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This paper describes a mobile application that builds and updates a 3Dmodel of an indoor
environment, including walls, floor and openings, by a simple scan performed using a
tablet equipped with a depth sensor. This algorithm is fully implemented on the device,
does not require internet connection and runs in real-time, i.e., at five frames per second.
This is made possible by taking advantage of recent AR frameworks, by assuming that the
structure of the room is aligned on an Euclidean grid and by simply starting the scan in front
of a wall. The wall detection is achieved in two steps. First, each incoming point cloud is
segmented into planar wall candidates. Then, these planes are matched to the previously
detected planes and labeled as ground, ceiling, wall, openings or noise depending on their
geometric characteristics. Our evaluations show that the algorithm is able to measure a
plane-to-plane distance with a mean error under 2 cm, leading to an accurate estimation of
a room dimensions. By avoiding the generation of an intermediate 3D model, as a mesh,
our algorithm allows a significant performance gain. The 3D model can be exported to a
CAD software, in order to plan renovation works or to estimate energetic performances of
the rooms. In the user experiments, a good usability score of 75 is obtained.

Keywords: computer vision, mobile device, planes and surfaces, BIM—building information modelling, renovation
activities

1 INTRODUCTION

Creating a 3Dmodel of an existing building has found many applications, such as the generation of a
BIM1 of the building or obtaining geometrical information about the building (dimensions, surfaces,
etc.,). Whereas a 3D model of a new building is created during the conception phase, older buildings
have frequently to be modeled. This process is often done manually for smaller buildings and is very
tedious. For large scale buildings, laser scanners are used to generate high resolution 3D point clouds.
These laser data serve as a basis to identify the structure of the reconstructed building. In addition,
the process for exporting a BIM model can be partially automated (Macher et al., 2015).

However performing an automatic generation of a 3D editable model of buildings is a complex
task. Most of the previous works have focused on recognizing the global structure (grounds, ceiling,
walls and openings) of the reconstructed building. Moreover, the use of laser scanners and LIDAR is
costly and the scan is not performed in real time.

When only a rough global structure of the building is needed, or when the housing is small, it is
possible to simplify the process.
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With the recent release of depth sensors integrated onto tablets
and with the enhancement of their computing capabilities, it is
now possible to use these devices to perform a real-time 3D
reconstruction. This can be bought at an affordable price by
companies or by private individuals who want to renovate their
housings. The measure of each dimension of the room and the
edition in a CAD software, are very time expensive tasks, that can
be made easier by the simple scan, as proposed in this paper.

This paper presents an application that allows any user to
generate a 3D editable model of an existing indoor environment
using a tablet or a smartphone, by simply walking inside the
building and scanning the walls. The resulting model can then be
exported in a CAD2 software for modification, for renovation or
decorating purposes and for estimating the energetic
performances. The device has to include a visual odometry
system, which is the case with modern AR APIs such as
Google ARCore3, so that each RGB-D data issued from the
sensors can be expressed in a same absolute coordinates
frame. The proposed algorithm uses the computing capabilities
of the device to generate a 3D editable model on-the-fly, including
the walls and openings of the rooms. Thus, it avoids the
generation of an intermediate 3D mesh, which is costly in
terms of memory and computing resources Arnaud et al.
(2016). A RGB-D sensor is used, which provides a temporal
sequence of color and depth data captured at five frame per
second. First, a planar segmentation is performed in each depth
image of the sequence and the extracted planes are matched to the
previously detected ones. Through this temporal analysis, walls
are extracted and described in terms of geometry and, the global
3D model is updated.

The proposed algorithm assumes that the walls, the ceiling,
and the floor are aligned on a Euclidean grid, which is a common
assumption when working with building data Coughlan and
Yuille (1999). It also assumes that the scan starts in front of a
wall. These reasonable assumptions lead to considerable
simplifications of the reconstruction process.

