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Artificial intelligence (AI) and extended reality (XR) differ in their origin and primary
objectives. However, their combination is emerging as a powerful tool for addressing
prominent AI and XR challenges and opportunities for cross-development. To investigate
the AI-XR combination, we mapped and analyzed published articles through a multi-stage
screening strategy. We identified the main applications of the AI-XR combination, including
autonomous cars, robotics, military, medical training, cancer diagnosis, entertainment,
and gaming applications, advanced visualization methods, smart homes, affective
computing, and driver education and training. In addition, we found that the primary
motivation for developing the AI-XR applications include 1) training AI, 2) conferring
intelligence on XR, and 3) interpreting XR- generated data. Finally, our results highlight
the advancements and future perspectives of the AI-XR combination.
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INTRODUCTION

Artificial Intelligence (AI) refers to the science and engineering used to produce intelligent machines
(Hamet and Tremblay, 2017). AI was developed to automate many human-centric tasks through
analyzing a diverse array of data (Wang and Preininger, 2019). AI’s history can be divided into four
periods. In the first period (1956–1970), the field of AI began, and terms such as machine learning
(ML) and natural language processing (NLP) started to develop (Newell et al., 1958; Samuel, 1959;
Warner et al., 1961; Weizenbaum, 1966). In the second period (1970–2012), rule-based approaches
received substantial attention, including the development of robust decision rules and the use of
expert knowledge (Szolovits, 1988). The third period (2012–2016) began with the advancement of
the deep learning (DL) method with the ability to detect cats in pictures (Krizhevsky et al., 2012). The
development of DL has since markedly increased (Krizhevsky et al., 2012; Marcus, 2018). Owing to
DL advancements, in the fourth period (2016 to the present), the application of AI has achieved
notable success as AI has outperformed humans in various tasks (Gulshan et al., 2016; Ehteshami
Bejnordi et al., 2017; Esteva et al., 2017; Wang et al., 2017; Yu et al., 2017; Strodthoff and Strodthoff,
2019).

Currently, we are witnessing the rapid growth of virtual reality (VR), augmented reality (AR), and
mixed reality (MR) technologies and their applications. VR is a computer-generated simulation of a
virtual, interactive, immersive, three-dimensional (3D) environment or image that can be interacted
with by using specific equipment (Freina and Ott, 2015). AR is a technology allowing to create a
composite view by superimposing digital content (text, images, and sounds) onto a view of the real
world (Bower et al., 2014). Mixed reality (MR) is comprising both AR and VR (Kaplan et al., 2020).
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Extended reality (XR) is an umbrella term including all VR, AR,
MR, and virtual interactive environments (Kaplan et al., 2020). In
general, XR simulates spatial environments under controlled
conditions, thus enabling interaction, modification, and
isolation of specific variables, objects, and scenes in a time-
and cost-effective manner (Marín-Morales et al., 2018).

XR and AI differ in their focus and applications. XR tries to use
computer-generated virtual environments to enhance and extend
the human’s capabilities and experiences and enable them to use
their capabilities of understanding and discovery in more
effective ways. On the other hand, AI attempts to replicate the
way humans understand and process information and, combined
with the capabilities of a computer, to process vast amounts of
data without flaws. Possible applications for both approaches
have been found in various application areas, and both are critical
and highly active research areas. However, their combination can
offer a new range of opportunities. To better understand the
potential of the AI-XR combination, we conducted a systematic
literature review of published articles by using a multi-stage
screening strategy. Our analysis aimed at better understanding
the objectives, categorization, applications, limitations, and
perspectives of the AI-XR combination.

METHODS

We conducted a systematic review of the literature reporting a
combination of XR and AI. For this objective, the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) framework was adapted to create a protocol for
searching and eligibility (Liberati et al., 2009). The developed
protocol was tested and scaled before data gathering. The
protocol included two main features of developing research
questions on the basis of objectives and determining the
search strategy according to research questions.

The following research question was formulated for this
review:

RQ. What are the main objectives and applications of the AI-
XR combination?

To discover published and gray literature, we used a multi-
stage screening strategy including 1) screening scientific and
medical publications via bibliographic databases and 2)
identifying relevant entities with Google web searches (Jobin
et al., 2019). To achieve the best results, we developed
multiple sequential search strategies involving an initial
keyword-based search of the Google Scholar and ScienceDirect
search engines and a subsequent keyword-based search with the

Google search engine in private browsing mode outside a
personal account. Both steps were performed by using the
keywords in Table 1.

