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In this paper, we introduce a novel gaze mapping approach for free viewing conditions in
dynamic immersive virtual environments (VEs), which projects recorded eye fixation data of
users, who viewed the VE from different perspectives, to the current view. This generates
eye fixation maps, which can serve as ground truth for training machine learning (ML)
models to predict saliency and the user’s gaze in immersive virtual reality (VR)
environments. We use a flexible image retrieval approach based on SIFT features,
which can also map the gaze under strong viewpoint changes and dynamic changes.
A vocabulary tree enables to scale to the large amounts of data with typically several
hundred thousand frames and a homography transform re-projects the fixations to the
current view. To evaluate our approach, we measure the predictive quality of our eye
fixation maps to model the gaze of the current user and compare our maps to computer-
generated saliency maps on the DGaze and the Saliency in VR datasets. The results show
that our method often outperform these saliency predictors. However, in contrast to these
methods, our approach collects real fixations from human observers, and can thus serve
to estimate ground truth fixation maps in dynamic VR environments, which can be used to
train and evaluate gaze predictors.

Keywords: gaze mapping, fixation mapping, free viewing environment, eye fixation maps, saliency, gaze re-
projection, ground truth fixation estimation

1 INTRODUCTION

Rendering realistic virtual environments (VEs) in immersive virtual reality (VR) requires an
enormous amount of computational power (Kanter, 2015). This is due to several VR-specific
requirements, in particular, the demand for stereoscopic rendering with a high number of frames per
second, and low end-to-end latency. Furthermore, recent standalone head-mounted displays (HMD)
feature only limited CPU/GPU performance, which requires additional optimization (Hosny et al.,
2020). However, providing high-fidelity VEs might not be necessary, as the human visual system can
be divided into a foveal region, covering only a small visual angle of the field of view with sharp
vision, and a surrounding region lacking sharpness (Holmqvist et al., 2011). This trait of human
physiology can be exploited through foveated rendering (Patney et al., 2016). Here, frames are
generated depending on the current gaze position of a user, which requires to capture the current
fixation position on the display through an eye-tracker. Then, only pixels projected inside the foveal
region are rendered with the highest resolution and quality, whereas the remaining pixels outside this
region are rendered with reduced resolution and quality. However, this solution requires a
sufficiently fast eye-tracker, which provides fixation locations with low latency to the graphics
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processor. Otherwise, Albert et al. (2017) noted that depending
on the latency, users might notice artifacts of the applied foveated
rendering technique. Furthermore, a recent study by Stein et al.
(2021) showed that some customer and professional HMDs still
do not achieve latencies low enough to match the latency
thresholds found by Albert et al. (2017). To further reduce the
latency required to detect the gaze, gaze forecasting or gaze
prediction (Nakashima et al., 2015; Huang et al., 2018; Hu
et al., 2020; Hu et al., 2021) by calculating future gaze
positions given the past gaze and the visual stimulus.

Developing a gaze predictor based on machine learning (ML)
requires ground-truth eye fixations that allow to evaluate and
optionally train such a system. Typically, eye fixation maps are
acquired through capturing the gaze of multiple users viewing an
image or video, and collecting the fixations (Mathe and
Sminchisescu, 2012; Jiang et al., 2015; Bylinskii et al., 2020). In
VR, an omnidirectional scene can be used (Sitzmann et al., 2018).
This usually requires the users to maintain a predetermined
viewpoint, often through fixation of the head (Holmqvist
et al., 2011) or a fixed viewing position in VR (Sitzmann et al.,
2018). However, in VR environments with free egocentric viewing
conditions, generating such fixationmaps is challenging, as users are
allowed to look everywhere, even at places which other users might
not have seen before. Hence, it is unlikely that two users will see the
same visual stimulus, since this would only be possible if both
participants observe the scene from the exact same viewpoint at any
given time. Furthermore, in dynamic scenes, which can be changed,
for example, by the users’ actions, all users would need to go through
the same alterations to capture the same viewpoint. This might not
always be possible, as the state of the environment could be altered
through a random process as well. Another challenge when
capturing egocentric gaze in 3D arises due to different behavior
when observing a 2D compared to egocentric 3D visual stimuli. In
particular, egocentric gaze in 3D is more center biased when
observing a 3D scene (Celikcan et al., 2020). Similar results are
found by Foulsham et al. (2011) whenwalking in real environments,
in which gaze is also more centered in egocentric vision.

A solution to project eye fixations from other users to the
current view is gaze mapping (MacInnes et al., 2018a; MacInnes
et al., 2018b; Kraus et al., 2019; De Tommaso and Wykowska,
2019). Here, the captured gaze of a video of one user gets mapped
onto a target image using a projection technique, such as a
homography or perspective projection. To generate such a
mapping, these methods usually apply standard feature
matching techniques such as SIFT descriptor matching (Lowe,
2004) to align image regions from different viewpoints.While this
approach is suitable to match to a single frames, it does not scale
to our setting: we need to project all fixations from all other users
to the current scene. Matching hundreds or even thousands of
keypoints per frame of a typical VR datasets [e.g., DGaze (Hu
et al., 2020)], which contains more than one million frames,
would require over a 1000 billion matches.