The previous work Arnaud et al. (2018) was a first attempt of
real-time planes detection and matching using a mobile device,
and was dedicated to the segmentation method. Color, luminance
edges and point cloud were analyzed together through a bottom-
up segmentation process, which combined a region growing
method with a merging. Although the process was real-time
(the data was processed in approximately 200 ms), some
experiments have shown that, in some situations, only 40% of
the planar surfaces were correctly detected. The present paper
details each component of the application, from the extraction of
3D planes to their export towards a CAD software. Concerning
the 3D scanning and modeling, which is the most time-
consuming task of the application, a top-down hierarchical
segmentation is achieved directly on the point cloud, without
any pre-processing. A first stage is dedicated to the detection of
rough planar categories, which are then separated into parallel
planes. By capturing the most dominant planes, the method

proves less sensitive to noise than the top-down strategy. In
addition, the multi-threading is made possible by an adapted tree
sorting of the points. The planar surfaces that are extracted in two
successive frames are matched temporally, then walls and
openings are identified. To finish, this paper explains the
different components of a more comprehensive mobile
application, which is able to create and export a 3D model
that can be used and edited in a CAD software, to plan
renovation works and to estimate energetic performance.

In the rest of this paper, some previous works on 3D
segmentation and classification are described (Section 2).
Then, the planar segmentation algorithm is developed in
Section 3 while the temporal matching and the model export
are detailed in Section 4. The results of the evaluations conducted
for these algorithms are presented in Section 5 and discussed.

2 RELATED WORKS

3D modeling of indoor environments has been the subject of
numerous research studies, as noticed by the recent review Kang
et al. (2020). One of the strategies consists in capturing and
mapping a dense colored point cloud Henry et al. (2012) into a
real coordinate system, in which it is possible to navigate virtually.
From depth data, a 3D mesh of the whole scene can first be
estimated, and eventually simplified Liang et al. (2020). Since our
main objective is to propose a stand-alone 3D modeling
application for mobile devices, such as tablets or smartphones,
such dense models are not optimal since they require a large
amount of memory resources. In addition, we intend to produce a
3D model in real-time, without connecting to a distance
webservice. Indeed, internet connection is not available on all
worksites. Since the sensor captures one point cloud each 200 ms,
it is necessary to compute a 3D model in this period of time,
otherwise the next point cloud can be lost. For that purpose, 3D
segmentation techniques are promising (Section 2.1). From the
point cloud, these techniques directly detect planar structures
from the point cloud and convert them into parameterized shapes
(for example by simply storing the coordinates of their four
corners). All the surfaces can be locally viewed as planar surfaces
Tatavarti et al. (2017) that can be further analyzed using
classification techniques (Section 2.2) and recognizing methods.

2.1 3D Segmentation
Concerning 3D segmentation, model fitting algorithms are
popular due to their simplicity. The most commonly used
algorithms are inspired by RANSAC Schnabel et al. (2007) or
3D Hough transform Borrmann et al. (2011). In an iterative way,
RANSAC randomly picks a group of points and refine the
coefficients of a given parameterized model. Although the
quality of the estimation depends on the number of iterations,
and on the quality of the selected points, it provides a faster and
more accurate planes detection than 3D Hough transform
Tarsha-Kurdi et al. (2007).

The use of region growing algorithms can speed-up the
segmentation task by restricting the analysis in the
neighborhood of a few seed points, before merging the

2CAD for Computer Aided Design.
3https://developers.google.com/ar/.
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resulting clusters. However, their performance is tightly linked to
the choice of the seed points Grilli et al. (2017).

Erdogan et al. (2012) perform a planar segmentation of a
depth map using an adaptation of the Superpixels algorithm
Fulkerson et al. (2009) originally designed for 2D images. The
generated clusters are then merged using the Swedsen-Wang
sampler Swendsen and Wang (1987); Barbu and Zhu (2005).

Papon et al. (2013) propose the Voxel Cloud Connectivity
segmentation (VCCS) algorithm. This is a generic 3D
segmentation algorithm which selects seed points in a regular
grid from the input point cloud and generates clusters around
these seed points. This algorithm outputs a set of clusters and an
adjacency graph that describes the connectivity between them.
Points are gathered together based on a similarity function that
depends on the spatial coordinates, the normal vector and the
color of each point, with a weight for each parameter. For planar
segmentation, VCCS is parameterized so that the orientation of
the normal vector has a predominant weight in the computation
of the similarity criterion between two points.

Planar segmentation can also be viewed as a clustering
problem. Clustering techniques can be supervised, with a
known number of classes. One of the most popular supervised
clustering techniques is the K-means algorithm Jain (2010);
Celebi et al. (2013), which consists in selecting k elements in
the input dataset as the centers of the clusters. The remaining
elements are associated to the nearest center. Then, the centroids
are updated. The process is repeated until the algorithm
converges. K-means algorithms are efficient when data are
well separated. Non-supervised algorithms, such as DBSCAN
Ester et al. (1996), or ISODATA, used for example in Holz et al.
(2011), do not require the number of classes but group the
elements depending on a density criterion. Then, it detects
clusters when their density is higher than a fixed threshold,
which highly depends on the scene to be analyzed.