In each search step and search keyword, links or articles were
followed and screened until the 350th record (Jobin et al., 2019).
A total of 321 documents have been identified and included in
this step. Total records included 232 articles identified through
bibliographic database searching and 89 articles identified
through Google searching. The inclusion criteria were articles
clearly describing the AI-XR combination and written in the
English language. After applying inclusion criteria and removing
duplicates, 28 articles were considered from bibliographic
database searching and four papers from Google. After
combining these two categories and removing duplicates, 28
articles were included in the subsequent analysis. After
identification of relevant records, citation-chaining was used to
screen and include all relevant references. Seven additional papers
were identified and included in this step. To retrieve newly
released eligible documents, we continued to search and screen
articles until April 3, 2021. One additional article was included on
the basis of an extended time frame, as represented in Figure 1.
By using three-step searching (web search, search of bibliographic
databases of scientific publications, and citation chaining search),
we included a total of 36 eligible, non-duplicate articles.

Bias could have occurred in this review through 1) application
of the inclusion criteria and 2) extraction of the objectives and
applications of the AI-XR combination. To address this bias, two
authors separately applied the inclusion criteria and then
extracted the objectives and applications of the AI-XR
combination. The authors stated the reasons for exclusion, and
summarized the main aspects of the AI-XR combination among
the included papers. The authors then compared their results
with each other, and resolved any disagreements through
discussions with the third and fourth authors. In addition, for
observational and cross-sectional included articles, we used the
National Heart, Lung, and Blood Institute (NHLBI) Quality
Assessment Tool for Observational Cohort and Cross-
Sectional Studies (National Heart, Lung, and Blood Institute
(NHLBI), 2019). We ensured that the quality assessment
scores among the included papers were acceptable.

RESULTS

As shown in Table 2, Figures 2, 3, our systematic search
identified 36 published records containing AI-XR
combinations. A substantial number of developed

TABLE 1 | The set of keywords used in the review.

Row Set

Test set 1 (Virtual reality OR Augmented reality OR Mixed reality OR Extended reality)
Test set 2 (Artificial intelligence OR Machine learning OR Deep learning OR Neural networks)
Search 1 #1 AND #2
Test set 3 (Interactive simulation OR Virtual environment)
Search 2 #3 AND #2
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combinations (n � 13; 36%) have been used for medical and
surgical training, as well as autonomous cars and robotics (n � 10;
28%). A review of the affiliations of the authors of the included
papers indicated that most AI-XR combination applications were
developed in high-ranking research institutes, thus underscoring
the importance of the AI-XR research area. The leading high-
ranking research institutes cited by the selected articles include
Google Brain, Google Health, Intel Labs, different labs in
Massachusetts Institute of Technology (MIT), Microsoft
Research, Disney Research, Stanford Vision and Learning
Laboratory, Ohio Supercomputer Center, Toyota Research
Institute, Xerox Research Center, as well as a variety of
robotics research laboratories, medical schools, and AI labs.

To explore the included articles, we developed keyword co-
occurrence maps of words and terms in the title and abstract. We
used VOSviewer software (https://www.vosviewer.com/accessed
July 20, 2021) to map the bibliometric data as a network as it is
represented in Figure 4. In this figure, nodes are specific terms,
their sizes indicate thier frequency, and links represent the co-
occurrence of the terms in the title and abstract of the included

papers. The most co-occurring terms among selected articles are
including virtual reality with artificial intelligence, training,
virtual patient, immersive, and visualization.

All included records could be categorized into three groups: 1)
interpretation of XR generated data (n � 12; 33%), mainly in
medical and surgical training applications, 2) conferring
intelligence on XR (n � 10; 28%), mostly in gaming and
virtual patient (medical training) applications, and 3) training
AI (n � 14; 39%), partly for autonomous cars and robots.

The main applications of the AI-XR combination are medical
training, autonomous cars and robotics, gaming, armed forces
training, and advanced visualization. Below, we discuss each
category.

Medical Training
XR has become one of the most popular technologies in training,
and many publications have discussed XR’s advantages in this
area (Ershad et al., 2018; Ropelato et al., 2018; Bissonnette et al.,
2019). XR provides risk-free, immersive, repeatable environments
to improve performance in various tasks, such as surgical and

FIGURE 1 | PRISMA-based flowchart of the retrieval process.
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TABLE 2 | Included papers.

