the participant never glanced at the

advancing Soldier or if Soldier Glance Latency exceeded 5 s. If

this procedure resulted in greater than 50% of trials being

discarded for a participant’s block, we discarded the entirety

of the data for that block. This procedure, which was intended to

omit poor quality data from experimental blocks with technical

difficulties and/or high levels of participant drowsiness, removed

12% of trials. Percentages of removed trials did not significantly

differ across the three AiTR conditions. Removed trials did not

differ in any systematic way across our manipulated factors of

interest.

3.1.1 Behavioral responses
We first scrutinized Categorization Error in the DST,

submitting these data (binomial responses: 0, 1) to a 2(Soldier

Type) x 3 (AiTR) x 3(Camo Clarity) repeated measures binomial

generalized LMM and computed df and p values using likelihood

ratio tests (LRTs). Participants were biased overall to categorize

the advancing Soldier as enemy (ME = 58%,MF = 42%). Observed

errors were lowest in the 100% Camo Clarity (100CC) condition

(M = 6.6%) followed by the 65CC (M = 12.2%) and 51CC (M =

50%) conditions, X (2, n = 40) = 499.17, p < 0.001, and were lower

for Enemy (M = 15%) vs. Friendly (M = 31%) Soldiers, X (1, n =

40) = 19.88, p < 0.001. These main effects were qualified by a

Camo Clarity x Soldier Type interaction, X (2, n = 40) = 59.93, p <
0.001. As shown in Figure 2A, errors were significantly higher for

Friendly Soldiers relative to Enemy in the 51CC and 65CC

conditions, p’s < 0.001, but this difference reversed in the

100CC condition, p < 0.05. We also observed a Camo

Clarity × AiTR interaction, X (4, n = 40) = 12.21, p < 0.05,

however no notable pairwise comparisons emerged significant

making the interaction difficult to interpret so we do not discuss

it further. No other AiTR effects or others emerged significant.

Next, we investigated the Categorization Distance data,

submitting these data to a 2 (Soldier Type) x 3 (AiTR) x 3

(Camo Clarity) repeated measures LMM. Soldier distance at

participant response was furthest in the 100CC condition

(M = 32.9 m) followed by the 65CC (M = 25 m) and 51CC

(M = 22 m) conditions, F (2, 2,479.2) = 128.75, p < 0.001, and was

further for Friendly (M = 28.7 m) vs. Enemy Soldiers (M =

24.6 m), F (1, 2,479.2) = 48.83, p < 0.001. These main effects were

qualified by a Camo Clarity x Soldier Type interaction, F (2,

2,479.2) = 30.32, p < 0.001. As shown in Figure 2B, the differences

in Categorization Distance for Friendly and Enemy Soldiers were

driven by 100CC trials, p < 0.001. We also observed a significant

AiTR main effect, F (2, 2,486.3) = 4.31, p < 0.05. Categorization

Distances in the Soft Highlight (M = 27.3 m) and No AiTR (M =

27.7 m) conditions were significantly longer than the Bounding

Box condition (M = 25 m), and did not significantly differ from

each other.

3.1.2 Eye gaze
Next, we scrutinized eye gaze movement in the DST. We first

investigated Soldier Glance Latency to understand if the

manipulated factors influenced visual acquisition of the
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advancing Soldier. We submitted these data to a 2(Soldier Type)

x 3 (AiTR) x 3(Camo Clarity) repeated measures LMM. Latencies

were fastest in the 100CC condition (M = 0.68s) followed by the

65CC (M = 0.74s) and 51CC (M = 0.86s) conditions, F (2,

2,481.1 = 7.78), p < 0.001. Pairwise comparisons revealed 100 and

65CC latencies were significantly faster than 51CC (p < 0.001, p <
0.05, respectively) but did not differ from each other. No AiTR

effects or others emerged significant.

Second, we investigated Relative Dwell Time to the scenario’s

environmental features. We first calculated the intersection point

of the participant’s gaze vector to relevant scenario features: 1)

the Soldier, 2) the civilians, 3) the Windows, 4) the SA Target,

and 5) the Environment (i.e., every scene element not falling into

one of the other categories) and computed the by-trial total

duration that participants’ gaze intersected with each feature.