The reader can refer to Grilli et al. (2017); Nguyen and Le
(2013) for more detailed information about 3D segmentation.

2.2 Classification and Structure Recognition
The results of a planar segmentation algorithm are used as a basis
to identify the components of an input 3D point cloud. Indeed, it
allows a fast recognition of structural elements Verma et al.
(2006); Ochmann et al. (2015), or the classification of a room
furniture, once the main planar surfaces have been subtracted
Deng et al. (2017). Many of these algorithms train classifiers to
label the points Ren et al. (2012); Gupta et al. (2013); Lai et al.
(2014). For example, Silberman et al. (2012) propose a
segmentation algorithm that uses RGB-D data from indoor
scenes. After a RANSAC-based planar segmentation, the
resulting regions are grouped into structure categories using
logistic regression.

Lee et al. (2009) describe a method for detecting walls, ground
and ceiling in an indoor scene using only RGB images. They use
predefined patterns about the lines of the RGB images to infer the
building structure, assuming that the building structure is aligned
along a Manhattan grid Coughlan and Yuille (1999).

Verma et al. (2006) propose a 3D segmentation algorithm that
can identify the external structure of buildings in an outdoor

point cloud captures by a LIDAR scanner. Assuming that the
point cloud has been acquired from an aerial scanner, the authors
focus on detecting the ceilings of the buildings. For this purpose,
they perform a planar segmentation of the points cloud and
remove the vertical planes. Then, the shape of the buildings is
inferred using predefined patterns.

Many works deal with automatically generating a BIM model
from laser data Adan and Huber (2011); Jung and Joo (2011);
Jung et al. (2014); Macher et al. (2015). In practice, this is a
complex task that cannot be fully automated but algorithms can
detect the global shape of the building and export a pre-generated
model that can be refined manually in a CAD application. Let us
also mention the existence of semantic segmentation using deep
learning techniques Zhang et al. (2020). These approaches would
require resources that are not available on simple mobile devices.

2.3 Proposed Solution
RANSAC-like algorithms can deal with many outliers but can
require a large and variable number of iterations to converge,
depending on the quality of the points that are randomly selected
on the surface to be parameterized. Region growing algorithms
are efficient and are fast when the size of the clusters to be
generated is constrained. However, their performance is

FIGURE 1 |Overview of the planar segmentation algorithm. It consists of
two clustering phases: the first one is for the normals’ space, and the second
one separates parallel planes.
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dependent on the initialization and on the quality of the
input data.

In the proposed method, a K-means algorithm is used to
perform a planar segmentation of each input point cloud. The
convergence speed depends in particular on the choice of the
initial centers. The closer they are to the real centers, the faster the
convergence. In most standard buildings, it can be assumed that
the wall candidates have six main orientations, and possibly these
walls can be aligned to a regular grid, as in a Manhattan World.
The proposed method first achieves a planar segmentation,
detailed hereafter in Section 3, of the 3D point cloud captured
by the sensor. Then, the planes are temporally matched between
successive frames and labeled as walls, floors or ceilings, as
described in Section 4.

3 REAL-TIME PLANAR SEGMENTATION

In order to reach real-time execution, i.e., 5 fps as imposed by the
device, the user is recommended to start the scan of the indoor
environment by facing one of the walls. Thus, the reference
coordinate frame R0 is aligned with the structure of the
building and the orientations of the normal vectors are well-
defined. After a brief overview on the proposed algorithm, we go
further into detail by explaining successively the different stages
of the method.

3.1 Overview of the Algorithm
The detection of the planar surfaces is illustrated on Figure 1. Let
R0 be the coordinates frame with axes ux, uy and uz. The input is
the 3D point cloud (of NP points P) to be segmented, noted P.
Each point P is characterized by:

• a coordinate vector p = (x,y,z)⊤

• a normal vector n � [nx, ny, nz]⊤. The computation of n is
not detailed here, but the reader can refer to Arnaud et al.
(2018) for further details.

• a distance d from the origin of R0, defined as: d = −(nx.x +
ny.y + nz.z).