References Application AI method XR platform Category

Marín-Morales et al. (2018) Affective computing Support Vector Machine classifier Immersive virtual environment based on VRay engine Interpretation of XR
generated data

Bissonnette et al. (2019) Medical training Support Vector Machine
algorithms

Virtual reality hemilaminectomy Interpretation of XR
generated data

Ershad et al. (2018) Medical training Naive Bayes classifier Virtual reality surgical Interpretation of XR
generated data

Loukas and Georgiou,
(2011)

Medical training Hidden Markov, multivariate
autoregressive (MAR)

Virtual reality Laparoscopic Interpretation of XR
generated data

Kerwin et al. (2012) Medical training Decision tree Virtual reality mastoidectomy Interpretation of XR
generated data

Richstone et al. (2010) Medical training Linear discriminate analysis and
nonlinear neural network analyses

Virtual reality surgical Interpretation of XR
generated data

Sewell et al. (2008) Medical training Hidden Markov and naive Bayes
classifier

Virtual reality surgical Interpretation of XR
generated data

Liang and Shi, (2011) Medical training Machine learning algorithm and
fuzzy logic

Virtual reality surgical Interpretation of XR
generated data

Jog et al. (2011) Medical training Support Vector Machine Virtual reality surgical Interpretation of XR
generated data

Megali et al. (2006) Medical training Hidden Markov Virtual reality surgical Interpretation of XR
generated data

Weidenbach et al. (2004) Medical training Fuzzy set and fuzzy clustering EchoComJ (augmented reality) Interpretation of XR
generated data

Cavazza and Palmer,
(2000)

Gaming Natural language processing Virtual environment based on Reusable Elements for
Animation Using Local Integrated Simulation Models
(REALISM) software

Interpretation of XR
generated data

Chen et al. (2019) Cancer diagnosis Convolutional neural networks Augmented reality microscope Conferring intelligence
on XR

Talbot et al. (2012) Medical training:
virtual patient

Artificial intelligence dialogue
systems

Virtual patient (vHealthcare, HumanSim, Clinispace) Conferring intelligence
on XR

Turan and Çetin, (2019) Gaming Fuzzy tactics to create AI-based
animals

Virtual island based on Unity Conferring intelligence
on XR

Gutiérrez-Maldonado et al.
(2008)

Medical training:
virtual patient

Artificial intelligence dialogue
systems

Virtual environments based on Virtools Dev software Conferring intelligence
on XR

Caudell et al. (2003) Medical training:
virtual patient

Not described Virtual patient (TOUCH) Conferring intelligence
on XR

A. H. Sadeghi et al., 2021 Advanced
visualization

Artificial intelligence-based
segmentation

Immersive 3-dimensional-VR platform (PulmoVR) Conferring intelligence
on XR

Ropelato et al. (2018) Driver training Not described Virtual environment based on Unity, CityEngine Conferring intelligence
on XR

Bicakci and Gunes, (2020) Smart homes Not described Not described Conferring intelligence
on XR

Kopp et al. (2003) Gaming Not described Virtual reality called Multimodal Assembly eXpert (MAX) Conferring intelligence
on XR

Latoschik et al. (2005) Gaming Knowledge representation layer Virtual reality called Multimodal Assembly eXpert (MAX) Conferring intelligence
on XR

Israelsen et al. (2018) Armed forces
training

AI decision-maker and Gaussian
process Bayesian optimization

Virtual environment based on Orbit Logic simulator Training AI

Lamotte et al. (2010) Autonomous car Virtual environment based on VIVUS Training AI
Dosovitskiy et al. (2017) Autonomous car Not described Virtual environment based on CARLA simulator Training AI
Shah et al. (2018) Autonomous car Not described Virtual environment based on AirSim simulator Training AI
Koenig and Howard,
(2004)

Robotic Not described Virtual environment based on Gazebo simulator Training AI

Shen et al. (2020) Robotic Reinforcement learning iGibson (Virtual environment based on Bullet) Training AI
Kurach et al. (2020) Gaming Reinforcement learning Google Research Football Virtual Environment Training AI
Santara et al. (2020) Autonomous car Single and multi-agent

reinforcement learning
Virtual environment based on Madras Training AI

Amini et al. (2020) Autonomous car Reinforcement learning Virtual environment based on VISTA Training AI
F. Sadeghi et al., 2018 Robotic Deep recurrent controller Virtual environment based on Bullet simulator Training AI
Guerra et al. (2019) Autonomous car Not described Virtual environment based on FlightGoggles Training AI
Gaidon et al. (2016) Autonomous car Deep learning algorithms Virtual environment based on Unity Training AI
Meissler et al. (2019) Advanced

visualization
Convolutional neural networks Virtual environment based on Unity Training AI