Dwell time toward the SA Target was very low (M = 0.15 s)

because participants rapidly responded upon seeing the SA

Target so we removed the SA Target from the Relative Dwell

Time analysis. We then computed a proportional Relative Dwell

Time metric by dividing by-trial dwell time for each scenario

feature by the total trial dwell time (excluding SA Target dwell

times). We then submitted these data to a 4 (Scenario Feature) x 2

(Soldier Type) x 3 (AiTR) x 3 (Camo Clarity) repeated measures

LMM. We expected Relative Dwell Times across scenario

features would vary between individuals in addition to varying

baseline performance and so we included random slopes for

Scenario Feature as well as by-participants random intercepts.

Relative Dwell Time differed across scenario features; on

average, participants dwelled on the Soldier the longest (M =

55% of the time), followed by the Windows (M = 21%), the

Environment (M = 13%), and the civilians (M = 11%), F (3,

38.52) = 269.11, p < 0.001 (all pairwise comparisons p < 0.001).

This main effect was qualified by a Scenario Feature x Soldier

Type interaction, F (3, 9,955.97) = 4.04, p < 0.01, a Scenario

Feature × AiTR interaction, F(6, 9,961.87) = 5.52, p < 0.001, and

a Scenario Feature x Soldier Type x Camo Clarity interaction, F

(3, 9,955.6) = 2.56, p < 0.05. As shown in Figures 3, 4, the

observed interactions suggest that 1) Soft Highlight AiTR

significantly increased Relative Dwell Time toward the

environment at the expense of other scenario features

compared to the No AiTR and Bounding Box conditions,

p < 0.001 (Figure 3), and 2) participants dwelled on the

advancing enemy Soldiers relatively longer than Friendly

Soldiers, most apparently when they wore the clearest camo

FIGURE 2
(A) Mean Categorization Error as a function of Camo Clarity and Soldier Type. Errors were significantly higher for Friendly Soldiers relative to
Enemy Soldiers in the 51CC and 65CC conditions (p < 0.001). Errors were significantly higher for Enemy Soldiers relative to Friendly Soldiers in the
100CC condition (p < 0.001). (B) Mean Categorization Distance (m) as a function of Camo Clarity and Soldier Type. Categorization Distance for
Friendly vs. Enemy Soldiers were significantly different in the 100CC condition (p < 0.001). Error bars depict standard error of the mean.

FIGURE 3
Mean Relative Dwell Time on LFDM Scenario Features across
AiTR conditions (NO: No AiTR, BB: Bounding Box, SH: Soft
Highlight). SH significantly increased Relative Dwell Time toward
the environment compared to NO and BB conditions (p <
0.001). Error bars depict standard error of the mean.
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pattern (100CC), p < 0.01 (Figure 4). Taken together with the

Categorization Distance findings, this suggests that the shorter

Enemy Categorization Distances observed in the 100CC

condition can be plausibly explained by differences in visual

interrogation of the advancing Soldier.

3.2 Situational awareness task results

Prior to analysis, we removed trials where SA Targets never

appeared. This resulted in the removal of an additional 20% of

the data. Recall that on each trial a single SA Target appeared in

one of four window locations. SA Target spawns were either

Timed or Gaze-Contingent, the appearance of which depended

on the participant dwelling on the advancing Soldier.

Overall, when the SA Target appeared, participants

successfully responded 87.5% of the time (MT = 89%, MGC =

86%) and glanced at it 58% of the time (MT = 61%,MGC = 56%).

Notably, P(SA Response) and P(SA Glance) were significantly

associated, X (3, n = 40) = 299.58, p < 0.001. When participants

glanced at the SA Target during a trial, they responded 98% of the

time. However, when they did not glance at it, they still

successfully responded 72% of the time, suggesting the SA

Target was reliably detectable in peripheral vision. On

average, participants responded to the SA Target 1.33s (MT =

1.37 s, MGC = 1.3 s) after stimulus onset and glanced at it 0.85s

(MT = 0.88 s, MGC = 0.82 s) after stimulus onset.