Lk stands for the kth set of points P, k ∈ [0, K−1], with similar
norm vectors. To finish, Sk,m is the notation used for the mth
(with m ∈ [0, Mk−1]) set of points in Lk which share the same
properties n and d. Notice in Sk,m, points do not necessary form a
connected component but belong to the same planar structure in
the real scene. The planar segmentation consists in detecting
these sets Sk,m (referred to planar structures for sake of
simplicity).

The segmentation is performed in two steps. First, the normal
vectors are clustered with respect to their orientation using an
adaptation of the K-means algorithm Jain (2010) that is described
in Section 3.3. For each orientation category, a second clustering
(detailed in Section 3.4) is made according to d, in order to
separate parallel surfaces, that is planes of similar orientation
located at different distances. This is detailed in Section 3.4.

In terms of implementation, two independent threads are
used, one for the data pre-processing (storing, normals

computation), the other one for the segmentation itself. The
first thread computes the normal vectors at each point of the
surfaces. Concerning the sorting detailed in Section 3.2, the data
are divided into two groups (as shown by Figure 1), depending on
whether d is lower or higher than the mean distance �d computed
on the whole point cloud. Here also, this allows to use two threads
for the sorting.

3.2 Points Sorting
The input points are sorted using a tree sort algorithm. First, each
descriptor P is stored in a binary tree T . The insertion of a
descriptor P in a node is made using the distance d as comparison
criterion. If d is inferior to the current node d value, then P is
inserted into the left child of the node, otherwise, it is inserted into
the right one. The list is then sorted by recursively browsing the
binary tree T starting by the left. The mean complexity of this
sorting method is O [n log(n)]. The best benefits of the algorithm
in terms of performance, are obtained for large amount of data.
Consequently, the whole point cloud is sorted first, before
creating any cluster, instead of performing one sorting per
cluster. In this way, the probability to build an unbalanced
tree is minimized, which would lead to a complexity of O(n2)
for the spatial sorting. Moreover, the sorting algorithm is easier to
parallelize on different threads of equal workload.

3.3 Normals Clustering
The normals clustering is a K-means algorithm Celebi et al.
(2013) which is constrained by predefined centroids related to the
main planar surfaces that can be found in the building. Assuming
the building structure is aligned on a Euclidean grid, the normal
vectors of the walls candidates have six possible orientations, one
for each axis direction. By starting the capture in front of a wall,
the reference frame R0 is aligned to this Euclidean grid, and the
normal vectors for the walls, the ground and the ceiling are along
the different axes of R0.

The original K-means algorithm has been adapted so that it
can classify the input normal vectors into at most K classes (K =
6), but can use less classes. Moreover, only points that have a
normal vector close to one of the R0 axes will be considered. It
starts by the initialization with the centers ôk, k ∈ [0, K − 1],
corresponding to the six possible orientations aligned with
axes ux, uy, uz. These centers are refined to match the actual
orientation of the normals when R0 is not perfectly aligned with
the building structure. Let {ok/k ∈ [0, K−1]} be the final centers
(i.e., the mean characteristics of the clusters), and Lk the labeled
set where each element of P is labeled with the corresponding
class label k ∈ (0, K−1)4.

First of all, each ok is initialized with the corresponding ôk, and
Lk is initialized with the elements ofP labeled with +∞. Then, for
each iteration of the algorithm, a first loop iterates over each
element (p, n, d) ∈ Lk and compares them to each center ôk. If
the Euclidean distance Δk = δ(n, ok) is under a threshold εn, then k
is kept as a candidate label. The argmin value k0 for the candidate

4SIMD for Single Instruction Multiple Data
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labels is kept if it exists. Otherwise, the label is set at + ∞ and the
corresponding point data is pruned from the process.

Once each element of Lk has been labeled, each ok is updated
with the mean normal value of the elements of Lk labeled with k.
If no element of Lk is labeled with k, then ok is set to (0, 0, 0).

This process is repeated N times. Similarly, the process could
be repeated until convergence. This is a form of constrained E-M
approach.

In terms of implementation, since the clustering is made
independently on each point, the work can be made by several
threads, for instance four threads in this work. We have also used
the SIMD4 instructions of the processor to accelerate the
execution. Note that Euclidean distance has been preferred to
angular distance, because products and sums are faster to
compute (and even faster in SIMD) than trigonometric functions.