Therefore, we propose an approach to extend gaze mapping to
large VR environments based on image retrieval techniques. The
purpose of our algorithm is to find frames, which correspond to
the current view of the user, andmap the eye fixations of the other
users to the current view, schematically shown in Figure 1. As in
other gaze mapping approaches, we compute SIFT feature
descriptors to represent the image regions. However, since we
need to compute descriptors for videos of all users in a dataset, we
need a suitable data structure to represent the descriptors and to
quickly find similar ones. For this, we build a vocabulary tree, as
used in image retrieval approaches (Nister and Stewenius, 2006),
which stores the descriptors in a tree structure. The tree is built by
hierarchical k-means clustering, which quantizes the features into
visual words, similar to a bag of words approach. The tree
structure enables an efficient search for similar SIFT
descriptors and thus to quickly find image regions, which
show the same scene as the current frame from different
viewpoints. Once a match is found, the corresponding eye
fixations are projected to the current frame using a projective
transformation. Finally, we generate an eye fixation map from all
projected fixations, which can serve as ground truth for training
and evaluating gaze predictors. The generated ground truth data

FIGURE 1 | Visualization of our gaze mapping: For aQuery Frame, similar frames are retrieved from the database (Retrieved Frames), and captured gaze points (red
dots) from other users are projected to the current frame (blue lines).
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that is the output of our approach along with the videos can then
be utilized for the training of such ML gaze and saliency
predictors. Figure 2 shows some of the fixation maps
generated with our algorithm.

To summarize, our work proposes the following
contributions:

• We provide a novel gaze mapping method for the
generation of eye-fixation maps from free viewing video
data containing correspondingly captured gaze points.

• We propose a framework that can be used in conjunction
with the proposed algorithm to process image/video data
containing several hundred thousand frames.

• We evaluate the predictive quality of our approach to model
the gaze of the current user and compare it to computer-
generated saliency maps like Boolean Map Saliency (Zhang
and Sclaroff, 2013), Minimum Barrier Salient Object
Detection (Zhang et al., 2015), VOCUS2 (Frintrop et al.,
2015) and Salient Attentive Model (Cornia et al., 2018).

The remainder of this article is structured as follows. We will
first introduce related work in Section 2, and provide background
information about psychological and computer vision concepts.
Afterwards, we will explain our method in Section 3 along with a
short summary on assumptions made about data. Section 4 will
then show the results of our proposed algorithm on the selected
datasets. At last, we will conclude our work in Section 5.

2 RELATED WORK

2.1 Gaze Mapping
Gaze mapping describes the process of mapping someone’s gaze
from an input video frame or image onto a target image. This
method partially solves the view dependency when observing a
scene from different viewpoints through a mobile eye-tracker by
projecting the captured gaze of one user onto a target image/
frame of another user using computer vision algorithms. Most
gaze mapping systems track a predefined area of interest (AOI) or
project the captured gaze onto a target image.

Gazemapping has beenmostly used as a tool for the analysis of
human gaze in specific scenarios. For example, Kurzhals et al.
(2016), Benjamins et al. (2018), De Tommaso and Wykowska

(2019) utilize gaze mapping to derive semantic interpretations of
human viewing behavior during experiments by tracking
predefined AOIs. These methods utilize image descriptors to
match features of the provided target with the input frame for
image re-identification the AOI. Other approaches, like the ones
proposed by De Tommaso and Wykowska (2019), Pfeiffer et al.
(2016), MacInnes et al. (2018a,b), directly map gaze points onto
an initially provided static image. A slightly different approach by
Pfeiffer et al. (2016) is also applicable for VR scenarios, as it tries
to estimate the 3D position of a known 3D scene. However, it also
requires information about the position and orientation towards
the visualized content to be known beforehand.

2.2 Saliency and Visual Attention
In human vision, gaze is controlled by mechanisms of selective
attention, which focus the gaze on regions of potential interest
(Pashler, 1999). Visual attention can be computationally
modelled by saliency methods, which compute saliency maps
and can be used as gaze prediction. Earlier computational saliency
predictors such as (Itti et al., 1998) model human attention
through the Feature Integration Theory (Treisman and Gelade,
1980; Treisman and Kanwisher, 1998). This theory states that
visual features are registered in parallel early in the visual process,
while objects are formed in later stages from the collected
features. This final step requiring active attention. Based on
this theory (Koch and Ullman, 1987) formulated the concept
of a saliency map. A saliency map is used to pool all features into a
global map, where the attention is then allocated to the location
with the highest activity. Later, approaches (Itti et al., 1998;
Frintrop et al., 2010; Zhang and Sclaroff, 2013; Zhang et al.,
2015) use handcrafted features such as intensity, contrast, or color
to predict these saliency maps. More recent approaches like
Kummerer et al. (2017), Cornia et al. (2018), Che et al. (2019),
Droste et al. (2020) utilize deep learning to predict the saliency
map without extracting additional image features.

2.3 Image Retrieval
Image retrieval describes the process of retrieving similar images
from a larger database (Nister and Stewenius, 2006; Uriza et al.,
2018). Here, we base our definition on Uriza et al. (2018) who
define similar images as images containing the same object under
different viewing conditions such as scale, rotation, illumination.
Then, given an arbitrary input image, the retrieval system will

FIGURE 2 | Eye fixation maps generated through our algorithm overlaid on-top of the actual image. The maps are generated by applying a Gaussian blur over the
fixations projected through our algorithm.Section 3.2 explains the details on our algorithm. The images are from the Saliency in VR (Sitzmann et al., 2018) and theDGaze
(Hu et al., 2020) datasets.
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return multiple different images showing the same content as the
query image.