We first separately examined P(SA Response) and P(SA

Glance) of the SA Target (binomial responses:0,1), submitting

both to a 2(SA Target Spawn Type) x 2 (Soldier Type) x 3 (AiTR)

x 3 (Camo Clarity) repeated measures binomial LMMs and

computed df and p values using LRTs. Gaze-Contingent SA

Targets were responded to and glanced at (MResponse = 86%,

MGlance = 56%) less often than Timed targets (M Response = 89%,

MGlance = 61%), P(SA Response) -X (1, n = 40) = 5, p < 0.05, P(SA

Glance) - X (1, n = 40) = 4, p < 0.05. The P(SA Response) main

effect was qualified by a SA Target Spawn Type × AiTR

interaction, X (2, n = 40) = 5.98, p = 0.05. Pairwise

comparisons revealed that while P(SA Response) was

numerically lower for Gaze-Contingent vs. Timed spawns

across AiTR conditions, the SA Target Spawn Type main

effect appeared to be driven by differences in the Soft

Highlight AiTR condition (MT = 90%, MGC = 81%), p < 0.05.

We also observed a Soldier Type x AiTR x Camo Clarity

interaction, X (4, n = 40) = 9.58, p < 0.05, however no

pairwise comparisons emerged significant making the

interaction difficult to interpret so we do not discuss it

further. No other significant effects emerged. We next

examined Detection Response Time of the SA Target and

Glance Latency to the SA Target, submitting both to a 2(SA

Target Spawn Type) x 2 (Soldier Type) x 3 (AiTR) x 3 (Camo

Clarity) repeated measures LMM. No significant effects emerged.

3.3 Virtual reality sickness and cognitive
workload results

Recall that before each block participants completed a pre-

block VRSQ and after each block completed a post-block VRSQ

and the NASA-TLX survey to provide an assessment of changes

in VR sickness and cognitive workload associated with each AiTR

block. We first computed the oculomotor discomfort and

disorientation subscales of the VRSQ and the individually

submitted subscale data to a 2(Time: Pre vs Post) x 3 (AiTR)

repeated measures LMM with random slopes for Time as well as

by-participant random intercepts. Oculomotor discomfort but

not disorientation significantly increased following each block, F

(1, 39) = 8.47, p < 0.01. No other significant effects emerged. We

next examined the NASA-TLX scores. One participant did not

complete the NASA-TLX survey after all three AiTR blocks, one

after the Soft Highlight block, and one after the No AiTR block.

These data were not included in the analysis. The NASA-TLX

survey results are plotted in Figure 5.

We first computed the six NASA-TLX subscales (Mental

Demand, Physical Demand, Temporal Demand, Performance,

Effort, Frustration) across the three AiTR conditions and then

individually submitted subscale data to repeated measures LMMs

with AiTR as the sole fixed effect and by-participant random

intercepts. Frustration scores significantly differed across AiTR

conditions, F (2, 74.33 = 4.21), p < 0.05. Frustration with Soft

Highlight AiTR (M = 45) was higher than with No AiTR (M =

36.2), p < 0.05. Bounding Box AiTR (M = 38.3) did not

significantly differ from No AiTR and Soft Highlight AiTR.

FIGURE 4
Mean Relative Dwell Time on LFDM Scenario Features as a
function of Camo Clarity and Soldier Type. Participants dwelled on
the advancing enemy Soldiers relatively longer than Friendly
Soldiers, when they wore the clearest camo pattern (100CC)
(p < 0.01). Error bars depict standard error of the mean.
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All other NASA-TLX subscales did not differ across the three

AiTR conditions (all ps > 0.05).

Given that Soft Highlight AiTR increased frustration, we next

investigated whether this frustration related to performance in

the LFDM task. We found a significant positive correlation

between Frustration scores and Categorization Error in the

Soft Highlight AiTR condition (r = 0.36, t (33) = 2.25, p <
0.05), suggesting that the more frustrated participants were using

Soft Highlight AiTR, the more error-prone they were when

categorizing the advancing Soldier as friendly or enemy.

