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The frequent use of GPS-based navigation assistance is found to negatively

affect spatial learning. Displaying landmarks effectively while providing

wayfinding instructions on such services could facilitate spatial learning

because landmarks help navigators to structure and learn an environment by

serving as cognitive anchors. However, simply adding landmarks on mobile

mapsmay tax additional cognitive resources and thus adversely affect cognitive

load in mobile map users during navigation. To address this potential issue, we

set up the present study experimentally to investigate how the number of

landmarks (i.e., 3 vs. 5 vs. 7 landmarks), displayed on a mobile map one at a time

at intersections during turn-by-turn instructions, affects spatial learning,

cognitive load, and visuospatial encoding during map consultation in a

virtual urban environment. Spatial learning of the environment was

measured using a landmark recognition test, a route direction test, and

Judgements of Relative Directions (JRDs). Cognitive load and visuospatial

encoding were assessed using electroencephalography (EEG) by analyzing

power modulations in distinct frequency bands as well as peak amplitudes

of event-related brain potentials (ERPs). Behavioral results demonstrate that

landmark and route learning improve when the number of landmarks shown on

a mobile map increases from three to five, but that there is no further benefit in

spatial learning when depicting seven landmarks. EEG analyses show that

relative theta power at fronto-central leads and P3 amplitudes at parieto-

occipital leads increase in the seven-landmark condition compared to the

three- and five-landmark conditions, likely indicating an increase in cognitive

load in the seven-landmark condition. Visuospatial encoding indicated by

greater theta ERS and alpha ERD at occipital leads with a greater number of

landmarks on mobile maps. We conclude that the number of landmarks

visualized when following a route can support spatial learning during map-

assisted navigation but with a potential boundary—visualizing landmarks on

maps benefits users’ spatial learning only when the number of visualized

landmarks shown does not exceed users’ cognitive capacity. These results

shed more light on neuronal correlates underlying cognitive load and

visuospatial encoding during spatial learning in map-assisted navigation. Our

findings also contribute to the design of neuro-adaptive landmark visualization
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for mobile navigation aids that aim to adapt to users’ cognitive load to optimize

their spatial learning in real time.
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1 Introduction

1.1 Landmarks and navigation

Imagine that your new colleague at work asks for directions

from your workplace to the main train station. You will probably

give route directions such as, “go straight until you see a school,

then turn left,” or “turn right at the church.” Schools and

churches are examples of prominent features in an

environment known as landmarks. Landmarks are defined as

“geographic objects that structure human mental representations

of space” (Richter andWinter, 2014). They mark a salient feature

in the environment and serve as points of reference that allow for

spatial orienting and structuring of the environment (Presson

and Montello, 1988). Ample evidence has shown that landmarks

facilitate wayfinding efficiency (Wenig et al., 2017; Yesiltepe et al.,

2021) and spatial memory of environments (Credé et al., 2019;

Ligonnière et al., 2021).

Despite the long-standing literature on the importance of

landmarks for human navigation (Richter and Winter, 2014),

existing mobile navigation systems typically do not directly

refer to landmarks when providing turn-by-turn wayfinding

directions. The omission of landmarks in navigation systems

could be one reason why navigation systems are often found to

negatively affect spatial learning (Parush et al., 2007; Anacta

et al., 2017; Wenig et al., 2017; Ligonnière et al., 2021). When

guided by turn-by-turn directions, navigators tend to passively

follow the given route shown on mobile maps and do not

actively make spatial decisions (Fenech et al., 2010; Clemenson

et al., 2021). Turn-by-turn directions drive navigators’ attention

away from environmental features and lead to divided attention

between navigation-assistive devices and the traversed

environments (Gardony et al., 2013, 2015). Guided by such

navigation devices, navigators are thus not supported in the

active cognitive investment of encoding environmental

information such as landmarks, route directions, and spatial

relations of landmarks in the environment into memory

(Parush et al., 2007; McKinlay, 2016; Dahmani & Bohbot,

2020; Sugimoto et al., 2021). As a consequence, overreliance

on navigation systems may be detrimental to users’ spatial skills

(Ishikawa, 2019; Ruginski et al., 2019). Considering the

increasing reliance of navigators on mobile map applications

in a digital age (Zenrin, 2017; Ishikawa, 2019), the importance

of spatial learning abilities in healthy aging (Merhav and

Wolbers, 2019; Ramanoël et al., 2022) and for education

(Uttal and Cohen, 2012), there is a need to counter the

negative effects of using GPS-based navigation systems on

users’ spatial learning.

The inclusion of landmarks in mobile maps for pedestrian

navigation has been proposed to counter the negative effects of

using GPS-based navigation systems on users’ spatial learning

(Raubal andWinter, 2002; Duckham et al., 2010; Liu et al., 2022).

Indeed, Wunderlich and Gramann, (2021) showed that

pedestrian navigation assistance that presents landmarks at

intersections with verbal directions improved navigators’

spatial knowledge acquisition compared to standard

navigation instructions in mobile applications that

communicate turn-by-turn directions using metric distance

information (e.g., “turn right in 200 m”). However, few studies

have empirically examined the effects of landmark visualization

in mobile maps on wayfinders’ spatial learning (Li, 2020; Münzer

et al., 2020). Although landmarks can help users to process their

environments for learning, they also require cognitive resources

in users. The depiction of landmarks on mobile maps could

therefore increase users’ cognitive load during an already

demanding wayfinding task, especially in unfamiliar

environments (Montello, 2005; Farr et al., 2012). Hence,

excessive landmark information on mobile maps may possibly

lead to users’ cognitive overload, considering their limited

cognitive capacity (Baddeley, 2003). Cognitive overload may

not only diminish the benefits of displayed landmark

information in spatial learning but also may lead to decreased

navigation efficiency (Münzer et al., 2012) and/or failure to

acquire accurate spatial knowledge (Wen et al., 2013).

Therefore, it is important to investigate how landmarks

displayed on mobile maps affect cognitive load during

navigation and spatial learning.

1.2 Cognitive load

Cognitive load is defined as the total amount of resources

being used in information processing in the present task (Sweller,

1988; Sweller et al., 1998; Baddeley, 2003). Cognitive resources

are available for three types of cognitive load: 1) intrinsic

cognitive load, which is associated with the nature of the task

itself; 2) extraneous cognitive load, which arises when cognitive

resources are used for irrelevant information; and 3) germane

cognitive load, which is characterized as learning relevant

information (Sweller et al., 1998). Indeed, the literature on

cognitive capacity suggests that learning performance plateaus

(or even drops) when the number of learning items exceeds
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learners’ limited cognitive capacity—typically four items (or

chunks) (Luck and Vogel, 1997; Cowan, 2001; Baddeley, 2003;

Alvarez and Cavanagh, 2004). Navigators’ cognitive load is thus

an essential aspect to consider when visualizing landmarks on

mobile maps; the number of landmarks should be displayed such

that it optimizes spatial learning and wayfinding performance

but not lead to overload.