One way to implement such a system is by using local feature
detectors such as SIFT (Lowe, 2004), SURF (Bay et al., 2008) or
ORB (Rublee et al., 2011). These methods calculate specific
keypoints along with feature descriptors, which can be used to
re-identify objects. Given a set of key points and feature
descriptors for two images, it is possible to match both images
by nearest neighbor search in feature space Lowe (2004).

One of the main challenges of image retrieval is scaling well
with the number of images. Exhaustively matching all images in
the database with the input would be infeasible for most
applications. As a solution to this problem, Nister and
Stewenius (2006) proposed the vocabulary tree data structure
that scales well with the number of images. This data structure
stores all images as vocables, similar to a bag of words approach.
As input data, the extracted local features of a training dataset are
quantized into visual words using a clustering algorithm such as
k-means are used. Applying the quantization repeatedly in a
hierarchical manner constructs the tree, which enables an
efficient search for similar SIFT descriptors.

3 EYE-FIXATION MAP GENERATION

In this section, we will introduce our method for generating eye-
fixations maps by gaze mapping in VR environments. To explain
our algorithm, we will briefly explain some key-concepts that are
used and afterwards describe the pipeline itself.

3.1 Assumptions
To generate fixation maps, our framework relies on the
assumption that the gaze data from several users was acquired
in the same physical or virtual space. This means the data consists
of egocentric, first person video data along with the gaze
locations. This data capturing is not only restricted to VEs
through an HMD, but can be done either by using a wearable
eye-tracker in real-world environments. To work properly, our
algorithm requires that the captured videos contain the same
scenes from multiple viewpoints. Otherwise, the algorithm will
fall back to user-based fixation maps that only capture the gaze of
the currently processed user. Therefore, the more participants
saw the same scene, the more fixation points will be returned by
our algorithm and the more meaningful the resulting fixation
maps will be.

As we rely on image retrieval for this process, the captured
objects in the video data should be recognizable from multiple
viewpoints when using a feature descriptor. Generally, this
restriction does not pose a problem and the proposed method
is applicable to typical VR datasets.

3.2 Algorithm
In this section, we will describe our proposed algorithm for
generation of fixation maps in dynamic free viewing virtual
environments. Our pipeline utilizes a concept from feature-
based image retrieval to project the gaze of other users from
different viewpoints into the current view. Our approach can

generally be divided into four sub-steps: 1) detection of SIFT
keypoints and computation of image descriptors, 2) generation of
a vocabulary tree, 3) gaze re-projection, and 4) a fixation map
calculation step.

Detecting SIFT keypoints: As the first step of the algorithm, we
detect SIFT keypoints and compute corresponding descriptors of
all frames (Lowe, 2004). Each descriptor contains histograms of
the gradients in the local neighborhood of a keypoint, thus
capturing the texture around the keypoint. The method is
largely invariant to changes in scale, illumination, and
rotation, making it a robust approach to re-detect image
regions from different viewpoints. While the amount of
keypoints and feature descriptors varies depending on the
input frame, we obtain on average 2482 keypoints per image,
each keypoint described by a 128 dimensional SIFT descriptor.

Computing the vocabulary tree: To speed up the lookup
process of similar frames, we compute a vocabulary tree
(Nister and Stewenius, 2006) for each individual environment.
A vocabulary tree quantizes the extracted keypoints into visual
words using a clustering algorithm, typically with k-means
clustering. The quantization process is repeated in a
hierarchical manner, constructing a tree structure. This
structure allows a quick traversal and fast matching of SIFT
descriptors. For the generation of the vocabulary tree we took the
individual videos of all participants of two datasets, DGaze and
Saliency in VR, used later in our evaluation, see Section 4.1.
Assuming that adjacent frames of the input only change slightly
from frame to frame, we sub-sampled every 15th frame of the
DGaze dataset and every 10th frame of the Saliency in VR dataset
for the creation of the vocabulary tree to reduce memory and
computational requirements. Moreover, due to the number of
descriptors, we additionally utilize mini batch k-means (Sculley,
2010) as our hierarchical clustering algorithm in addition to the
hierarchical k-means algorithm traditionally used in vocabulary
trees. Mini batch k-means was initially introduced as a k-means
clustering algorithm for massive datasets with regard to web scale
applications, such as duplicate detector or grouping of data. In
contrast to k-means, it clusters the input by randomly picking a
batch that contains a subset of the input elements rather than the
whole dataset. Then instead of re-assigning the cluster labels and
re-calculating the cluster centers each iteration for the whole
dataset, the algorithm computes the labels for each batch and then
updates the cluster centers using a learning rate, interpolating
between the cluster center and the new point. The algorithm has
the advantage of reduced stochastic noise compared to online
stochastic gradient descent, offering good convergence speed to a
near optimal solution. However, due to its properties, we also
utilize it to generate the vocabulary tree depending on the number
of descriptors. Therefore, we either utilize mini batch k-means if
the number of descriptors succeeded a specified threshold and use
classical hierarchical k-means otherwise.