3.4 Distance Clustering
After normals clustering, a maximum of K clusters
Lk, k ∈ [0, K − 1] is formed. For each of these clusters, points
have to be separated into parallel planes. Each cluster Lk contains
Lk points to be sorted. Let l ∈ [0, Lk−1] be the index of the points
inside a cluster Lk. In each cluster Lk, Mk planar structures have
to be determined. Let Sm withm ∈ (0,Mk−1) denote themth set of
points forming a planar structure in Lk.

First of all, in each set Lk, the Lk points Pl(pl, nl, dl) are
sorted by ascending distances dl. Once sorted, the clustering
is straightforward using a DBSCAN method. Subsequent
points Pl−1 and Pl are considered as belonging to the same
structure Sm when they have close distances, that is when the
deviation between their distances |dl−dl−1| is less than a
threshold εd. Otherwise, a new plane object is created and
initialized with Pl.

3.5 Parameters
Table 1 shows the values of the parameters used to perform the
planar segmentation.

Since the algorithm is fast to converge, a maximum
number of iterations N = 5 is enough for the K-means
algorithm. The distance εn has been fixed to 0.10, so
normal vectors that are not aligned with the initial frame
R0 are not added to any cluster. The parameter εd has been set
to 0.03. This value is limited by the precision of the depth
sensor and the algorithm. Figure 2 shows a few examples of
the final segmentation process. The left column shows images
from the scene to be reconstructed, while the right column
shows the segmentation results, where a different color is
given to each plane category.

TABLE 1 | Parameters for the planar segmentation.

Param Value Description

N 5 Max of iterations
εn 0.10 Maximal distance to add a point to a cluster
εd 0.03 Minimal distance to separate parallel planes

FIGURE 2 | Planar segmentation using our method. (A): RGB images of
the scene to be segmented. (B): representation of the corresponding 3D
points cloud with one color per plane orientation. Only the planes that are
aligned with the building structure are detected.
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4 FROM TEMPORAL MATCHING TO THE
EXPORT OF THE MODEL

The current planes are matched with the planes detected in the
previous frame. Thus, similar planes are merged and their
geometric characteristics are updated, leading progressively to
a 3D model of the whole scene. This section first describes the
creation and the update of the 3D model, and then explains how
the recognition of walls, ground or ceiling is made.

4.1 Planes Matching
All this process is based on the ability to match the currently
detected planes (at time t) to the previous ones (at time t−1).
Using a motion tracking algorithm, all the 3D coordinates are
expressed in a same reference frame R0.

The method described in Arnaud et al. (2018) is used to
match similar planes. For each cluster S extracted in the
previous planar segmentation, the histograms of each
parameter, i.e., nx, ny, nz, d, are computed (Figure 3). In
theory, all points of S have the same parameters, while in
practice they are distributed following a normal law around the
actual parameters. These distributions are used to create a
unique identifier ID for each plane, which is used to store the
plane in a hash table. Thus the memory is dynamically
allocated when new data is available. This identifier ID is
built using the four mean values ID = (μx, μy, μz, μd) of the
distributions of nx, ny, nz, d on the corresponding planar
surface. Thus, when a new plane is detected in the current
frame, its statistical characteristics are used either to retrieve
the previous corresponding plane when it exists with a

FIGURE 3 | Illustration of the hash table. On the left: a point cloud segmented into three planar surfaces. For each planar surface, four histograms are computed.
The statistics are used to build an identifier that is used as a key to address the hash table.

FIGURE 4 | Two techniques considered for plan boundaries. The first one consists in computing the full concave hull of each cluster after the segmentation stage
(A), and then in repeating this algorithm in order to merge this cluster (detected at time t + 1) with one of the previous clusters (detected at time t) (B). The second
technique consists in computing the minimal bounding box of a cluster (C), and to update it after merging with a previous cluster (D).
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complexity O(1), or, to create a new plane and the
corresponding entry in the hash table.

4.2 Drifts Correction
The estimation of the global position of the tablet is performed
natively using a Visual Inertial Odometry algorithm Li and
Mourikis (2012). However, there are still positioning errors
that accumulate over time, causing imprecise temporal
matching. To correct these possible drifts, an accelerated
version of the Iterative Closest Point (ICP) algorithm Besl and
McKay (1992) has been implemented.