Based on the previous literature on working memory capacity,

we selected three, five, and seven landmarks as manipulations of

low, medium, and high cognitive load in the present study,

respectively. We used these three sets of landmarks as a starting

point to investigate the potential impact of the number of

landmarks shown on mobile map displays and how they affect

cognitive load and spatial learning. Prior research that investigated

cognitive load during navigation commonly used a dual-task

paradigm where participants complete a working memory task

while learning an environment during navigation. Cognitive load

in such paradigms is assessed by eithermeasuring the impact of the

secondary (working memory) task on performance in the primary

spatial learning task (Meneghetti et al., 2021) and/or using self-

reports (e.g., NASA-Task Load Index, Hart and Staveland, 1988).

However, self-reports are typically administered after participants

have completed the navigation tasks and therefore do not capture

cognitive load in real time while dual-task paradigms interrupt the

spatial learning and navigation process.

We thus turned to electroencephalography (EEG), an

established method to measure human electrocortical activity

that allows for assessing brain dynamic features that might reflect

cognitive load without interrupting the navigation task at hand.

EEG measures neural activity with high temporal resolution

(milliseconds) and thus captures the neural dynamics

accompanying cognitive processes, such as spatial orienting

(Gramann et al., 2010, 2021), spatial learning (Gehrke et al.,

2018), visual processing (Wang et al., 2018), and memory

processing (Onton et al., 2005; Maurer et al., 2015). Therefore,

EEG is a more sensitive way to capture cognitive processes and

their subcomponents (Cohen, 2014), compared to behavioral

assessments and introspective self-reports.

Previous EEG studies have shown that one’s level of cognitive

load is associated with power modulations in distinct frequency

bands e.g., (Klimesch, 1999). Changes in EEG power reflect

changes in synchronization of neuronal activity at different

frequencies. Several frequencies in the EEG power spectrum,

most notably the theta (4–8 Hz) and alpha (8–12 Hz) bands, have

been associated with spatial navigation (Kahana et al., 1999;

Bohbot et al., 2017; Do et al., 2021), memory processes

(Klimesch, 1999; Klimesch et al., 2008; Sauseng et al., 2010),

and attention (Pennekamp et al., 1994; Gevins and Smith, 2003;

Sauseng et al., 2005; Doesburg et al., 2009). Specifically, a large

body of research has found that theta frequency band power

recorded over the frontal cortex increases in response to stimulus

presentation (i.e., event-related synchronization, ERS), signaling

increasing load during cognitive tasks (Smith et al., 2001; Jensen

and Tesche, 2002; Gevins and Smith, 2003; Scharinger et al.,

2017; Ratcliffe et al., 2022). ERS in the theta band in frontal

regions has been proposed to reflect cognitive resource

expenditure and relate to the integration and control of a

variety of cognitive processes, such as visuospatial and verbal

working memory (Sauseng et al., 2010). Previous research has

also found that alpha frequency band power (8–12 Hz) in parietal

regions decreases (i.e., event-related desynchronization, ERD)

with increasing cognitive load (Stipacek et al., 2003; Doesburg

et al., 2009). Decreased alpha power in parietal regions may

indicate individuals’ maintenance of attention and working

memory toward a focal task (Pfurtscheller et al., 1996;

Sauseng et al., 2005; Fukuda et al., 2015) and a higher state of

arousal (Carp and Compton, 2009).

Cognitive load also manifests through the modulation of

components in event-related potentials (ERPs). ERPs refer to

averaged time-varying EEG activity that is time-locked to a

particular event during a task (Fu and Parasuraman, 2006). Of

the ERP research on cognitive load, a large body has investigated

the P3 component (Kok, 2001; Fu and Parasuraman, 2006;

Polich, 2007; Ghani et al., 2020). The P3 component is a

relatively large and slow positive deflection that appears

approximately 300–800 ms after stimulus onset (Watter et al.,

2001). The P3 has a maximum amplitude over the posterior

cortex (Kok, 2001; Polich, 2007). Prior research has suggested

that P3 amplitude reflects the demands of a task on cognitive

resources (e.g., attention, working memory) and indicates the

cognitive load of the task (Kok, 2001). Moreover, previous studies

have shown that greater task complexity, higher stimulus

complexity, and overall information provided to participants

leads to more pronounced P3 amplitudes (Kok, 2001; Watter

et al., 2001; Polich, 2007; Ghani et al., 2020). For example, in

single-task/attention focus paradigms (Van der Stelt et al., 1998)

and in focused compared to divided attention (Heinze et al.,

1990), P3 amplitude was greater when participants paid attention

to target stimuli compared to unattended stimuli. In dual-task

paradigms, the P3 amplitude evoked by a secondary task is

typically reduced when the difficulty of a primary task is

increased, indicating a reallocation of processing resources

away from the secondary task to the primary task (Kramer

et al., 1991; Watter et al., 2001).

Taken together, the findings of previous studies using EEG

point toward several possible indices of cognitive load. To

investigate the changes in cognitive load affected by the

number of landmarks, we thus examined theta oscillations at

fronto-central leads, alpha oscillations at parieto-occipital leads,

and P3 amplitude over the parieto-occipital cortex.

1.3 Visuospatial encoding

Considering that landmarks seen in the environment and

visualized onmaps include both visual features (e.g., color, shape,

Frontiers in Virtual Reality frontiersin.org03

Cheng et al. 10.3389/frvir.2022.981625

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.981625


texture, etc.,) and spatial features (e.g., geometries, distance,

density, etc.,) that are both essential for navigation support, it

is particularly important to assess navigators’ visuospatial

information processing during map-assisted navigation.

Psychophysiological studies have suggested that theta

oscillations in the occipital and parietal regions underlie visual

and spatial information encoding, respectively. Increased theta

oscillations in the occipital region have been frequently

implicated in visual processing and selective visual attention

(Gladwin and De Jong, 2005; McDermott et al., 2017; Wang

et al., 2018). Similarly, increased theta oscillations in the parietal

region have been found during computerized spatial tasks as well

as spatial navigation tasks in naturalistic virtual environments

(Plank et al., 2010; Delaux et al., 2021; Do et al., 2021). Research

on alpha oscillations in the occipital region during visuospatial

processing shows the opposite—alpha power has been found to

decrease with increased visual attention (Klimesch et al., 1998;

Nelli et al., 2017; Wang et al., 2018; Delaux et al., 2021).

ERP studies have found that early visual attention can

modulate P1 (80–120 ms) amplitude (Fu and Parasuraman,

2006) in posterior areas as measured at occipital and parietal

leads. The posterior P1 is related to early visual encoding of visual

stimuli presented to viewers, and its amplitude in the occipital

region has been shown to increase with greater visual attention

allocation to these visual stimuli (Luck et al., 1990; Hillyard and

Anllo-Vento, 1998; Awh et al., 2000; Handy et al., 2001; Fu and

Parasuraman, 2006). To further investigate whether and how the

number of landmarks on mobile maps affects visuospatial

encoding, we thus examined theta and alpha oscillations as

well as P1 amplitude at occipital sites.