Gaze re-projection: The core of our algorithm, schematically
shown in Figure 1 with another concrete example depicted in
Figure 3, is the re-projection of gaze points from similar frames
onto a query frame using a projective transformation between the
frames. This projection is required as the target frame is typically
not aligned with the frames returned by the vocabulary tree. Also,

Frontiers in Virtual Reality | www.frontiersin.org May 2022 | Volume 3 | Article 8023184

Rolff et al. Gaze Mapping for Virtual Environments

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


as a gaze point can be treated like a pixel, it is possible to transfer
gaze points of similar frames onto the input frame using a
homographic projection matrix. A homography matrix is
defined as a perspective projection that operates on
homogeneous coordinates (Szeliski, 2010). Therefore, H can be
used to project a point inside a source image plane p into a
projected point p′ of a target image plane:

p′ � Hp. (1)
As p � (px, py, 1)u this calculation can further be simplified

into:

~xx′ � h00px + h01py + h02
h20px + h21py + h22

, ~xy′ � h10px + h11py + h12
h20px + h21py + h22

. (2)

To find frames similar to our target frame, we query the earlier
constructed vocabulary tree. However, instead of using all
descriptors of the target to find similar frames, we restrict the
descriptors to a small 128 × 128 subregion as shown in Figure 4 of
our 512 × 512 target image, approximately corresponding to a 36°

visual angle. As the center of the patch, we use the active gaze

point of our target. This region, which refer from now as foveal-
region, should cover at least the area that is covered by the fovea
of the eye. Querying the vocabulary tree using the extracted
foveal-region then returns frames that are not only successors or
predecessors of the query frame. For this reason, we chose an
image patch size of 128 × 128 for the evaluated datasets, as
otherwise the region might not contain enough descriptors for a
reasonable mapping between the retrieved and the input frames.

We would also like to note that a bigger foveal region might
result in more accurate matches between the input and the
retrieved frames. This is since the vocabulary tree returns
frames that are most likely very close to the input, such as
adjacent frames or frames that show the same content.
Additionally, the increased amount of keypoints used to
estimate the homography matrix will factor into a more
accurate matching. However, this will also decrease the
likelihood of mapping gaze points from other users into the
target sequence. To estimate the homography matrix from the
matching between the input and similar frames we utilize random
sample consensus (RANSAC) (Fischler and Bolles, 1981) as some
matches might not be correct, thus, resulting in noise. Using the

FIGURE 3 |Gazemapping from the retrieved frames on the left onto a single target frame in the center. The re-projection of the retrieved frame tomatch the target is
shown on the right. The yellow dots show the gaze data that is already contained on the target frame, either because they belong to the target frame or through previous
mapping steps. The magenta dots show the gaze retrieved with the retrieved frame. These blue dots correspond to their magenta counterparts, fixating the same
position inside the image. These may, however, not have the same pixel location as the original magenta dots due to their projection. After their projection, we have
shown the mapped gaze point as a red dot in the target frame, which is different from the retrieved frame. The shown re-projection is repeated multiple times to acquire
the full fixation map.
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retrieved similar images, we match to most similar images with
the query frame using the descriptors earlier, via the matching
method proposed by Lowe (2004). For this, we utilize the two
nearest neighbors of the descriptor and discard any found
matching that are above a specified ratio. This results in a set
of matches that map a part of the keypoints of the retrieved image
Kr with a part of the target Kt keypoints. Figure 4 shows such an
example of matched frames. It is also noteworthy that we now
extract the foveal-patch for each similar image at the gaze
position while utilizing all image descriptors of the query
frame. This allows us to find the actively attended foveal-
region inside the query even if the rest of the retrieved frame
does not match the query frame.

Furthermore, to stabilize the found gaze over time, we do
another gaze re-projection pass afterwards. For this pass, we only
utilize gaze points of the currently processed video by explicitly
querying the vocabulary tree to find similar frames in the query
video. While this mostly results in frames adjacent to the query
frame, it additionally retrieves frames that are similar but from
other viewing angles, allowing to transfer additional information
that was previously not found through the re-projection method.

Fixation map computation: In the last step, we compute the
final eye fixation map equivalent to previously proposed methods
for eye fixation map generation in static setups (Itti et al., 1998;
Cornia et al., 2018), by applying a Gaussian filter to the previously
computed eye fixation map with a sigma of 19 to generate the
saliency map, as commonly used in other datasets Jiang et al.
(2015) with the suggestion of Bylinskii et al. (2018).

To summarize, our algorithm can be expressed through the
following steps:

• Extract features for vocabulary tree creation and image
matching from all videos showing the scene.

• Build vocabulary tree using the descriptors of all recorded
videos and insert each frame into the vocabulary tree.

• Compute the gaze re-projection for each frame of the target
video by querying the vocabulary tree to find similar frames
from videos of other users.

• Compute gaze re-projections across the initially generated
eye fixations to transfer gaze points of adjacent and similar
frames inside the target video.

• Compute Saliency map from the generated eye
fixation maps.