VanHorn et al. (2019) Advanced
visualization

Deep learning Virtual environment based on Unity Training AI
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medical tasks. Although XR generates different types of data,
interpreting XR generated data and evaluating user skills remain
challenging. Combining AI and XR provides an opportunity to
better interpret XR dynamics by developing an objective
approach for assessing user skill and performance. Through
this method, data can be generated from either the XR tool or
XR user, after extraction and selection of features from data, and

then fed into AI to determine the most relevant skill assessment
features. Of 36 included articles, ten (n � 10; 28%) articles focused
on medical training. These articles used various AI methods,
including Support Vector Machine (two articles), Hidden
Markov (two articles), Naive Bayes classifier (two articles),
Fuzzy set, and Fuzzy logic (two articles), Neural Networks and
Decision trees (two articles). Furthermore, included papers used

FIGURE 2 | Included papers per year (publishing trend). There was a significant increase in the number of included papers published after 2017.

FIGURE 3 | Applications of the AI-XR combination among the included records (categorization of included studies). The most popular categories include medical
training, autonomous car, and gaming applications.
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different XR platforms, including virtual reality surgical (six
articles), virtual reality hemilaminectomy (one article), virtual
reality laparoscopic (one article), virtual reality mastoidectomy
(one article), and EchoComJ (one article). EchoComJ is an AR
system that simulates an echocardiographic examination by
combining a virtual heart model with real three-dimensional
ultrasound data (Weidenbach et al., 2004).

Virtual Patients
In medical training, XR and AI combinations have been used to
develop virtual (simulated) patients. In this application, a virtual
patient engages with users in a virtual environment. Virtual
patients are used for training medical students and trainees to
improve specific skills, such as diagnostic interview abilities, and
to engage in natural interactions (Gutiérrez-Maldonado et al.,
2008). Virtual patients help trainees to easily generalize their
knowledge to real-world situations. However, developing
appropriate metrics for evaluating user performance during
this human-AI interaction in interactive virtual environments
remains challenging. Of 36 reviewed papers, three articles focused
on the area of virtual patients. Included papers combined NLP
methods with virtual environments to develop diagnostic
interviews and dialogue skills.

Armed Forces Training
AI can be used as an agent in virtual interactive environments to
train armed forces. The main objective of AI is to challenge
human participants at a suitable level with respect to their skills.
To serve as a credible adversary, the AI agent must determine the
human participant’s skill level and then adapt accordingly
(Israelsen et al., 2018). For this purpose, the AI agent can be
trained in an interactive environment against an intelligent (AI)
adversary to learn how to optimize performance. For this AI-AI

interaction in an interactive virtual environment, Gaussian
process Bayesian optimization techniques have been used to
optimize the AI agent’s performance (Israelsen et al., 2018).
Only one article focused on armed force training by
combining AI decision-maker and Gaussian process Bayesian
optimization with virtual environment developed by Orbit Logic
simulator.

Gaming Applications
Gaming is another application category of the AI-XR combination.
Recently, AI agents have been used to play games such as Starcraft II,
Dota 2, the ancient game of Go, and the iconic Atari console games
(Kurach et al., 2020). The main objective for developing this
application is to provide challenging environments to allow newly
developed AI algorithms to be quickly trained and tested.
Furthermore, AI agents can be included as non-player characters
in video gaming environments to interact with users. However, it is
reported that the AI adversary agents used in gaming are highly non-
adaptive and scripted (Israelsen et al., 2018). Of 36 included papers,
five focused on gaming applications and developed AI-based objects
in virtual environments. These articles used various platforms to
combine AI-XR such as Reusable Elements for Animation Using
Local Integrated SimulationModels (REALISM) software, andUnity.