1.4 Navigation in virtual reality

Recording EEG during navigation in the real world is

challenging, as EEG experiments usually require markers for

event-related analyses of the signal. There is also little control

over stimulus context and presentation (e.g., participants’

familiarity of the environment, mobile map consulting, etc.,)

and external environmental factors (e.g., traffic, weather, etc.,) in

real-world settings. We thus turned to virtual reality (VR), which

reproduces real-life environments and can be used with EEG. VR

displays three-dimensional (3D) dynamic images with high

quality (Sanchez-Vives and Slater, 2005). VR can also

integrate movement inputs by combining it with other

interfaces, such as joysticks, foot pedals, or treadmills, which

provides a more immersive experience and naturalistic sensory

feedback (Gramann, 2013) compared to desktop-based

experiments. With such unique characteristics, VR provides

high ecological validity and is commonly employed in

experiments that investigate navigation processes (Darken and

Peterson, 2002). Indeed, studies have shown that spatial learning

outcomes and cognitive load in virtual environments are fairly

similar to spatial learning and cognitive load in the real world

(Armougum et al., 2019; Clemenson et al., 2020; Pastel et al.,

2022).

Furthermore, VR technology enables more control over

experimental protocols. Researchers can create novel virtual

cities with similar styles and manipulate augmented objects in

the virtual environments while keeping other features in the

environment constant. This is not possible in the real world.

Therefore, in our current experiment, we employed VR

technology to create three virtual urban environments with

European-style architecture. We depicted three, five, and

seven landmarks on mobile maps during navigation for each

city. We also integrated VR technology with an EEG device to

measure navigators’ brain activity during navigation in virtual

environments.

1.5 The present study

We utilized a within-participant design with presentation of

three different numbers of landmarks (three, five, and seven) to

investigate how the number of landmarks displayed on a mobile

map affects navigators’ 1) spatial learning, 2) cognitive load, and

3) visuospatial encoding when they were asked to follow a given

route in an urban virtual environment. The current paper

investigated cognitive load and visuospatial encoding in

navigators and focused on electrocortical activity in the

fronto-central, parieto-occipital, and occipital regions while

they were viewing mobile maps. We tested the following

hypotheses:

Spatial learning (H1): As the behavioral outcome of the load

induction of landmark depiction, we expected navigators’ spatial

learning to be better when the number of landmarks depicted on

the map along a given route increases from three to five. Further,

we expected that depicting seven landmarks along the route

would generally exceed navigators’ cognitive capacities and thus

counter the benefit of showing landmarks on the mobile

map. Therefore, participants’ spatial learning performance is

not expected to further increase or may even decrease when

the number of landmarks increases from five to seven as a result

of increased cognitive load.

Cognitive load (H2): Following the findings of previous

studies (e.g., Gevins and Smith, 2003), we expected that when

participants view the mobile map, 1) theta ERS would increase at

fronto-central leads; 2) alpha ERD at parieto-occipital leads

would be more pronounced; and 3) P3 amplitude at parieto-

occipital leads would increase along with increasing numbers of

landmarks shown on the mobile map. This is because cognitive

load increases when navigators have to process more landmarks.

Visuospatial encoding (H3): We expected theta ERS in

posterior leads to increase, and P1 amplitude and alpha ERD

in occipital leads to be more pronounced during map viewing.

This is because navigators need to encode more visuospatial
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information in the brain with increasing numbers of landmarks

displayed on the mobile map.

2 Materials and methods

2.1 Apparatus and materials

We used a three-sided cave automatic virtual environment

(CAVE) to simulate stereoscopic vision with frame sequential

projection (1,280 pixel × 800 pixel resolution at 120 Hz

frequency). Participants navigated through three virtual urban

environments at 3.8 m/s using a foot-operated controller (3D

Rudder, Aix-en-Provence, France). Tilting the controller with their

feet towards the front and back resulted in forward and backward

translation, respectively. Tilting the controller towards the left and

right resulted in left and right rotation, respectively. Participants were

allowed to turn their heads when navigating along the route. There

are six cameras in the CAVE that track the head direction of

participants through the donned 3D glasses. The perspective view

in the virtual cities changes according to participants’ head direction.

The three city models used for navigation were developed using

ArcGIS City Engine 2018 (Esri, CA, United States). We employed

three European-style urban environments including low-rise

buildings with heights between 5 m and 25 m, streets, trees, and

open spaces (Figure 1). The sizes of the three cities are 426′562 m2,

510′910 m2, and 516′868 m2, respectively. The experimental tasks

were rendered using Unity 3D 2018.4 LTS (Unity Technologies; San

Francisco, CA, United States) and MiddleVR for Unity 1.0

(Truchtersheim, France).

2.2 Study design

Participants completed three within-participant landmark

conditions (three, five, and seven landmarks), which were

visualized on a digital map while they navigated along a given

route through three different virtual urban environments,

respectively. The three navigation routes each consisted of five

intersections with lengths between 800 m and 900 m. Each route

further contained seven salient buildings that served as

landmarks: the starting building (home), five landmarks at the

five intersections, and the destination building (goal). Displaying

visually salient buildings (e.g., of varying size, shapes, and colors,

Itti and Koch, 2001) on mobile maps can help navigators to

identify the buildings easily in the environment (Kapaj et al.,

2021). Including visually salient buildings as landmarks on

mobile maps can help reduce uncertainty and confusion,

should there be a conflict between transient landmarks and

turn directions displayed on the mobile maps (Gardony et al.,

2015; Tenbrink et al., 2020).

In the 3-landmark condition, the start building, destination,

and the salient building at the third intersection were displayed

on the map (Figure 2A). In the 5-landmark condition, the

landmarks at the first and fourth intersections were visualized

on the map in addition to the three landmarks in the 3-landmark

condition (Figure 2B). In the 7-landmark condition, the

landmarks at the second and fifth intersections were

visualized on the mobile map in addition to the five

landmarks in the 5-landmark condition (Figure 2C). The

selections of landmark positions for each landmark condition

were done to ensure that the distributions of landmarks along the

FIGURE 1
(A) Bird’s eye view of one of the virtual cities; (B) participants’ view of the environment during navigation; and (C) a participant wearing
stereoscopic goggles, seated on a chair approx. 30 cm away from the center of the VR system (CAVE). The participant placed her feet on a foot-
operated controller, which allowed her to navigate through the environment, and was connected to the EEG during the navigation experiment. The
virtual city displayed on the CAVE screenwas inmono-mode to present a first-person perspective of the virtual environments during navigation.
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route were equally spaced. The assignment of the three landmark

conditions to the three cities was counterbalanced. The order in

which participants underwent the landmark conditions was also

counterbalanced.