4 EVALUATION

As we aim to provide eye fixation maps that indicate possible
future fixation points for each frame in an input video to train
gaze predictors, we would ideally evaluate against a set of likely
fixation points for each target frame. Even though our evaluated
datasets contain the raw gaze, we cannot directly utilize them for
evaluation as it would require a mapping approach to first
generate the ground truth data which we aim to provide. Such
mapping approach then might also introduce a new error source
when evaluating the approach. Therefore, under optimal
conditions, it would require a hand mapped dataset of
multiple videos. Since such data is not available, we measure
how well our eye fixation maps model the gaze of the current user
instead. We will, however, use metrics well established for
comparing saliency predictors, as these provide well
explainable results (Bylinskii et al., 2018). This also allows us
to compare against other saliency predictors that could
potentially be used to predict future gaze points.

For the evaluation itself, we utilize the DGaze (Hu et al., 2020)
and the Saliency in VR (Sitzmann et al., 2018) datasets and
evaluate by mapping the fixation point of each user given the
current visual stimulus. We specifically choose the DGaze dataset
to evaluate how well our algorithmmaps fixation points in regard
to the exploration of a single user, as all videos and gaze sequences

FIGURE 4 | Example showing the matching process to find similar key-points between the retrieved and the query image. The small circles correspond to the
positions of the image descriptors and the connected lines to the foundmatches. Note that the query frame uses a restricted area (red rectangle) around the current gaze
position (red dot) that roughly covers the area visible in the fovea of the eye. The region is used to search for frames similar to the query frame.
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in the DGaze dataset are unique. For the evaluation of our
algorithm, we will generate saliency maps from the fixation
maps and compare them with the actual fixation points. For
the DGaze dataset we will compare only against the fixation
points of a single user, whereas for the Saliency in VR dataset we
evaluate against the fixation points of all users. Using saliency
maps also enables us to utilize commonly used metrics to
compare saliency maps, listed in Section 4.2. Due to the
novelty of our contribution we cannot compare against a
baseline algorithm, instead we compare our results against well
established algorithms for visual saliency computation that
predict the fixation distribution of an image. In short, we will
compare against the following saliency predictors:

• Boolean Map Saliency (BMS) (Zhang and Sclaroff, 2013)
• Minimum Barrier Salient Object Detection (MB, MB+)
(Zhang et al., 2015)

• VOCUS2 (Frintrop et al., 2015)
• Salient Attentive Model (SAM) (Cornia et al., 2018)

However, to avoid that our algorithm has an unfair advantage
against the saliency predictors, as the algorithm has all gaze
fixations available to it, we restrict the evaluation to use cross
validation. Here, we only utilize gaze points of the database that
do not belong to the currently processed video. Therefore, the
algorithm only has the fixation points of other participants
available to it. We, additionally, evaluate the algorithm by
using past gaze points, mimicking a real-time application of
our algorithm where a user is actively exploring the
environment. In this case, fixations are computed given the
currently rendered frame by comparing it against the internal
database. Nonetheless, in both cases the assumption is that
multiple participants will attend to similar or the same visual
stimuli, resulting in similar fixation positions. This additionally
measures the inter-observer congruency. In our case, the data
points of all users except the ith are used to estimate the saliency
map of the ith user. Here, we want to point out that this is the
reverse of the inter-observer congruency measured by Sitzmann
et al. (2018), as they measure how well a singular user i can model
the fixations of all others.

4.1 Datasets
For the evaluation itself, we compare the generated saliency maps
with the ground truth of two datasets. First, we evaluate against
the DGaze dataset (Hu et al., 2020). This dataset captures
individual free viewing of 43 participants that were asked to
freely explore 2 out of 5 randomly assigned virtual environments
without any restrictions on viewpoint, positioning or execution
order of temporal events. The scenes shown to each participant
also contain multiple dynamic objects in the form of animals that
move randomly across the environment. At the start of a
recording session, each participant were instructed to record at
least 3 min of data without any further specifications on a task. To
avoid any auditory disturbance, each participant was also
provided with earplugs. In total, the dataset contains 1,789,082
gaze points and 1,046,467 frames with an average sequence length
of 20,803 gaze points and 12,168 frames. The videos capturing the

visual stimuli are stored with a resolution of 540, ×, 600 pixels. To
capture the data, an HTC Vive in combination with a 7invensun
eye-tracker was used. Further, all participants were provided with
a HTC Vive controller, allowing them to teleport to any position
inside the scene. To familiarize themselves with the experimental
setup, everyone was given 3 min to learn the system provided
controls. This specific approach to capture the data implies that
participants rarely saw the exact same content that another
participant has seen. When evaluating any algorithm on this
dataset it is, therefore, only possible to directly compare the
captured gaze points that were captured for the specific frame the
participant has seen. While the amount of captured gaze points
depend on the polling rate of the eye-tracker, in case of theDGaze
dataset it results in one or two gaze points per captured frame.