Robots and Autonomous Cars
Designing a robot with the ability to perform complicated human
tasks is very challenging. The main obstacles include the
extraction of features from high-dimensional sensor data,
modeling the robot’s interaction with the environment, and
enabling the robot to adapt to new situations (Hilleli and El-
Yaniv, 2018). In reality, resolving these obstacles can be very
costly. For autonomous cars, training AI requires capturing vast
amounts of data from all possible scenarios, such as near-collision
situations, off-orientation positions, and uncommon
environmental conditions (Shah et al., 2018). Capturing these
data in the real world is not only potentially unsafe or dangerous,
but also prohibitively expensive. For both robots and autonomous
cars, training and testing AI in virtual environments has emerged
as a unique solution. It is reported that both robots and
autonomous cars, without any prior knowledge of the task,
can be trained entirely in virtual environments and
successfully deployed in the real world (Amini et al., 2020).
Reinforcement learning (RL) in robots and autonomous cars is
commonly trained by using XR. Of 36 papers, ten included
articles (28%) focused on robots and autonomous cars. These
articles combined DL and RL methods with different virtual
environment platforms, including virtual intelligent vehicle
urban simulator, CARLA (open source driving simulator with
a Python API), AirSim (Microsoft open-source cars and drones
simulators built on Unreal Engine), Gazebo (open-source 3D
robotics simulator), iGibson (virtual environment providing
physics simulation and fast visual rendering based on Bullet
simulator), Madras (open-source multi-agent driving
simulator), VISTA (a data-driven simulator and training
engine), Bullet physics engine simulator, FlightGoggles
(photorealistic sensor simulator for perception-driven
autonomous cars), and Unity.

FIGURE 4 | The map of the co-occurrence of the words and terms in the
title and abstract of included papers.
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Advanced Visualization
XR can create novel displays and improve understanding of
complex structures, shapes, and systems. However, automated
AI-based imaging algorithms can increase the efficiency of XR by
providing automatic visualization of target parts of structures. For
example, in patient anatomy applications, the combination of XR
and AI can add novelty to the thoracic surgeons’ armamentarium
by enabling 3D visualization of the complex anatomy of vascular
arborization, pulmonary segmental divisions, and bronchial
anatomy (Sadeghi et al., 2021). Finally, XR can be used to
visualize the deep learning (DL) structure (Meissler et al.,
2019; VanHorn et al., 2019). For example, the XR-based DL
development environment can make DL more intuitive and
accessible. Three included articles focused on advanced
visualization by combining neural networks with different
models of XR based on Unity engine, and immersive 3-
dimensional-VR platforms.

DISCUSSION

In this section, we describe limitations and perspectives on the
AI-XR combination in three categories: interpretation of XR

generated data, conferring intelligence on XR, and training AI
as it is represented in Figure 5.

Interpretation of XR Generated Data
Recently, much attention has been paid to the use of XR for
medical training, particularly in high-risk tasks such as surgery.
Extensive data can be collected from users’ technical performance
during simulated tasks (Bissonnette et al., 2019). The collected
data can be used to extract specific metrics indicating user
performance. Because these metrics, in most cases, are
incapable of efficiently evaluating users’ level of expertise, they
must be extensively validated before implementation and
application to real world evaluation (Loukas and Georgiou,
2011). AI, through ML algorithms, can use XR-generated data
to validate the metrics of skill evaluation (Ershad et al., 2018).

Data extracted from selected articles are including
electroencephalography and electrocardiography results
(Marín-Morales et al., 2018); patient eye and pupillary
movements (Richstone et al., 2010); volumes of removed
tissue, and the position, and angle of the simulated burr and
suction instruments (Bissonnette et al., 2019); drilled bones
(Kerwin et al., 2012); knot tying and needle driving (Loukas
and Georgiou, 2011); and movements of surgical instruments

FIGURE 5 | Classification of included papers.
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(Megali et al., 2006). Common ML algorithms used to validate
skill evaluation metrics include Support Vector Machine (Marín-
Morales et al., 2018; Bissonnette et al., 2019), hidden Markov
(Megali et al., 2006; Sewell et al., 2008; Loukas and Georgiou,
2011), nonlinear neural networks (Richstone et al., 2010),
decision trees (Kerwin et al., 2012), multivariate autoregressive
(Loukas and Georgiou, 2011), and Naive Bayes classifier (Sewell
et al., 2008).

Conferring Intelligence on XR
Although the advancement of computer graphic techniques has
substantially improved XR tools, including intelligence by adding
AI can revolutionize XR. Conferring intelligence on XR is about
adding AI to a specific part of XR to improve the XR experience.
In this combination, AI can help XR to effectively communicate
and interact with users. Conferring intelligence on XR can be
useful for different applications, such as cancer detection (Chen
et al., 2019), gaming (Turan and Çetin, 2019), advanced
visualization (Sadeghi et al., 2021), driver training (Ropelato
et al., 2018), and virtual patient and medical training
(Gutiérrez-Maldonado et al., 2008). For example, in virtual
patient applications, AI has been used to create Artificial
Intelligence Dialogue Systems (Talbot et al., 2012).
Consequently, virtual patients can engage in natural dialogue
with users. In virtual patient, intelligent agents can be visualized
in human size with the ability of facial expressions, gazing, and
gesturing, and can engage in cooperative tasks and synthetic
speech (Kopp et al., 2003). In more advanced virtual patients,
intelligent agents can understand human emotional states
(Gutiérrez-Maldonado et al., 2008).