Let Pt and Pt+1 be two point clouds captured respectively at
times t and t + 1. Each point P ∈ P is described by its spatial
position p, its color c and its normal vector n. ICP consists in
iteratively searching for correspondences between two
points clouds and in estimating the affine transform that
minimizes a global distance. Our variant of the ICP,
described hereafter, accelerates the process by a fast
sorting, a pruning of the points that are too far to be
considered as homologous, and by exploiting a distance
based on location, color and geometry.

4.2.1 Finding Correspondences
For each point in Pt+1, a match is searched in Pt. Considering
that Pt+1 and Pt are nearly aligned, two points P′ ∈ Pt+1 and
P ∈ Pt can be considered for matching if their distance δ(P′, P) is
under a threshold ε.

Assuming a small movement of the device in the time interval
(t, t + 1), the correspondences are searched in a local
neighborhood WP,u,v around each point P indexed by (u, v)5.

The Algorithm 1 details the procedure for creating a set of
correspondences C. Two points P, and P′ are matched if they are
similar in terms of location p, color c and normals n, according to
the following similarity function δ(P, P′):

δ(P, P′) � ωpδp(p, p′) + ωcδc(c, c′) + ωnδn(n, n′)
ωp + ωc + ωn

where δp, δc and δn stand for Euclidean distances, computed
respectively on spatial location, color and normals. The weights
ωp, ωc and ωn are used to give more or less importance to each
component.

Algorithm 1. Correspondences searching between two ordered
point clouds.

FIGURE 5 | Examples of walls identification. The ground and ceiling are displayed in green color, walls are drawn in blue and red.
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4.2.2 Alignment of the Point Clouds
Then, the two points clouds are aligned geometrically. To this
end, the homography transform is estimated. First, the translation
T is estimated as the distance between the centroids o9 and o of
the spatial positions of Pt and Pt+1. Then, the rotation R is
estimated by computing the mean rotation required to align the
normal vectors on their mean normal vector.

4.3 Estimating the Boundaries of Each Plane
Once the point cloud has been separated into different planar
structures, each of them can be represented by its area and its
boundaries. Among the various possible techniques, two
solutions have been considered, as illustrated by Figure 4.

The first one (Figures 4A,B) consists in computing and
updating the full concave hull of a plane using the KNN-based
method developed byMoreira and Santos (2007). In the latter, the
concave hull is defined as a polygon that best describes the region
occupied by a set of points in a plane, i.e., the minimal envelope or

the footprint of these points. This technique allows the modeling
of walls of non-rectangular shape, but has two disadvantages.
First, the concave hull is a growing list of points, and the spatial
resolution and growth are limited. In addition, this algorithm is
time consuming. The second option, illustrated by Figures 4C,D,
consists in using the minimal bounding box of the planes, which
is satisfactory when walls are rectangular, as it is the case in
our work.

4.4 Walls and Openings Identification
First, the height H of the room is computed. This is made by
finding the planes corresponding to the ground and the
ceiling, i.e., the planes that are orthogonal to the z axis.
The floor and ceiling are respectively the lowest and
highest planes. Then, all of the planes that are orthogonal
to the ground are considered as potential walls. This is
confirmed when its height is at least 80% of H. Examples
of walls detection are presented in Figure 5.

FIGURE 6 | Illustration of the openings detection. (A) Infrared light is not reflected by glass. (B) Sub-sampling of the data. (C) Detection of the minimal
bounding box.

FIGURE 7 | Example of applications: decorating, evaluating energetic performances.
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Once the structural planes identified, the openings (i.e., doors
and windows) are detected by assuming that windows are
transparent and doors are open. Therefore, the infrared light
are not reflected Figure 6A. Thus, the openings appear as void
rectangles, i.e., areas for which no input data is available. Each
wall is analyzed individually in 2D, and each dimension is sub-
sampled as described in Figure 6B. The rectangular shapes are
detected using the ratio of the size (number of pixels) of the black
area over the size of the minimal bounding box (Figure 6C). A
region is considered as an opening when the ratio is close to 1.

4.5 Exporting the Model to a CAD Software
After processing, the information needed to create a 3Dmodel are
exported in a. xml file. For each wall or opening, the following
parameters are saved in this file: an identifier, the coordinates of
its four corners and the orientation. The resulting 3D model
can be edited in the CAD software, for example to plan
renovation and decorating works (Figure 7). In the
application Plan 3D Energy that we developed (Figure 8)
with the society RPE, it is possible to specify the
characteristics of the building and the materials for each
wall and each opening. These estimations, together with the
data that our algorithm can provide, it is possible to estimate
the energy losses of the room6, and consequently its energetic
performances. It represents a useful tool to sensitize users to
make energetic responsible choices regarding their interior
renovation works. To evaluate the quality of the energetic
estimation when using the proposed system, five scans of a
room have been performed, and the energy losses are
compared to the estimations made with the real

FIGURE 8 | A 3D model viewed in the software Plan 3D Energy.