2.3 Mobile map assistance

Along each navigation route, participants were shown a

mobile map at specific points along the route: in the middle

of a straight segment of the followed route where the next

intersection was visible; shortly before the next intersection;

and shortly after the past intersection, resulting in 17 views of

the mobile map in total (Figure 3A). The mobile map was

displayed in the center of the VR screen for 5 s. It showed the

current intersection and the route direction oriented with

participants’ heading direction. It provided turn-by-turn

directions (i.e., a black line) and participants’ current location

(i.e., a blue dot), following the design of current navigation

system displays (Figure 3B). Depending on the landmark

condition, the respective 3D landmark at the intersections was

visualized on the mobile map (Figure 3B). The landmarks

visualized on the map are exactly like the landmarks seen in

the navigated environments, including their first-person viewing

perspectives along the route. To reflect a real-life scenario of

mobile map consultation (Brügger et al., 2019), the virtual urban

environment faded away when the map was displayed, and

participants’ navigation through the virtual environment was

disabled. The 17 map-onset events were used for event-related

EEG analyses (i.e., ERP and frequency band power analysis).

2.4 Procedure

The experiment was conducted in German or English based on

participants’ language preferences. After giving their informed

consent, participants were introduced to the procedure of the

experiment. Subsequently, they completed a questionnaire

assessing their self-reported spatial and navigation abilities using

the Santa Barbara Sense of Direction Scale (SBSOD; Hegarty et al.,

2002) and their spatial orientation skills using the Perspective

Taking/Spatial Orientation Test (PT/SOT; Hegarty and Waller,

2004) before they were connected to the EEG. Next, participants

were given the instructions for the navigation task. Participants then

practiced walking in a training virtual city with the 3D rudder and

using the electronic pointing device to answer the spatial learning

tests. After the training trial, once participants had no further

questions, the main experiment started.

The main experiment consisted of three blocks. Each

experimental block comprised a map-assisted navigation task

and spatial learning tests. During the navigation phase,

participants were asked to follow the route indicated on the

map as quickly as possible to a specific destination, and to learn

the landmarks along the route that were displayed on the map. In

all three landmark conditions, participants were also told that

some landmarks at the intersections that were not visualized on

the map would be tested after navigation. Participants finished

the navigation task when they arrived at the destination. We

instructed participants to learn the landmarks and the

environments intentionally, which simulates real-world

scenarios when navigators attempt to learn the environments

to make independent route decisions for future wayfinding.

After each navigation trial in each city, participants’ spatial

knowledge acquisition, which was subcategorized as landmark

knowledge, route knowledge, and survey knowledge (Siegel and

White, 1975), were assessed with a landmark recognition test, a

route memory test, and a judgment of relative direction (JRD)

test, respectively (Figure 4).

After the main experiment, participants completed the Corsi

block-tapping task (CBTT) on a computer to assess their

visuospatial capacity.

FIGURE 2
The three different landmark conditions in three different
virtual environments. The (A–C) depict the map condition with
three, five, and seven landmarks displayed on the mobile map,
respectively.
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2.5 Spatial learning tests and analyses

2.5.1 Landmark recognition test
Seven buildings that were seen along the route

(i.e., starting building, destination building, and five

buildings at the intersections) and that served as

landmarks on the map, and seven buildings from the same

traversed environment but not seen along the route were

presented to participants. Participants were asked whether

they had seen the building along the route and to answer with

“yes” or “no” using an electronic pointing device (Figure 5A).

Signal detection theory (SDT, Parks, 1966) was used to

analyze participants’ landmark recognition performance

(Huang et al., 2012; Wunderlich and Gramann, 2020,

2021). Buildings that served as landmarks along the route

were considered as “signal” while buildings not seen along

the route were considered as “noise.” D-prime (d’) indicates

participants’ recognition discriminability where a higher d’

score reflects better discriminability in landmark

recognition.

2.5.2 Route direction test
For buildings that participants answered “yes,” they were

additionally asked which direction they took in reference to these

buildings. Participants used the electronic pointing device to

choose between “left,” “right,” “straight,” and “destination”

(Figure 5B). “Destination” indicated that participants

recognized the last building along the route, which signaled

the end of the navigation task. This was explained to

participants during the training trial. The paradigm of the

landmark recognition and route direction tests were adapted

from tests used in previous navigation studies (Huang et al., 2012;

Wunderlich and Gramann, 2020, 2021). Performance on the

route direction test was calculated as the percentage of correctly

answered trials over the total number (seven) of landmarks.

2.5.3 Judgments of relative directions (JRDs)
The assessment of JRDs is a well-established method to assess

acquired (metric) survey knowledge of navigators (Huffman and

Ekstrom, 2018). Participants were asked to imagine standing at a

first landmark while facing a second landmark and to point to a

FIGURE 3
(A) Red dots along the black navigation route indicate the 17 map pop-up spots during navigation; (B) a mobile map that rotates along with the
participant’s head direction, as seen by the participant at the location of the green dot in panel (A). The blue dot in panel (B) indicates the participant’s
current location in the virtual city. The black line indicates the path the participant needs to follow. A 3D landmark building or an imprint of the
building is shown on the map at a turning intersection, depending on the landmark condition.

FIGURE 4
Spatial learning tests: Panels (A), (B), and (C) illustrate how a participant responded in the landmark recognition test, the route direction test, and
the JRD test respectively. All tests were carried out in the CAVE using a 3D pointing device.
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third landmark. For each JRD, participants pointed the electronic

pointing device to the estimated direction of the third landmark

and confirmed their decision by pressing a button. Each JRD

consisted of three of the seven landmarks seen on the route

(Figure 5C). Fourteen JRDs were pseudo-randomly selected out

of the 35 possible trials. The seven landmarks appeared six times

out of the 14 JRD trials. Pointing accuracy was defined as the

absolute angular difference between estimated direction and the

actual direction of a target landmark relative to a reference

landmark (i.e., JRD error).

2.6 Power analysis

We conducted a power analysis for a mixed-effect model

prior to the experiment. We estimated a small-to-medium

effect size (d = 0.3–0.5) for the three within-subjects

conditions with 14 JRD trials in each condition. The power

analysis suggested testing 50 participants to obtain a statistical

power of 73% for a small effect and 89% for a medium effect,

respectively.

2.7 Participants

We recruited 49 participants (29 females) between the ages of

18 and 35 years (M = 25.6 years, SD = 4.09) for this study. One

participant was excluded from analysis due to a self-reported

mental ailment during the experiment and requested to have

their data excluded. All participants were reimbursed 30 CHF for

their participation. We conducted this study in compliance with

the ethical standards of the University of Zurich Ethics Board, the

Swiss Psychological Society, and the American Psychological

Association.