In addition, we evaluate our system against the Saliency in VR
dataset by Sitzmann et al. (2018). This dataset provides 22 static
omnidirectional 360° images, containing in gaze sequences of 169
participants that were captured in VR. Here, Sitzmann et al.
choose static omnidirectional images with a fixated head position
to work around the exact same restrictions we aim to solve.
However, this restriction of the viewpoint of every participant
allows to directly evaluate the gaze of different users, as all gaze
points can be mapped onto the omnidirectional image. We,
therefore, extracted individual videos of every participant
showing their exploration of the environment as seen through
the HMD. It also enables the generation of saliency maps
containing the gaze of all participants, solving the problem of
providing only few ground truth points per frame. To acquire the
data, an Occulus DK2 was used in combination with a pupil labs
eye-tracker to capture the raw gaze points. Further, each
participant was instructed to naturally explore the displayed
environment for 30 s. Now, as the dataset contains the gaze
and the head orientation of each participant, it is possible to
simulate similar conditions to the DGaze dataset. Thus, we
extracted a subset of 137 individual exploration videos of all
users showing the visual stimuli along with the gaze data. This
resulted in a total of 482,805 frames and gaze points. We
additionally restricted the visual fixations to a center region to
simulate center biased virtual reality vision similar to the DGaze
dataset by restricting the gaze points to be inside a range of
[−35°, 35°] as Hu et al. (2020) reported that 98.7% of gaze points
lie inside this area. Such a center bias in VR is also reflected by the
findings of Celikcan et al. (2020) and Foulsham et al. (2011). We,
additionally, measure the behavior of all algorithms with different
field of views applied by restricting the image region of the
generated saliency maps.

4.2 Metrics
To evaluate the generated saliency maps, we selected multiple
different metrics based on the recommendation by Bylinskii et al.
(2018). For reproducibility, we base our implementation on
metrics provided by Bylinskii et al. (2020). The metrics we
especially focus on are:

• Area under curve (AUC) as proposed by Judd and Borji and
further denoted as AUC-Judd (Riche et al., 2013) and AUC-
Borji (Borji et al., 2013). These metrics work under the
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interpretation of a saliency map as a classifier that classifies
pixels into two categories that classifies if a pixel is fixation
or not. As both metrics use binary classification for each
pixel, it is also possible to re-interpret the metrics as
measuring a two-alternative forced choice task (Bylinskii
et al., 2018). With these two categories it is possible to assign
each pixel a label as either true positive, false positive, true
negative or false negative. The main difference between both
metrics is the calculation of the false positive rate, which is
defined as the fraction of wrongly positive assigned pixels
divided through the total number of pixels. Reason for the
selection of the metric being the location independence of
AUC-metrics, therefore, measuring the ability of a model to

predict the correct salient spots and their in-variance to
linear transformations such as contrast.

• Normalized Scanpath Saliency (NSS) measures the average
normalized saliency at fixation locations (Bylinskii et al.,
2018). Thus, the metric can be understood as a
correspondence measure between a saliency map and the
ground truth. This allows the measurement to be invariant
against linear transformations, such as contrast offsets,
however, it also makes the metric sensitive to false
positives, relative differences in saliency and monotonic
transformations.

• Similarity (SIM) measures the similarity between two
probability distributions. This works under the

TABLE 1 | Prediction capability of the gaze of the current user on the DGaze dataset (Hu et al., 2020) with our gaze mapping approach, either by including the previous gaze
points of the current user (Ours Temp), or by ignoring those and focusing on gaze points from other users only (Ours).

Algorithm KL↓ CC↑ SIM↑ NSS↑ Judd↑

Scene 1 Horses in desert Ours 12.41 0.19 0.14 2.42 0.92
Ours Temp 10.82 0.29 0.19 3.67 0.96
BMS 16.06 0.12 0.07 1.56 0.83
MB 11.16 0.23 0.08 2.76 0.96
MB+ 11.50 0.16 0.07 1.85 0.93
VOCUS2 12.06 0.08 0.04 0.88 0.87
SAM 10.87 0.27 0.14 3.26 0.96

Scene 2 Deers in forest Ours 12.41 0.19 0.14 2.42 0.92
Ours Temp 11.42 0.25 0.17 3.05 0.95
BMS 16.85 0.02 0.03 0.21 0.75
MB 11.60 0.14 0.06 1.60 0.93
MB+ 11.62 0.14 0.06 1.61 0.92
VOCUS2 12.49 0.01 0.03 0.23 0.79
SAM 11.40 0.20 0.09 2.34 0.94

Scene 3 Chickens in warehouse Ours 13.07 0.12 0.08 1.51 0.90
Ours Temp 11.19 0.26 0.18 3.28 0.95
BMS 15.50 0.07 0.05 0.90 0.81
MB 11.26 0.20 0.08 2.42 0.96
MB+ 11.19 0.20 0.08 2.43 0.96
VOCUS2 12.01 0.11 0.04 1.30 0.88
SAM 10.99 0.23 0.12 2.84 0.96

Scene 4 Cats in bar Ours 11.51 0.15 0.08 1.82 0.92
Ours Temp 10.82 0.25 0.14 3.09 0.96
BMS 13.53 0.06 0.04 0.67 0.81
MB 11.70 0.13 0.06 1.52 0.91
MB+ 11.72 0.13 0.06 1.47 0.91
VOCUS2 12.46 0.03 0.03 0.31 0.77
SAM 11.55 0.19 0.09 2.22 0.93

Scene 4 Sheeps on meadow Ours 11.41 0.17 0.10 2.04 0.94
Ours Temp 11.07 0.24 0.16 2.96 0.95
BMS 17.85 0.03 0.03 0.34 0.77
MB 11.48 0.17 0.07 2.08 0.93
MB+ 11.46 0.17 0.07 2.02 0.93
VOCUS2 12.04 0.08 0.04 1.02 0.87
SAM 11.42 0.23 0.10 2.79 0.95

Total All scenes combined Ours 12.31 0.15 0.09 1.77 0.91
Ours Temp 11.06 0.26 0.17 3.21 0.96
BMS 15.96 0.06 0.04 0.74 0.79
MB 11.44 0.17 0.07 2.08 0.94
MB+ 11.50 0.16 0.07 1.87 0.93
VOCUS2 12.21 0.06 0.03 0.75 0.84
SAM 11.24 0.22 0.11 2.69 0.95
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TABLE 2 | Prediction capability of the gaze of the current user on the Saliency in VR dataset (Sitzmann et al., 2018) with our gaze mapping approach (Ours).