FIGURE 9 | Setup used for evaluation precision.

TABLE 2 | Results of the evaluation of the segmentation algorithm for 100
measures. x represents the distance between the tablet and the furthest
plane, D the real distance between the two planes and d the measured one. All
these distances are expressed in centimeters. n represents the number of valid
measured frames for each condition.

x D d n x D d n

100 10 10 45 150 10 13 45
20 22 100 20 23 100
30 32 85 30 31 99
50 50 100 50 55 99
— — — 100 101 99

200 10 14 39 300 10 20 12
20 22 21 20 — 0
30 32 97 30 34 85
50 51 99 50 51 98
100 100 100 100 100 100
150 150 99 150 150 99

�δ � 1.46 cm �n � 77.15 %

Average results obtained with method Arnaud et al. (2018)

�δ � 2.1 cm �n � 40.5%
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dimensions (310kWhm−2year−1, letter E). Using our 3D
models, the estimated energetic performances are
306kWhm−2year−1 in average, and systematically lead to
the same letter E.5

5 EVALUATIONS

This section presents the evaluations of the planar segmentation
algorithm used as a basis for wall detection.

5.1 Material
Developments were made on a Google Tango Yellowstone tablet,
equipped with a Nvidia Tegra K1 processor and 4 GB RAM, and
running on Android 4.4. It embeds a depth sensor and a motion
tracking algorithm based on Virtual Inertial Odometry Li and
Mourikis (2012).

5.2 Evaluation of the Precision and
Reliability
Both the reliability and the precision of the planes detection are
evaluated. For this purpose, the device is first put in front of an
empty wall at a fixed distance x. Then, another planar surface is
put between the device and the wall, at a fixed distanceD from the
wall. Figure 9 illustrates the setup. For each configuration, the
procedure is tested on 100 successive point clouds. Two measures
are used: the number n of times the algorithm detects exactly two
planes; if so, the distance d between the two detected surfaces. The
results are presented in Table 2.

The mean error �δ for the estimation of D is 1.46 cm, and the
mean percentage of frames where exactly two planes are
detected �n is 77.15%. In comparison, in Arnaud et al.
(2018), the error was approximately 2.1 cm, and two
planes were correctly detected in 40.5% of the cases. More
detailed results are given in Figure 10.

Thus, it can be seen that the clustering method provides a
better precision in most cases, and is able to distinguish parallel
walls with a high reliability if their inter-plane distance is up to
10 cm. For each algorithm, some errors occur for low inter-planes
distances D. This is due to the norms estimation, which is not

FIGURE 10 | Comparison of the percentage of frames where two planes were detected n (ordinate axis) for both planar segmentations algorithms depending on
the inter-planes distance D (abcissa) for each different configuration of x.

FIGURE 11 | Images of the rooms used for evaluation.

5Note that two coordinates are enough since the points lie on the same planar
surface.
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accurate enough on the edges of the depth map. Most failures
occur when two planes are close from each other. In terms of
execution time, the clustering approach is 5–10 times faster than
the growing regions strategy.

5.3 Evaluation of the 3D Model
Once the scan is made, we have a 3D model representing a set of
walls and their geometric dimensions. Then the estimated
dimensions can be compared with the real ones, measured by
using a laser meter.

The three rooms used for evaluation are shown in Figure 11.
First, the rooms are scanned, the walls are identified, as

explained in Section 4.4, and their dimensions are estimated.
The experience is repeated 10 times for each room. The Table 3
synthesizes the results using the precision and execution times for
three methods. The first one is the accelerated implementation of
CHISEL algorithm Klingensmith et al. (2015), with the use of
RANSAC for planar detection Arnaud et al. (2016). This version
does not run in real-time and the execution time varies from 200
to 500 ms. Concerning the algorithm detailed in Arnaud et al.
(2018), which estimates the 3D mesh of the room before

achieving the bottom-up segmentation, it just reaches real-
time execution. The mean error is approximately 5% of the
real dimensions, with a maximum error of 25%. The
maximum error is obtained for the meeting room, where the
ceiling lights distort the measurements of the depth sensor. The
proposed approach reduces the errors, as also shown in Table 2
and it is faster. Note also that the furniture in the scenes (the
clutter) do not harm the detection of the walls because each wall is
partly visible. Of course, errors could occur in the following
situations: when a wall is totally occluded from the floor to the
ceiling by a piece of furniture, when the room is not square or
rectangular.