2.8 Electroencephalography (EEG)

2.8.1 Data collection
Participants’ brain activity was continuously recorded using a

64-channel EEG device with active electrodes (LiveAmp, Brain

Products GmbH, Gilching, Germany). The impedance of the

channels was set below 10 kOhm. Electrodes were placed

according to the extended 10% system (Oostenveld and

FIGURE 5
Landmark and route learning improved when more than three landmarks were shown. No improvement was observed in JRD performance
whenmore landmarks were shown. The means of d’, choice accuracy, and absolute response error in each landmark condition are presented in the
three plots with the error bars representing the 95% CI of the mean.
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Oostendorp, 2002). All electrodes were referenced to FCz with a

ground electrode at Fpz. The EEG was recorded at a 500 Hz

sampling rate. The raw EEG signal was streamed wirelessly via a

BlueTooth adapter (UBT21) and was recorded continuously for

the navigation task and the CBTT task. The EEG signal and all

trigger events were synchronized using Windows Operating

System’s interprocess communication (I.P.C.).

2.8.2 Data processing
The BeMoBIL pipeline (Klug et al., 2022) was used to

preprocess and clean the EEG data in the MATLAB

(Mathworks, Inc.) toolbox EEGLAB (Delorme and Makeig,

2004). We first downsampled the raw EEG data to 250 Hz,

and then removed spectral peaks at 50 Hz, corresponding to

power line frequency, using the ZapLine Plus function (Klug and

Kloosterman, 2022). Then, we applied the automated rejection

function clean_artifacts from EEGLAB to identify noisy channels

with ten iterations. We removed channels that were detected as

bad channels more than four times and interpolated them by

spherical interpolation of neighboring channels and applied re-

referencing to the common average. On the cleaned dataset, we

performed an independent component analysis (ICA) using an

adaptive mixture independent component analysis (AMICA)

algorithm (Palmer et al., 2011). Subsequently, for each

resultant independent component (IC), we computed an

equivalent current dipole model using DIPFIT routines from

EEGLAB (Oostenveld and Oostendorp, 2002). We used the

ICLabel algorithm (Pion-Tonachini et al., 2019) with the

default classifier to classify the resultant ICs as eye, brain, or

other components and removed ICs that reflected eye

movements with a probability of 70% or higher. Next, we

applied a 1–30 Hz bandpass filter to remove higher-frequency

signals that are not relevant to our analysis. After these

preprocessing steps, we excluded the EEG data from one

participant because of severe artifacts.

We corrected the event latencies in wireless synchronization

according to the projector (33 ms) and EEG trigger (100 ms)

latencies, and then extracted 17 map-onset epochs from the

continuous data with a time window of 0–5 s with respect to

map onset and with a pre-event baseline of −1 to 0 s. We then

performed an automatic epoch artifact detection and rejection

using the function pop_autorej in EEGLAB: Epochs that

fluctuated more than ±80 μV were excluded (Duncan et al.,

2009). We used a probability threshold of three in standard

deviation for the detection of improbable data. A maximum of

10% of total trials were rejected per iteration (five iterations in

total). On average, we excluded 4.19% of all trials (0.7 out of

17 epochs) based on these criteria.

To examine the general effect of the number of landmarks on

cognitive load while participants were consulting mobile maps

during navigation, we averaged the map-onset events along each

navigation route.

We selected the following regions of interest (ROIs): fronto-

central (FC1, FCz, FC2), parieto-occipital (PO1, POz, PO2), and

occipital (O1, Oz, O2) regions for the analyses in the time-

frequency domain and ERPs. The ROIs and electrode clusters

were chosen based on previous literature reporting maximal

effects of cognitive load for theta-frequency band power in the

fronto-central region and for alpha band power in the parietal-

occipital region (Dong et al., 2015; Scharinger et al., 2017; Wei

and Zhou, 2020), as well as visuospatial processing in the

occipital and parieto-occipital regions (Handy et al., 2001;

Wei and Zhou, 2020).

2.8.3 ERS/ERD analysis
We calculated frequency band power using the function

spectopo from EEGLAB, which uses Matlab’s pwelch function

to calculate power spectral density (PSD). For PSD estimation,

we used a 2-s Hanning window that led to a frequency resolution

of 0.5 Hz to capture spectral changes in the EEG data.We set four

frequency bands with the following frequency ranges: delta

(1–3.9 Hz), theta (4–7.9 Hz), alpha (8–12.9 Hz), and beta

(13–29.9 Hz), and computed the absolute spectra of the four

frequency bands within the 0–5 s epoch with stimulus onset. To

reduce inter-individual deviation, we computed relative power

indices for each band (i.e., delta, theta, alpha, and beta) as power

in a given frequency band relative to the entire bandwidth

(i.e., 1–30 Hz) (Wang et al., 2015; Nishiyori et al., 2021) using

the following formula:

Relative theta power = [absolute theta power/absolute power

of (theta + alpha + beta + delta)]* 100

To obtain baseline power, we calculated relative power

indices during the time before the navigation experiment

started when participants were sitting on a chair and viewing

a dark blue screen. We extracted baseline epochs with a length of

1 s from this pre-experiment phase. Baseline epochs had 200 ms

overlap with subsequent epochs.

We then calculated ERD (negative values) and ERS (positive

values) with respect to the pre-experiment baseline (Pfurtscheller

and Lopes da Silva, 1999; Krause et al., 2000; Dong et al., 2015)

for theta and alpha bands using the following formula:

ERD or ERS = (relative power during map-event - relative

power during baseline)/relative power during baseline.

2.8.4 ERP analysis
We corrected single-trial EEG data epochs with a pre-

stimulus baseline from −200 to 0 ms. Based on visual

inspections of ERP plots, we selected the following time

windows: P1 (80–150 ms) at occipital sites and P3

(450–700 ms) at the parietal-occipital region for individual

peak detection. Peak amplitude was calculated by taking the

mean of the maximum peak value in the respective search

windows and the neighboring +1 and −1 sample points (in

total three data samples) (Wunderlich and Gramann, 2020).
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2.9 Statistical analysis: Multilevel linear
regression

To assess the effect of the number of landmarks on cognitive

load and visual processing, we entered the theta ERS, alpha ERD,

and peak amplitudes of P1 and P3 in R and ran for each

parameter a linear regression model, with the α level set at

α = 0.05 for all analyses. Multilevel/hierarchical modeling is a

generalized form of regression analysis that enables hypothesis

testing for nested study designs such as multiple trials within

participants (Gelman, 2006) and for missing values in predictors

(Fitzmaurice and Molenberghs, 2008).

We developed the multilevel models using the lmer4 package

in R version 4.0 (Bates et al., 2011). To identify the maximal

appropriate random effects structure that would converge, we

included by-participant and by-item intercepts and slopes in the

random structure based on a within-participants design.