Frustration scores were not correlated with any of the other

performance metrics.

4 Discussion

The present study investigated the impact of simulated Aided

Target Recognition (AiTR) Augmented Reality (AR) cues on

human performance in a Lethal Force Decision Making (LFDM)

task. Participants categorized advancing Soldier avatars as

friendly or enemy based on their worn camouflage pattern

that varied in perceptual discriminability while simultaneously

monitoring for a peripheral non-combatant civilian. Participants

completed three different AiTR sessions: one without any AiTR

overlay, one with a bounding box, and one with a soft highlight.

Our primary interest was to investigate how alternative soft

highlight AiTR techniques, which offer the potential to

intuitively display visual classification confidence or threat

classification (Larkin et al., 2019), differ from traditional

bounding boxes with respect to target acquisition, target

categorization, and situational awareness (SA).

A well-established benefit of AiTR is enhanced target

detectability and acquisition (Ratches, 2011). We

operationalized target acquisition performance with Soldier

Glance Latency by investigating the delay between when the

advancing Soldier first appeared in view and when the participant

first glanced at the Soldier. Interestingly, we did not observe any

such latency reductions for AiTR vs No AiTR. In fact, the only

significant result observed was faster latency under conditions of

relative certainty vs uncertainty; Glance Latency toward Soldiers

with 100% (100CC) and 65% (65CC) Camo Clarity was

significantly faster than 51CC, though the numerical

differences were slight (<0.2s). These unexpected results may

have been due to limitations in our virtual reality (VR) scenario

design. The lack of an AiTR effect on target acquisition may have

stemmed from the limited Soldier spawn locations (4), making it

relatively predictable to detect the appearance of a Soldier.

Moreover, the observed faster Soldier Glance Latency for

clearer camo patterns may be attributable to their higher

visual contrast than the more ambiguous 51CC mixed camo

patterns. Future studies on human performance impacts of AiTR

should include many more possible spawn locations to reduce

stimulus predictability and should carefully consider the visual

perceptibility and discriminability of stimuli used.

AiTR did not appreciably impact categorization performance

in the LFDM task. Categorization Error did not differ between

AiTR conditions. We did observe further Categorization

Distances for Soft Highlight vs. Bounding Box AiTR,

suggesting faster friend-foe discrimination. However, it should

be noted that this difference was numerically slight (~2 m). These

results may be partially explained by the previously discussed null

AiTR target acquisition results. Consider that AiTR could

improve categorization performance in two main ways: 1)

directly by conveying information about target categorization

and 2) indirectly though enhanced target acquisition speed,

maximizing the amount of time available to make a

discriminative judgment. Given that our AiTR cues did not

convey information about target categorization and did not

enhance target acquisition speed it unsurprising that AiTR did

not impact categorization performance.

Participants demonstrated an overall tendency to categorize

advancing Soldiers as enemy rather than friendly (58 vs. 42%).

This trend was especially apparent in the uncertain Camo Clarity

conditions (51 and 65%) where participants tended to

miscategorize Friendly Soldiers as Enemy, suggesting that

under conditions of relative uncertainty, participants’ friend-

foe decision making was biased towards perceiving the advancing

Soldier as a threat. Concurrently, under conditions of relative

certainty, participants allowed the advancing Soldier to get closer

before making their decision. This effect was driven by the 100CC

condition in which participants judged Friendly Soldiers much

more rapidly compared to Enemy Soldiers. Taken together, these

FIGURE 5
Radar plot depicting mean NASA-TLX subscale scores across
AiTR conditions (NO: No AiTR, BB: Bounding Box, SH: Soft
Highlight). Frustration with SH (M = 46.4) was higher than with NO
(M = 36.2), p < 0.05.
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results suggest a speed-accuracy tradeoff: under conditions of

relative certainty identifying Friendly vs Enemy Soldiers is faster

but less accurate.