The main ML algorithms for this type of combination include
neural networks (NNs) and fuzzy logic (FL) algorithms. A
combination of NNs and XR is commonly used for developing
virtual patients and detecting cancer (Chen et al., 2019). For
example, one study has developed an augmented reality
microscope, which overlays convolutional neural network-
based information onto the real-time view of a sample, and
has been used to identify prostate cancer and detect metastatic
breast cancer (Chen et al., 2019). NNs have been efficiently
applied to XR because of its tolerance of noisy inputs,
simplicity in encoding complex learning, and robustness in the
presence of missing or damaged inputs (Turan and Çetin, 2019).
The FL algorithm can handle imprecise and vague problems. This
algorithm has been applied to interactive virtual environments
and games to allow for more human-like decisive behavior.
Because this algorithm needs only the basics of Boolean logic
as prerequisites, it can be added to any XR with little effort (Turan
and Çetin, 2019).

Training AI
Training AI by using real-world data can be very difficult. For
example, developing urban self-driving cars in the physical world
requires considerable infrastructure costs, funds and manpower,
and overcoming a variety of logistical difficulties (Dosovitskiy
et al., 2017). In this situation, XR, serving as a learning
environment for AI, can be used as a substitute for training
with experimental data. This technique has received attention

because of its many advantages such as safety, cost efficiency, and
repeatability of training (Shah et al., 2018; Guerra et al., 2019).
The main elements of XR as a learning environment include 3D
rendering engine, sensor, physics engine, control algorithms,
robot embodiments, and public API layer (Lamotte et al.,
2010; Shah et al., 2018). The outcomes of these elements are
virtual environments consists of a collection of dynamic, static,
intelligent, and non-inteligent objects such as the ground,
buildings, robots, and agents.

In the learning environment, a robot can be exposed to a
variety of physical phenomena, such as air density, gravity,
magnetic fields, and air pressure (Lamotte et al., 2010). In this
case, the physics engine can simulate and determine physical
phenomena in the environment (Shen et al., 2020). The included
papers have used different physics and graphics engines
(simulators) including PHYSX, Bullet, Open Dynamics Engine,
Unreal Engine, Unity, CARLA, AirSim, Gazebo, iGibson,
Madras, VISTA, FlightGoggles for developing virtual worlds.
Multiple advancements have also recently enabled the
development of a more efficient learning environment for
training AI. First, the rapid evolution of 3D graphics
rendering engines has allowed for more sophisticated features
including advanced illumination, volumetric lighting, real-time
reflection, and improved material shaders (Guerra et al., 2019).
Second, advanced motion capture facilities, such as laser tracking,
infrared cameras, and ultra-wideband radio, have enabled precise
tracking of human behavior and robots (Guerra et al., 2019).

In the learning environments, agents expose to variety of
generated labeled and unlabeled data and they learn to control
physical interactions and motion, navigate according to sensor
signals, change the state of the virtual environment toward the
desired configuration, or plan complex tasks (Shen et al., 2020).
However, for training robust AI, learning environments must
address several challenges, including transferring knowledge
from XR to the real world; developing complex, stochastic,
realistic scenes; and developing fully interactive, multi-AI
agent, scalable 3D environments.

Transferring Knowledge
One of the main challenges is transferring the results from
learning environments to the real world. Complicated aspects
of human behavior, physical phenomena, and robot dynamics
can be very challenging to precisely capture and respond to in the
real world (Guerra et al., 2019; Amini et al., 2020). In addition,
determining (by calculating percentages) whether the results
obtained from a learning environment are sufficient for real-
world application is difficult (Gaidon et al., 2016). One method to
address this challenge is domain adaptation, a process enabling an
AI agent trained on a source domain to generalize to a target
domain (Bousmalis et al., 2018). For the AI-XR combination, the
target domain is the real world, and the source domain is XR. Two
types of domain adaptation methods are pixel-level and feature-
level adaptation.