Subsequently, we simplified the maximal random effects

model until it converged. Our multilevel model can be

described with the following equation:

Theta ERSij � β00 + β01pConditionj + μ0j + γij

The mixed-effect regression follows a hypothesis-driven

confirmatory approach and models the effect of the number

of landmarks on cognitive load measured by EEG and on spatial

learning. We dummy-coded categorical variables

(i.e., condition: number of landmarks) to 0 and 1 for each

contrast. We then fitted separate models for each EEG feature

(i.e., theta ERS, alpha ERD, and ERP component amplitudes)

and spatial learning outcomes (i.e., landmark recognition, route

direction, and JRDs).

3 Results

Participants spent on average 8.11 min (SD = 1.63 min) to

navigate from the starting position to the destination in the three

cities. There is no significant difference in navigation time

between the three landmark conditions (ps > 0.507). In the

following sections, we describe the results of spatial learning

and EEG measures in detail.

3.1 Spatial learning performance

Overall, the 48 participants produced 144 d’s, 144 route

direction choices, and 1981 JRD responses. Due to technical

reasons in Unity, 35 JRD responses were lost. The mean d’s was

1.83 (SD = 0.76), the mean percentage of correct route direction

choice was 62% (SD = 0.26), and the mean of the absolute JRD

response error was 72.64° (SD = 48.06°). For a complete overview

of the results of the multilevel models, see Supplementary Table

S1 in the supplementary materials.

The multilevel regression models reveal significant effects of

the number of landmarks on landmark recognition and route

learning. For the landmark recognition task, recognition

discriminability d’ increases by 0.51 when the number of

landmarks increases from three to five (β = 0.51, 95% CI

[0.30, 0.72], p < 0.001). There is no further increase in

landmark recognition discriminability from five landmarks to

seven landmarks [β = −0.11, 95% CI (−0.32, 0.10), p = 0.31].

D-prime increases by 0.4 when the number of landmarks

increases from three to seven [β = 0.40, 95% CI (0.19, 0.61),

p < 0.001].

For the route direction choice task, we find a similar pattern

for the number of landmarks. Route direction memory

significantly increases by 12% on average from three

landmarks to five landmarks [β = 0.12, 95% CI (0.57, 0.67),

p < 0.001], and does not improve further from five landmarks to

seven landmarks [β = −0.02, 95% CI (−0.09, 0.06), p = 0.71].

Route direction memory also significantly improves by 10% on

average from three landmarks to seven landmarks [β = 0.10, 95%

CI (0.02, 0.18), p = 0.01].

For the JRD performance, the linear mixed effect model

revealed no significant main effect of the number of landmarks

(ps > 0.68). Figure 5 displays the relationship between the

number of landmarks and spatial learning (i.e., landmark

recognition, route direction knowledge, and JRDs).

3.2 Event-related synchronization (ERS)/
event-related desynchronization (ERD)

3.2.1 Cognitive load
The multilevel linear regression models reveal that theta ERS

in the fronto-central region is significantly greater in the 7-

landmark condition compared to theta ERS in the 3- and 5-

landmark conditions [7 vs. 3: β = 0.07, 95% CI (0.01, 0.14), p =

0.026; 7 vs. 5: β = 0.10, 95% CI (0.04, 0.16), p = 0.002]. We do not

observe significant differences in theta ERS in the fronto-central

region between the 3-landmark and 5-landmark conditions [5 vs.

3: β = −0.03, 95% CI (−0.09, 0.04), p = 0.391].

We do not find statistically significant differences in alpha

ERD in the parieto-occipital region between the three different

landmark conditions [5 vs. 3: β = −0.03, 95% CI (-0.09, 0.02), p =

0.220; 7 vs. 3: β = −0.04, 95% CI (−0.10, 0.01), p = 0.120; 7 vs. 5:

β = -0.01, 95% CI (−0.06, 0.05), p = 0.738].

3.2.2 Visuospatial encoding
Supporting our hypothesis, theta ERS in the parieto-occipital

leads increases significantly with increasing numbers of

landmarks [5 vs. 3: β = 0.06, 95% CI (0.01, 0.11), p = 0.027;

7 vs. 3: β = 0.15, 95% CI (0.10–0.20), p < 0.001; 7 vs. 5: β = 0.09,

95% CI (0.04, 0.14), p = 0.001]. The same pattern of theta ERS is

observed in the occipital region [5 vs. 3: β = 0.06, 95% CI (0.01,
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0.11), p = 0.027; 7 vs. 3: β = 0.15, 95% CI (0.10, 0.20), p < 0.001;

7 vs. 5: β = 0.08, 95% CI (0.02, 0.14), p = 0.008].

Alpha ERD in the occipital region is smallest in the 3-

landmark condition and significantly smaller compared to the

5- and 7-landmark condition [5 vs. 3: β = -0.09, 95% CI

(−0.16, −0.03), p = 0.006; 7 vs. 3: β = -0.07, 95% CI

(−0.14, −0.01), p = 0.031], which is again in line with our

hypothesis. No significant difference is observed between the

5-landmark and 7-landmark condition [7 vs. 5: β = 0.02, 95% CI

(−0.05, 0.09), p = 0.541].

Figure 6 below depicts the averaged theta ERS and alpha ERD

across the three landmark conditions. Supplementary Table S2 in

the supplementary materials presents a complete overview of the

results of the multilevel models for ERD/ERS.

3.3 Event-related potentials (ERPs)

3.3.1 Cognitive load
The linear mixed-effect models reveal that P3 amplitude in

the parieto-occipital region in the 7-landmark condition is

significantly greater than in the 3- and 5-landmark conditions,

which is in accordance with our hypothesis. P3 amplitude

increases by 143% on average from the 3-landmark to 7-

landmark condition [7 vs. 3: β = 1.43, 95% CI (0.47, 2.39),

p = 0.004] and by 139% on average from the 5-landmark to 7-

landmark condition [7 vs. 5: β = 1.39, 95% CI (0.44, 2.35), p =

0.004]. We do not find a significant difference between the 3- and

5-landmark conditions [5 vs. 3: β = 0.04, 95% CI (−0.92, 1.00), p =

0.936].

3.3.2 Early visual encoding
We do not find any significant difference between the three

conditions in P1 amplitude in the occipital region and in the

parietal-occipital region (ps > 0.139).

Figure 7 plots the group-mean amplitude of the ERPs and the

detected peak amplitude for each landmark condition.

Supplementary Table S3 in the supplementary materials

presents a complete overview of the results of the multilevel

models of the ERPs.