Overall, AiTR did not result in degraded SA due to

attentional tunneling, a common pitfall of Computer-Aided

Detection. Throughout the LFDM task, participants engaged

in a secondary SA Task in which they detected non-

combatant civilian activity in their visual periphery (i.e., SA

Target). Attentional tunneling in AiTR conditions could have

manifested as decreased detection rates of the SA Target,

decreased glance rates at the SA Target, or longer detection

and glance latencies. However, we observed no notable impacts

of AiTR on these measures. Average detection rates and latencies

were near ceiling, 87.5% and 1.33s, respectively. The high overall

levels of performance observed for the SA Task may have

stemmed from limitations of the scenario design. First, the SA

Target subtly but continuously moved (“jittered”) after appearing

which likely increased its detectability. Second, as with the

advancing Soldier, the SA Target could appear in one of four

locations; participants could have capitalized on this

predictability. Third, SA Target spawn locations were

positioned in the near periphery, ranging from 12–31° visual

angle. We chose the spawn locations to fall within the field-of-

view of the VR head-mounted display (HMD) to ensure SA

Targets were visible. However, real-world peripheral stimuli

occur at larger eccentricities (>60°), extending beyond the

field-of-view capabilities of current generation VR HMDs.

Fourth, and perhaps most importantly, while SA Target

presentation location and timing were randomized, the SA

Target could appear on every trial and in practice did

frequently (80% of trials). This stimulus frequency may have

shifted the SA Task from an unpredictable secondary task to a

predictable dual-task. Nevertheless, while SA Target detection

performance was high overall, promisingly, we observed lower

detection rates for Gaze-Contingent SA Targets, which appear

only if the participant is currently dwelling on the advancing

Soldier, relative to Timed SA Targets, which do not consider the

participant’s gaze. Of note, this difference appeared to be driven

by Soft Highlight AiTR, raising the possibility that soft

highlighting degrades SA for peripheral targets. Given these

tentative findings, future studies assessing SA impacts of AiTR

should incorporate both gaze-contingent and stationary SA

Targets in secondary detection tasks to accurately calibrate

stimulus detectability in dynamic VR scenarios.

Despite the null results of the main phenomena of interest,

additional analyses reveal useful insights regarding how to

implement AiTR in head-mounted AR displays effectively. For

example, an analysis of participants’ eye gaze across elements in

the visual scene pointed to a potential issue with our Soft

Highlight AiTR implementation. Expectedly, we found that

participants spent most of their time overall (55%) dwelling

on the advancing Soldier compared to other scenario features.

Participants also tended to dwell on Enemy Soldiers longer than

Friendly Soldiers under conditions of relative certainty. This

finding aligns with the Categorization Distance findings and

suggests that the relatively shorter Categorization Distances

observed for 100CC Enemy vs Friendly Soldiers were due to

participants visually inspecting Enemy Soldiers longer. Notably,

relative to Bounding Box and No AiTR, Soft Highlight AiTR

increased relative dwell time toward the environment at the

expense of other scenario features. Anecdotally, several

participants reported that Soft Highlight AiTR induced ocular

discomfort. The Soft Highlight AiTR was rendered with

dithering, a process by which random noise is intentionally

applied for visual effect. Our intent was to simulate the real-

world resolution limitations of current generation AR HMDs.

However, the Soft Highlight AiTR’s dithered, screen door-like

appearance yoked to the advancing Soldier may have produced a

flickering visual effect leading to the ocular discomfort reported.

This discomfort in turn could explain why participants in the Soft

Highlight condition spent less time dwelling at the highlighted

Soldier and more toward the environment. Indeed, there is

evidence of such discomfort in the NASA-TLX survey data

which demonstrated that participants were more frustrated by

the Soft Highlight condition relative to No AiTR. Taken together,

our findings suggest that while soft highlighting may be effective

at highlighting targets in static images, such as when inspecting

satellite imagery or histology slides, it negatively impacted task

performance and user experience in our dynamic AiTR task.