Algorithm KL↓ CC↑ SIM↑ NSS↑ Judd↑

Cubemap 0000 appartment complex (inside) Ours 8.82 0.72 0.60 2.73 0.93
BMS 11.81 0.26 0.27 1.03 0.77
MB 9.18 0.43 0.32 1.62 0.88
MB+ 9.11 0.44 0.33 1.66 0.88
VOCUS2 9.75 0.21 0.18 0.82 0.75
SAM 9.06 0.49 0.34 1.85 0.90

Cubemap 0001 Appartment Complex (outside) Ours 9.93 0.57 0.49 1.71 0.88
BMS 12.27 0.23 0.25 0.85 0.75
MB 8.95 0.51 0.36 1.63 0.85
MB+ 8.95 0.50 0.37 1.59 0.85
VOCUS2 9.57 0.24 0.20 0.74 0.72
SAM 9.59 0.46 0.33 1.40 0.85

Cubemap 0002 Futuristic Shore City (inside) Ours 9.90 0.50 0.40 1.92 0.89
BMS 11.27 0.22 0.24 0.85 0.77
MB 9.73 0.46 0.33 1.55 0.88
MB+ 9.78 0.43 0.32 1.47 0.87
VOCUS2 10.47 0.11 0.16 0.48 0.70
SAM 9.85 0.43 0.31 1.53 0.88

Cubemap 0003 Library (inside) Ours 9.35 0.44 0.33 1.56 0.86
BMS 12.81 0.10 0.15 0.34 0.70
MB 9.53 0.31 0.24 0.98 0.82
MB+ 9.55 0.31 0.24 1.00 0.82
VOCUS2 10.20 0.03 0.12 0.04 0.59
SAM 9.86 0.37 0.25 1.31 0.84

Total All scenes combined Ours 9.43 0.58 0.47 2.08 0.89
BMS 11.97 0.21 0.24 0.82 0.75
MB 9.33 0.43 0.32 1.48 0.86
MB+ 9.32 0.43 0.32 1.47 0.86
VOCUS2 9.98 0.16 0.17 0.57 0.70
SAM 9.52 0.44 0.31 1.57 0.87

FIGURE 5 | Qualitative example showing the output of the evaluated saliency predictors along with the ground truth and our approach on the Saliency in VR
dataset. Our method uses the eye fixations from other users and maps them to the current view, without using the fixations from the current user, while the standard
saliency predictors compute saliency based on the current frame.
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assumption that a saliency map can be interpreted as a
probability map. While it is not possible to directly observe
the ground truth of the distribution, it is often approximated
by blurring the fixation points (Bylinskii et al., 2018).
However, using Gaussian blurring directly affects the
similarity metric, as it results in the highest score if the
used sigma for blurring matches the ground truth.
Otherwise, if the sigma does not match, a drastic
reduction in SIM score can be noticed Bylinskii et al.
(2018). Nevertheless, the metric was chosen for its
symmetrical behavior, thus allow an evaluation on partial
matches.

• Kullback-Leibler Divergence (KLD) is similar to SIM a
probability-based metrics as it measures the difference
between two probability distributions with a lower score
indicating a better approximation. Further, KLDwas chosen
for its penalization of sparse predictions as zeroes are
heavily punished.

• Pearson cross correlation (CC) describes another
distribution-based metric that measures the correlation
between two dependent variables. Furthermore, CC
treats, in contrast to SIM, true positives and false
negatives symmetrically.

4.3 Results and Discussion
Tables 1, 2 show how well our gaze mapping approach is able to
model the gaze of the current user, compared to computationally
created saliency maps. First, we provided a qualitative overview of
the evaluated methods on the Saliency in VR dataset in Figure 5.
We performed a quantitative evaluation on the DGaze and

Saliency in VR datasets. In total, we evaluated over 1.5 million
images on 223 videos. Table 1 shows the results measured using
the DGaze dataset. We evaluated our algorithm on the DGaze
dataset using two different modes of our method. First, we use
cross-validation without previous temporal information of the
input, referred to as Ours in Table 1. Additionally, we utilized
temporal information about the input, referred as Ours Temp in
Table 1. The later one simulates a real-time application of our
algorithm, as this would provide a set of previous data captures
from gaze points and images from other users. In contrast, the
first one estimates the gaze captured only from other users given a
video. Note that if we restricted our approach to only utilize past
gaze data, it would still be required to map gaze from other
frames, as those may not be aligned with the current one. In this
case, utilizing the data from past gaze points also provides
information to the system as other users might not have
previously perceived part of the scene. It shows that our
temporal algorithm almost always reliably outperforms all
other methods on all evaluated metrics. This is to be expected,
as the algorithm additionally uses past fixation points of the
current user to generate the fixation maps. Therefore, the
algorithm makes use of the gaze information and the similar
visual stimuli. Thus, it is to be expected that the algorithm
performs better, as no other algorithm makes use of the data
and therefore cannot benefit from the information. However,
when restricting our algorithm to use just the video sequences
and gaze points from other users, our method almost always
performs worse with regard to the KL and Judd metric and
depending on the scene is sometimes outperformed by the MB,
MB+ and SAM. This is also to be expected, since the most frames