5.4 Evaluation of the Usability
Some experiments have been conducted to evaluate the usability
of the system. First, we compare the time needed for manually
measuring the dimensions of a room using a laser meter, with the
time needed to scan and generate the model with the proposed
system. Ten people of different ages, genders and professions
participated to the experiment. 419 (±73) seconds were needed to
scan the room with the laser meter, whereas it took 247 (±44)

TABLE 3 | Synthetic comparison of three different methods. The precision is given as a percentage w.r.t the real dimensions.

Method Precision Execution Time

Segmentation of the 3D mesh + RANSAC Arnaud et al. (2016) 5–17% 200–500 ms
Fusion of RGB, contours + bottom-up segmentation Arnaud et al. (2018) 3−25% ≃ 200 ms
Proposed approach 3–15% ≃ 100 ms

FIGURE 12 | Example of sketch drawn by an user during the usability experiment.
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seconds to get the 3Dmodel when using the proposed system. Let
us underline that the 419 s do not include the modeling stage,
i.e., entering the dimensions manually in a CAD software.
Figure 12 shows an example of sketch made by one the user
after measuring the room. We applied the SUS questionnaire
Brooke (1996) to evaluate the usability of the system. Users
answer 10 questions formulated in such a way that they are
generic and apply to any type of service or system. A score close to
100 indicates excellent satisfaction.

Using a SUS questionnaire Brooke (1996), a mean usability
score of 75 was obtained which correspond to a good satisfaction,
which shows that the application can be easily understood by
inexperienced users. Among the 10 participants, two users found
that the use of the tablet did not bring any advantage compared to
a manual measure. The usability score was higher than 75 for
seven participants, with a maximum score of 93 for three persons.

6 CONCLUSION AND FUTURE WORKS

This paper has described an application that runs on a tablet
equipped with a depth sensor that generates and updates a 3D
model of an indoor environment. The 3D model is built in real-
time and uses exclusively the computing capabilities of the tablet.
This has been made possible by making assumptions (the
building structure is aligned on an Euclidean grid), by using
adapted data structures (hash tables and binary trees), by
combining a fast planar segmentation using hierarchical
clustering, by achieving code acceleration (SIMD) and multi-
threading.

Our evaluations show that the planar segmentation algorithm
is able to distinguish parallel planes if they are separated by more
than 10 cm, with a very high accuracy, and that the planes
placement accuracy is less than 2 cm. Compared to previous
work, the precision and speed have been significantly improved.
This accuracy can be further improved by using a more accurate
depth sensor. Some user experiments have also shown that it
takes approximately twice less time to scan a room compared to
the measurement using a laser meter. A usability score of 75 was
obtained. In addition, the 3D model can be edited in a CAD
software, for example to estimate the energetic performances, to
plan renovation and decorating works.

One of the perspectives of this work is the improvement of the
proposed application, while maintaining the real-time
performance, which is key for a good user experience.
Concerning the 3D planar segmentation, it would be
interesting to extend the work to more complex rooms where
walls are not perpendicular, or when some of the walls are totally
made of glass. Regarding the analysis of the walls, the key
elements of the rooms, such as openings, could be made by
using a semantic segmentation Zhang et al. (2013) or by recent
deep learning techniques. To finish, the parameters of the
algorithms have been selected manually. Even if they are
satisfactory for all the scenes we studied, a calibration is a
component that could be useful in other contexts (in order to
update the parameters automatically).

In a more technical concern, the proposed application has been
developed on Android for the Tango Platform, which has a depth
sensor and a visual odometry system. This is unfortunately not the
case for all devices, but more and more Android models are
proposed at an affordable price Taneja, 2020). When not
available on the device, a visual odometry algorithm can be
installed Li and Mourikis (2012). More generally, the future
application could be available in different versions, depending on
the targeted device and its components. This requires consequent
engineering work, which is out of the scope of this work.
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