One notable aspect of our research was our unique participant

pool comprised of all-male Soldiers. Although this offers valuable

insight into the behaviors of active-duty Soldiers performing a

Soldier-relevant task, it also limits the generalizability of the

present study’s findings. Previous eye tracking research

investigating sex differences in attentional cueing found no

observed sex differences for exogenous cueing (Bayliss et al.,

2005). Consequently, we would not expect sex differences based

on AiTR in LFDM task performance. However, sex differences in

violent and aggressive behavior (Staniloiu & Markowitsch, 2012)

may suggest the possibility of behavioral differences in the LFDM

task. Thus, future work should investigate if biological sex interacts

with AiTR. We also elected to incorporate current limitations of

real-world AiTR systems, such as false alarms, rather than testing a

perfectly accurate simulated system. On any given trial, some

civilians (typically 3–4) were erroneously highlighted with AiTR.

While this was intended to increase visual clutter and reflect

inconsistency of the AiTR, it may have decreased participants’

trust and reliance on AiTR, confounding its effects on perception

and decision making. Future research should consider how false

alarms and trust in automation interact with perceptual and

cognitive impacts of AiTR.

The present study’s findings and limitations offer suggestions for

future research. Current generation commercial VR HMDs offer

increasingly high resolution displays and embedded eye tracking

capabilities with precision and accuracy approaching laboratory-

grade eye trackers (Gardony et al., 2020; Kapp et al., 2021).
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Moreover, with readily accessible development platforms (e.g.,

Unity3D, Unreal) researchers can build rich and dynamic

scenarios for the simulation, testing, and evaluation of novel and

emerging AR capabilities like AiTR. Future work should continue to

leverage these increasingly accessible, affordable, and capable

technologies to perform psychological and user experience

research. It is critically important that researchers carefully

balance controlling the psychometric properties of stimuli and

faithfully reflecting real-world scenarios in which to test the

perceptual and cognitive impacts of factors of interest. It is also

important to understand and address the technical limitations of the

hardware used in the experimental design phase. In our case, we

incorporated design choices like eye gaze colliders surrounding

relevant scenario features that subtended a constant visual angle

to address eye tracking accuracy limitations of commercial VR

HMDs, designed the scenario to remain within the HMD’s field-of-

view, and incorporated gaze-contingent presentation of secondary

stimuli to ensure visibility of peripheral stimuli. Our results also

suggest that user experience metrics are important to collect

alongside quantitative behavioral and gaze data. Indeed, our

results demonstrated the increasing frustration with Soft

Highlight AiTR was associated with increasing friend-foe

discrimination error. Future research, like the present study, may

observe that AR capabilities do not substantively differ when

scrutinizing human performance metrics alone but do when

considering survey responses alongside them.

Lastly, previous research suggests that AiTR should

incorporate uncertainty visualization in tandem with target

cueing (Entin et al., 1996; Cunningham et al., 2017; Larkin

et al., 2019; Matzen et al., 2020). Providing analog information

about the underlying algorithm’s confidence embedded in or

alongside the AiTR cue has been demonstrated to reduce

attentional tunneling in Computer-Aided Detection tasks

(Cunningham et al., 2017). However, a large body of research

has demonstrated that mapping probability or confidence to

different visual encoding channels to represent uncertain

information can lead to biases in interpretation, especially for

those lacking expertise in data visualization (Franconeri et al., 2021;

Padilla et al., 2021). Thus, designers and engineers of AR AiTR

systems should take care to use appropriate visual encodings that

can intuitively convey uncertainty. Soft Highlight AiTR can

intuitively display uncertainty, such as classification confidence or

threat classification, throughmodifications of its fuzziness, lightness,

and/or saturation (MacEachren et al., 2012). However, the present

study revealed user experience decrements associated with Soft

Highlight AiTR during dynamic tasks, calling into question its

utility for future military AR systems. Instead, uncertainty

information could be portrayed as a distinct feature adjacent to a

traditional bounding box. While this may increase utilization of

visual working memory (Schurgin, 2018), such visualizations can

also leverage emerging best practices in uncertainty visualization,

such as frequency-based visualizations (Franconeri et al., 2021;

Padilla et al., 2021). Future research is needed to explore novel

AiTR designs that deliver acceptable user experience, enhanced

target acquisition and decision making, and intuitive and

interpretable uncertainty visualization.
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