4 Discussion

In the current paper, we set up to examine cognitive load and

visuospatial encoding measured with EEG in a naturalistic, map-

assisted urban navigation experiment, carried out in virtual

reality. We were driven by the research question of whether

and how varying the number of landmarks displayed along a

route on amobile map during navigation would affect navigators’

FIGURE 6
Mean ERD/ERS values of the map-event window (i.e., 0–5 s) for mean frontal-central theta ERS and mean parieto-occipital alpha ERD
indicating cognitive load changes (top panel), and mean parieto-occipital theta ERS, occipital theta ERS and occipital alpha ERD indicating
visuospatial encoding (bottom panel). Error bars indicate ±1.96 standard error (i.e., 95% CI) of the mean. Means in the 3-landmark condition are
depicted in black, serving as a baseline in each violin plot. Significant differences between means at p < 0.05 are shown with different colors
within the same violin plot. Means presented in the same color within the same violin plot indicate no significant difference between the means at
p ≥ 0.05.
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spatial learning, cognitive load, and visuospatial encoding. We

found that navigators’ landmark and route learning improve

without neurophysiological indications of increased cognitive

load; that is, we do not find a significant increase in frontal theta

ERS or parieto-occipital P3 amplitude when the number of

landmarks increases from the lowest number (three) to a

medium (five) number of landmarks, which does not

support our hypothesis of cognitive load. However, cognitive

load increases significantly when the maximum assessed

number of landmarks (seven) is shown on the mobile map

as indicated by increased theta ERS and increased P3-

amplitudes of the event-related potential, which is in line

with our cognitive load hypothesis. This might explain why

we do not find further benefits in navigators’ spatial learning:

Navigators experienced cognitive overload in the 7-landmark

condition and could not improve their spatial learning beyond a

medium level of cognitive load. The results partly support our

initially stated hypotheses informed by prior research (based

mostly on stationary studies using artificial stimuli) on

cognitive capacity and learning, cognitive load, and

visuospatial encoding in the context of navigation and

wayfinding. In the following sections, we discuss our main

results in more detail.

4.1 Spatial learning

Our current finding that spatial learning performance

appears to plateau at five (medium number) landmarks shown

on a mobile map in a map-assisted navigation task suggests that

for most participants, their cognitive capacity was saturated at

five landmarks, which is in line with our hypothesis of spatial

learning. This finding is consistent with prior research on

cognitive capacity suggesting that learning performance

reaches a plateau after the learnt items exceed capacity (Luck

and Vogel, 1997; Baddeley, 2003). In our current navigation

study, following a given route through an environment is

associated with intrinsic cognitive load as the navigation task

(i.e., controlling the foot pedal to steer body movement) had to

coordinate with the changing visual information provided by the

environment and the landmark learning task, thus rendering the

navigation task a dual- or multiple-task setting. Increasing the

FIGURE 7
(A,B)Grand averaged amplitudes of ERPs for each landmark condition at (A) parieto-occipital leads (PO3, POz, PO4), and (B) occipital leads (O1,
Oz, O2). The ERP signals served as the basis for individual peak detection—areas shaded in gray indicate the time window where (A) the P3
(450–700 ms), and (B) P1 (80–150 ms) were extracted for each participant. (C,D) Violin plots display the distribution of detected peak amplitudes
together with mean and ±1.96 standard error (i.e., 95% CI) in each landmark condition for (C) parieto-occipital P3, and (B) occipital P1. The line
plot in the top panel and means in the bottom panel highlighted in purple indicate significant differences at p < 0.05.
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number of depicted landmarks from three to five benefits spatial

learning and possibly induces germane cognitive load due to the

relevance of landmarks to the spatial learning task at hand.

Depicting landmarks on mobile maps at intersections may

make navigators more aware of and let them pay more

attention to landmarks at navigation decision points and

landmark-based actions, which in turn leads to better spatial

memory of the traversed environment (Gardony et al., 2013).

However, increasing the depicted landmarks from five to seven

does not further improve spatial learning, possibly due to

overload in germane cognitive load.

The effects of the number of shown landmarks can be

generalized to landmark and route knowledge but cannot be

applied to survey knowledge. In our current study, participants’

JRDs demonstrate high pointing errors. JRD performance in the

current study is poorer than the performance reported in most

prior related studies e.g., (Zhang et al., 2014; Credé et al., 2020).

One possible explanation for this is that navigating in a novel

environment only once is not sufficient for most navigators to

obtain reliable configurational layout knowledge (Frankenstein

et al., 2012; Huffman and Ekstrom, 2018). Previous studies have

found that JRDs improve significantly with increasing exposure

to the environment (Zhang et al., 2014; Huffman and Ekstrom,

2018). Another possibility for the poor JRD performance is the

lack of body-based cues during navigation in our current

experiment, such as motor, vestibular, and proprioceptive cues

(Gramann, 2013). All of these body-based cues have been known

to facilitate survey knowledge acquisition (Chrastil and Warren,

2013).

4.2 Cognitive load–theta ERS and
P3 amplitude

Previous cognitive load research found a relationship

between increasing task demands and increasing frontal

midline theta ERS (Krause et al., 2000; Maurer et al., 2015;

Scharinger et al., 2017). Similarly, we found that fronto-

central midline theta increases with the number of landmarks

visualized on amobile map during navigation in visually complex

urban VR environments.

Our finding that parieto-occipital P3 amplitude increases

with increasing numbers of landmark depictions is also

consistent with previous literature. It was shown that parieto-

occipital P3 amplitude increases along with increasing demands

on cognitive capacity (Kok, 2001; Polich, 2007; Scharinger et al.,

2017; Wei and Zhou, 2020). Importantly, our findings on frontal

theta power converge with those of parieto-occipital

P3 amplitude. They are aligned with prior research

demonstrating that more pronounced theta power occurs

along with more pronounced P3 amplitude during cognitive

tasks (Spencer and Polich, 1999; Scharinger et al., 2017; Wei and

Zhou, 2020). By demonstrating a similar effect on parieto-

occipital P3 amplitude and fronto-central theta ERS in the

context of navigation and wayfinding, our research extends

the existing literature on cognitive load and cognitive capacity,

which were conducted mostly in highly controlled laboratory

settings using simple stimuli. However, we did not observe

differences in alpha ERD between the three landmark

conditions. This could be attributed to conflicting

relationships found between alpha ERD and cognitive load in

recent years (Palva and Palva, 2007; Jensen and Mazaheri, 2010).

It has been proposed recently that alpha ERS and alpha ERD

might support two different cognitive mechanisms—attention

orientation and attention maintenance, respectively (Capilla

et al., 2014; Puma et al., 2018). As our current experimental

design does not distinguish between these two mechanisms, they

might have occurred at the same time in our extracted alpha

power oscillations during map viewing and the two processes

might have canceled each other out.

Notably, theta ERS is determined not only by the amount of

displayed information that needs processing but also by the

cognitive effort being spent to complete a cognitive task

(Onton et al., 2005). Similarly, P3 amplitude is related to not

only intrinsic task demands, but also to the internal expenditure

of cognitive resources on the task at hand (Näätänen, 1992; Kok,

2001). Our results in the context of navigation and wayfinding

show no increase in cognitive load when the number of

landmarks increases from three to five, suggesting that the

medium amount of chosen landmarks (five) does not tax

additional cognitive resources, compared to showing the

lowest evaluated amount of landmarks (three). This pattern

differs when the highest number of landmarks (seven) was

shown. We found increased cognitive load and thus that more

cognitive resources were indeed consumed, compared to the

other two landmark conditions.