FIGURE 6 | Graphs showing the results measured on the Saliency in VR dataset with different field of view angles to simulate different VR headsets and viewing
conditions. The figure shows the accumulated measurements over our extracted subset of the dataset mentioned in Section 4.1. This subset contains 4 different
omnidirectional images containing 137 videos totaling an amount of approximately 500k frames. Section 4.2 explains the shown metrics in detail.
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of the DGaze dataset are unique and do not show the same object
or environment from the same direction. Hence, the algorithm
only finds visual stimuli roughly similar to the input. We
additionally found that our model sometimes results in a drop
in performance if the visual stimulus is self-similar. Therefore, the
algorithm will estimate the same fixation positions for different
parts of the virtual environment.

Table 2 shows the results measured on the Saliency in VR
dataset. Here, we found that our algorithm performs especially
well on the all metrics and outperforms all other methods, except
for the Kullback-Leibler divergence. Note that we do not use
temporal information for the Saliency in VR dataset, as it only
contains static omnidirectional images and therefore does not
show content other users have not seen before. However, the
performance of our algorithm can be explained by self-similarity
of objects in the input, as it will retrieve images that show similar
objects thus mapping fixation points from another object similar
to the target. Further, the performance of our algorithm with
regard to the KL metric can be explained by the sparse output of
the fixation points, resulting in sparse predictions that are heavily
punished by the KL metric (Bylinskii et al., 2018). Figure 6 also
shows that depending on the restriction of the field of view, our
algorithm exhibits better results if the field of view is smaller. This
behavior can be explained by the calculation of the homography
matrix, as our approach directly fits a homography matrix
between the target frame and the retrieved frame. Now, if
there is little overlap between those frames it might be that
there are not enough corresponding image descriptors in both
images for the computation of the projection matrix, resulting in
an invalid or numerical unstable projections. This might also
result in a center bias as more projections are discarded when
there is little overlap between the frames, for example if both
frames only overlap at their edges.

It is noteworthy that we can confirm the results of Celikcan
et al. (2020), as we found that a good contender for
approximating the saliency of a VR environment is the MB +
algorithm. However, we would like to stress once more that we do
not aim to provide a saliency predictor, but rather a pipeline for
the generation of ground truth fixation maps that can be utilized
to train and evaluate such saliency predictors.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed an algorithm to generate fixation maps
from gaze points captured in free viewing virtual environments
using a classical computer vision approach. Our algorithm was
especially designed to compute fixation points given a visual
stimulus in the form of an input video by collecting and
projecting eye fixation points from other users showing similar
content to the input using classical computer vision algorithms.
To retrieve input stimuli similar to the input, we use an image
retrieval approach based on SIFT features. This also allows us to
project the retrieved images onto the target using a homography
transformation for the gaze data to re-project the gaze into the
current view. Since the algorithm can compute saliency maps
from the projected fixation maps, it can also be utilized to

generate ground truth fixation and saliency maps to train ML
saliency models for virtual environments. We also showed that
our algorithm can outperform recent state-of-the-art methods on
several metrics on the Saliency in VR dataset. It is also worth
noting that our algorithm will generate saliency maps similar to
the input, if similar patterns or self-similarities are shown inside
the input, as it will retrieve all frames containing similar visual
stimuli even if the shown object is not the same.

However, we would also like to address some future
improvements, as we aim to utilize our method to train
saliency predictors in current gaze prediction pipelines using
the generated fixation maps as ground truth to train these models.
First, we currently do not utilize the temporal information of
adjacent video frames for the calculation of the homographic
projection which we will address in future work.

Another improvement would be the estimation of camera
properties that are necessary for image distortion, as our
algorithm currently does not distort the input. This might
result in slight off gaze points calculated through the mapping
and therefore do not mirror the actual gaze position inside the
target frame. Further, extending our algorithm by using a 3-
dimensional representation of the virtual space, either through
Structure from Motion or by providing a model of the scene,
would allow us to accurately map the gaze into 3D space. This
also reduces the computational requirements as it only requires
to project gaze points that are visible to the user at run-time. At
last, we also do not explicitly deal with dynamic objects, such as
animations or changes in appearance; hence, one could apply
image segmentation to extract dynamic objects and process them
separately. Furthermore, our results also show that scenes which
contain dynamic animated objects will result in wrongly assigned
fixation positions. This is especially true if the animation is
highly salient in contrast to the default behavior, for example
when gesturing something to the user. In these cases, our
algorithm might fail because different descriptors describe the
object. An option to solve these might be the extraction of
dynamic objects to generate the gaze mapping of those
independent on the scene.
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