Complexity
Another challenge is the lack of complexity in learning
environments. A lack of real-world semantic complexity in a
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learning environment can cause the AI to be trained
insufficiently to run in the real world (Kurach et al., 2020).
Many learning environments offer simplified modes of
interaction, a narrow set of tasks, and small-scale scenes. A
lack of complexity, specifically simplified modes of interaction,
has been reported to lead to difficulties in applying AI in real-
world situations (Dosovitskiy et al., 2017; Shen et al., 2020). For
example, training autonomous cars in simple learning
environments is not applicable to extensive driving
scenarios, varying weather conditions, and exploration of
roads. However, newly developed learning environments can
add more complexity by using repositories of sparsely sampled
trajectories (Amini et al., 2020). For each trajectory, learning
environments synthesize many views that enable AI agents to
train on acceptable complexity.

One aspect of complexity in learning environments is
stochasticity. Many commonly used learning environments are
deterministic. Because the real world is stochastic, robots and self-
driving cars must be trained in uncertain dynamics. To increase
robustness in the real world, newly developed learning
environments expose AI (the learning agent) to a variety of
random properties of the environment such as varying
weather, sun positions, and different visual appearances and
objects (e.g., lanes, roads, or buildings) (Gaidon et al., 2016;
Amini et al., 2020; Shen et al., 2020). However, in many learning
environments, this artificial randomness has been found to be too
structured and consequently insufficient to train robust AI
(Kurach et al., 2020).

Another aspect of complexity in learning environments is
creating realistic scenes. Several learning environments
including different annotated elements of the environment
with photorealistic materials to create scenes close to real-
world scenarios (Shen et al., 2020). These learning
environments use scene layouts from different repositories
and annotated objects inside the scene. They use various
materials (such as marble, wood, or metal) and consider
mass and density in the annotation of objects (Shen et al.,
2020). However, some included articles have reported the
creation of a completely interactive environment de novo
without using other repositories.

Interactive or Non-interactive
Some learning environments are created only for navigation and
have non-interactive assets. In these environments, the AI agent
cannot interact with scenes, because each scene consists of a
single fully rigid object. However, other learning environments
support interactive navigation, in which agents can interact with
the scenes. In newly developed learning environments, objects in
scenes can be annotated with the possible actions that they can
receive.

Single or Multiple Agents
In many learning environments, only one agent can be trained
and tested. However, one way to train robust AI involves
implementing several collaborative or compete AI agents
(Kurach et al., 2020). In multi-agent learning environments,
attention must be paid to communication and interactions

between agents. In this complex interaction, optimizing the
behavior of the learning AI agent is highly challenging.
Furthermore, the appearance and behavior of adversary agents
in learning environments must be considered. Implementing
kinematic parameters and advanced controllers to govern
these agents has been reported in several studies (Dosovitskiy
et al., 2017).

Sensorimotor
Sensorimotor control in a 3D virtual world is another challenging
aspect of learning environments. For example, challenging states
for sensorimotor control in autonomous cars include exploring
densely populated virtual environments, tracking multi-agent
dynamics at urban intersections, recognizing prescriptive
traffic rules, and rapidly reconciling conflicting objectives
(Dosovitskiy et al., 2017).

Open-Source Licenses
To test new research ideas, learning environments must be open-
source licenses so that researchers can modify the environments.
However, many advanced environments and physics simulators
offer restricted licenses (Kurach et al., 2020).

Scalable
Finally, developing scalable learning environments is another
concern of researchers. Creating learning environments that
do not require operating and storing virtual 3D data for entire
cities or environments is important (Amini et al., 2020).

In conclusion, some advanced features in learning
environments include:

• Fully interactive realistic 3D scenes
• Ability to import additional scenes and objects
• Ability to operate without storing enormous amounts
of data

• Flexible specification of sensor suites
• Realistic virtual sensor signals such as virtual LiDAR signals
• High-quality images from a physics-based renderer
• Flexible specification of cameras and their type and position
• Provision of a variety of camera parameters such as 3D
location and 3D orientation

• Pseudo-sensors enabling ground-truth depth and semantic
segmentation

• Ability to have endless variation in scenes
• Human-environment interface for humans (fully physical
interactions with the scenes)

• Provision of open digital assets (urban layouts, buildings, or
vehicles)

• Provision of a simple API for adding different objects such
as agents, actuators, sensors, or arbitrary objects

GUIDELINES

In general, the combination of AI-XR can be used for two main
objectives, i.e.: 1) AI serving and assisting XR and 2) XR serving
and assisting AI as it is represented in Figure 6.
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AI Serving XR
AI consists of different subdomains, including the following: 1)
ML that teaches a machine to make a decision based on
identifying patterns and analyzing past data; 2) DL that
processes input data through different layers to identify and
predict the outcome; 3) Neural Networks (NNs) that process
the input data in a way that the human brain does; 4) NLP which
is about understanding, reading, and interpreting a human
language by a machine; and 5) Computer Vision (CV) that
tries to understand, recognize and classify images and videos
(Great Learning, 2020). Among included papers, AI served XR in
order to 1) detect patterns of XR generated data by using ML
methods and 2) improving XR experience by using NNs and NLP
methods.