Taking the findings of spatial learning outcomes and

cognitive load together, it appears that showing five

landmarks on a mobile map improves spatial learning

performance compared to just showing three without

significantly taxing additional cognitive resources. Presenting

seven landmarks, and thus more information on a mobile

map to navigators, however, does not further improve spatial

learning, probably due to cognitive overload. Our research thus

identified a potential boundary condition to the proposed benefit

of visualizing landmarks in mobile maps on spatial

learning—visualizing landmarks on maps benefits users’

spatial learning only when the number of visualized

landmarks shown does not exceed users’ cognitive capacity

during navigation. As such, this paper contributes to the

ongoing debate in the field of map-assisted navigation by

showing, on the one hand, that landmarks have an important

role because they do facilitate spatial learning (Liao et al., 2017).

On the other hand, we show that depicting increasing numbers of

landmarks on mobile maps does not necessarily lead to

corresponding increases in spatial learning, and that the role

Frontiers in Virtual Reality frontiersin.org13

Cheng et al. 10.3389/frvir.2022.981625

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://doi.org/10.3389/frvir.2022.981625


of landmarks in navigation and spatial learning should not be

overly exaggerated (Montello, 2017). Future work can further

examine other potential boundary conditions to the landmark

effect on spatial cognition during navigation. To further ensure

that our findings on EEG/ERP modulations reflect cognitive load

in navigation contexts, future studies should also combine other

instruments for measuring cognitive load, such as self-reports on

cognitive load using the NASA-TLX questionnaire (Hart and

Staveland, 1988) and pupil diameter assessments with mobile eye

trackers (Krejtz et al., 2018).

4.3 Visuospatial encoding–theta ERS and
alpha ERD

Our finding of increased theta ERS at parieto-occipital leads

with increasing numbers of depicted landmarks, which is in line

with our hypothesis of visuospatial encoding, replicates the

results of previous literature on posterior theta oscillations

during spatial navigation in urban virtual environments

(Fischer et al., 2020; Do et al., 2021). Our results on theta

ERS and alpha ERD at occipital leads are also congruent with

the literature on visual stimuli encoding and visual attention

(Wang et al., 2018; Delaux et al., 2021). These findings together

suggest that when a greater number of landmarks is available for

visuospatial encoding on a mobile map during navigation, brain

activity related to visuospatial encoding increases similarly.

However, an increase of available visuospatial information on

mobile maps does not necessarily lead to an increase in cognitive

load. This, therefore, extends the cartographic literature

interested in the relationship of how visual information on

maps is presented to map viewers and how this affects visual

processing demand (Garlandini and Fabrikant, 2009), cognitive

load (Bunch and Lloyd, 2006), decision making (Korporaal et al.,

2020), and spatial behavior (Brügger et al., 2019). Specifically, our

findings provide further insights to the field of cognitive

cartography regarding the way in which landmark depiction is

visually processed by map users during map-assisted navigation,

and how this visual information can assist navigation and spatial

learning. Our findings on visuospatial processing of map

information and cognitive load also contribute to the

literature on mobile maps by emphasizing that different

cognitive processes occur during map-assisted navigation

(Montello, 2002; Lobben, 2004) and spatial learning (Allen,

2003). These two different cognitive processes should be

considered separately when designing cognitively supportive

mobile maps.

4.4 Limitations and future work

The current work provides the first evidence for the impact of

the number of landmarks visualized in a mobile map on cognitive

load and visuospatial encoding during navigation and

wayfinding in virtual urban environments. The use of three

vs. five vs. seven landmarks based on classic studies on

cognitive load theory e.g., (Baddeley, 2003), turns out to be a

very useful stepping stone for further research on the role of

landmarks in map-assisted wayfinding. The current findings

need to be considered together with our specific navigation

settings, including the route following task, the map style, the

route length, the number of traversed intersections, and the

chosen types of 3D landmarks (i.e., point features). Future

studies following our paradigm could examine the relationship

between spatial learning and cognitive load without depicting

landmarks on a mobile map, which would resemble the state-of-

the-art of available navigation systems, or presenting beyond

seven landmarks. Another series of studies could, for example,

examine how the length of a route to be followed affects cognitive

load and spatial learning.

Based on our chosen experimental set up, we could assess

only 17 map onset events for each participant and per condition,

even though we used a within-participant design to control for

inter-subject variability in brain activity and to increase statistical

power. Classic prior research with desktop setups have typically

used a large number of repetitions of a given event (such as

stimulus presentation) to measure cognitive processing.

However, using such a method to increase the numbers of

events for analysis can be challenging in naturalistic settings

(Wascher et al., 2014). In the case of our pedestrian wayfinding

paradigm, showing a mobile map repeatedly could directly

interfere with navigators’ wayfinding performance (i.e., trying

to avoid obstacles, etc.,). To alleviate this problem, future studies

could try using eye blinks as events as they are self-generated by

navigators (Wascher et al., 2014; Wunderlich and Gramann,

2020) and therefore do not interrupt the navigation task. Another

option would be to employ a VR-system coupled with an eye-

tracking system that could be leveraged to generate large

numbers of eye fixation events for a fine-grained cognitive

load analysis while maintaining high ecological validity.

5 Conclusion and implications

Our current empirical research on the effect of landmark

visualization on cognitive load and visuospatial encoding further

exemplifies the important role of landmarks in map-assisted

navigation and wayfinding. Specifically, varying the number of

landmarks depicted on mobile maps used in a naturalistic VR

navigation setting was found to affect spatial learning as well as

cognitive load and visuospatial information encoding measured

by EEG. Moreover, our findings also suggest a potential

boundary effect to the proposed benefit of depicting

landmarks on mobile maps during navigation on spatial

learning. To support effective (i.e., accurate) spatial learning, a

mobile map with a medium number of landmarks (i.e., five
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landmarks) seems to be optimal for spatial learning without

overtaxing cognitive resources. Alternatively, showing a low

number of landmarks (i.e., three landmarks) compared to five

landmarks leads to worse spatial learning. Showing a high

number of landmarks (i.e., seven landmarks) compared to five

landmarks does not further benefit spatial learning while taxing

more cognitive resources. By examining the effect of increasing

the number of landmarks depicted on mobile maps on cognitive

load and visuospatial encoding in a naturalistic navigation task,

the present research synthesizes the fields of navigation research,

mobile map design, neuroergonomics, and spatial cognition with

implications for the development of brain-machine interfaces

used for navigation. Our findings also provide a starting point for

the design of tailored navigation assistance systems that respond

to users’ cognitive load to optimize spatial learning while still

maintaining navigation efficiency.
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