Using AI to detect patterns of XR-generated data is very
common among included papers. This type of AI-XR
combination can be divided into two main categories 1) non-
interactive: simply feeding the results of XR into AI and detecting
the patterns, and 2) interactive: feeding XR generated data into
AI, identifying the pattern, and returning results to XR. While
non-interactive method can help to extract specific metrics
indicating XR’s user performance, the interactive category can
be used for the optimization of process parameters. In this
category, AI can analyze different modes of XR and return
feedback to XR.

Several articles focused on improving the XR experience by
adding NLP and DL. In this objective, AI can be added to a
specific part of XR and provide various advantages to the XR

experience. For example, in virtual patients, adding NLP can
bring an ability to understand human speech and hold a dialogue.
Furthermore, in gaming applications, implementing AI-based
objects can increase the randomness of a game.

XR Serving AI
Data availability is one of the main concerns of AI developers
(Davahli et al., 2021). Despite significant efforts in collecting and
releasing datasets, most data might have different deficiencies,
such as, missing data in datasets, lack of coverage of rare and
novel cases, high-dimensionality with small sample sizes, lack of
appropriately labeled data, and data contamination with artifacts
(Davahli et al., 2021). Furthermore, most data are generally
collected for operations but not specifically for AI research
and training. In this situation, XR can be used as an
additional source for generating high-quality AI-ready data.
These data can be rich, cover rare and novel cases, and extend
beyond available datasets.

In general, XR can be used for various applications such as
medical education, improving patient experiences, helping
individuals to understand their emotions, handling dangerous
materials, remote training, visualizing complex products and
compounds, building effective collaborations, training workers
in safe environments, virtual exhibitions, and entertainment, and
considering as a computational platform (Forbes Technology
Council, 2020). However, in the “XR serving AI” objective, XR
can have a new function and generate AI-ready data. By using XR,
AI can learn and become well-trained before implementing in the

FIGURE 6 | Proposed guidelines for the AI-XR combination.
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physical world. The main advantages of using XR for training AI
systems are including 1) the entire training can occur in XR
without collecting data from the physical world, 2) learning in XR
can be fast, and 3) XR allows AI developers to simulate novel
cases for training AI systems.

Even though the reviewed articles describe applications of XR for
training AI systems in different areas, including autonomous cars,
robots, gaming applications, and armed force training; surprisingly,
no study focused on the healthcare area. In healthcare, data privacy
plays an important role in developing and implementing AI. Because
of the complexity of protecting data in healthcare, data privacy has
had significant impact on increasing data availability. In this situation,
AI can be trained in virtual environments containing patient
demographics, disease states, and health conditions.

Although majority of included papers used XR to train AI, XR
can be used to improve performance of AI by 1) validating the
results and verifying hypotheses generated by AI systems, and 2)
offering advanced visualization of AI structure. For example, in
drug and antibiotic discovery where AI systems propose new
compounds, XR can be used to compute the different properties
of discovered drugs.

LIMITATIONS

We realize that not all potentially relevant papers to this review
may have been included. First, even though we used the most
related set of keywords, some relevant articles might not have
been identified due to the limited number of keywords. Second,
for each search keyword, we only screened links or articles until
the 350th record. Third, we used only one round of citation-
chaining to screen references. More citation-chaining could have
identified additional papers relevant to AI and XR synergy.
Finally, we used a limited number of bibliographic databases
for records discovery.

CONCLUSION

This article comprehensively reviewed the published literature
relevant to the intersection of themes related to the combination
of AI and XR domains. By following PRISMA guidelines and
using targeted keywords, we identified 36 articles that met the
specific inclusion criteria. The examined papers were categorized
into three main groups: 1) the interrelations of AI and XR
dynamics, 2) the influence of AI on making XR applications
more useful and valuable in a variety of domains, and 3) common
AI and XR training issues. We also identified the main
applications of the AI-XR combination technologies, including
advanced visualization methods, autonomous cars, robotics,
military, and medical training, cancer diagnosis, entertainment
and gaming applications, smart homes, affective computing, and
driver education, and training. The study results point to the
growing importance of the interrelationships between AI and XR
technology developments and the future prospects for their
extensive applications in business, industry, government, and
education.
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