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An adaptive virtual school environment can offer cognitive assessments (e.g., Virtual
Classroom Stroop Task) with user-specific distraction levels that mimic the conditions
found in a student’s actual classroom. Former iterations of the virtual reality classroom
Stroop tasks did not adapt to user performance in the face of distractors. While advances
in virtual reality-based assessments provide potential for increasing assessment of
cognitive processes, less has been done to develop these simulations into
personalized virtual environments for improved assessment. An adaptive virtual school
environment offers the potential for dynamically adapting the difficulty level (e.g., level and
amount of distractors) specific to the user’s performance. This study aimed to identify
machine learning predictors that could be utilized for cognitive performance classifiers,
from participants (N � 60) using three classification techniques: Support Vector Machines
(SVM), Naive Bayes (NB), and k-Nearest Neighbors (kNN). Participants were categorized
into either high performing or low performing categories based upon their average
calculated throughput performance on tasks assessing their attentional processes
during a distraction condition. The predictors for the classifiers used the average
cognitive response time and average motor response dwell time (amount of time
response button was pressed) for each section of the virtual reality-based Stroop task
totaling 24 predictors. Using 10-fold cross validation during the training of the classifiers,
revealed that the SVM (86.7%) classifier was the most robust classifier followed by Naïve
Bayes (81.7%) and KNN (76.7%) for identifying cognitive performance. Results from the
classifiers suggests that we can use average response time and dwell time as predictors to
adapt the social cues and distractors in the environment to the appropriate difficulty level
for the user.
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INTRODUCTION

Virtual reality (VR) classroom platforms immerse users into
simulated classroom environments, wherein the user inhabits
an avatar while “seated” at a desk and responds to cognitive
construct stimuli (while ignoring distractors) presented on a
virtual blackboard. These VR platforms are increasingly
utilized for neurocognitive assessment of attention and
executive functioning (Lalonde et al., 2013; Iriarte et al., 2016).
Of note, there are two recent reviews examining efforts to assess
persons with neurodevelopmental disorders using Virtual Reality
Classroom-based measures: attention-deficit hyperactivity
disorder (ADHD) (Parsons et al., 2019) and Autism Spectrum
Disorder (ASD) (Duffield et al., 2018). Results of the meta-
analysis with an ADHD population revealed psychometric
support for the construct validity of the Virtual Reality
Classroom continuous performance task (CPT).

Virtual Classroom CPTs aspire to mimic traditional two-
dimensional CPT protocols (Figure 1). The 2D CPTs are
computerized measures that assess attention, impulsiveness,
and vigilance through the logging and analysis of correct
responses, omission errors, commission errors, reaction time,
and reaction time variability. The 2D CPTs are often used to
differentiate between typically developing persons and persons
with potential ADHD. While there are various versions of CPT,
the most common stimulus presentation is the X, No-X, which
involves display of a single target stimulus, such as the letter “X”
to which the participant responds. There are also non target
stimuli presented. A variant of the “X” target CPT is the AX CPT,
which involves having the participant respond to the target
stimulus (e.g., “X”) only when the target directly follows a
specific letter (i.e., “A”).

Meta-analytic review findings have been mixed, with older
reviews demonstrating small to moderate effect sizes for
commission and omission errors between controls and
individuals with ADHD, and the inability to examine reaction
time in the aggregate (Huang-Pollock et al., 2012). These previous
reviews were critiqued for sampling and measurement error, and
for not correcting for publication bias (Huang-Pollock et al.,
2012). Even more recent 2D CPT meta-analytic review findings
revealed that reaction time variability is the metric with the
greatest effect size in differentiating how children and
adolescents with attention-deficit hyperactivity disorder differ
from typically developing groups (Kofler et al., 2013). It is
important to note that the meta-analysis also revealed that not
all participants with attention-deficit hyperactivity disorder had
deficient performance in reaction time variability. Similarly, other
meta-analytic findings have revealed that hyperactivity is
ubiquitous across ADHD subtypes and best predicted by
situations with high executive function demands or low
stimulation environments (Kofler et al., 2016). The testing
environment not being a classroom may account for
psychometric inconsistencies of the 2D CPT with a limited
capacity for simulating the difficulties persons with ADHD
experience in everyday life (Pelham et al., 2011).

Further, there is need for adaptive algorithms that tailor the
assessment to the individual participant’s strengths and

weaknesses (Reise and Waller, 2009; Gibbons et al., 2016).
These algorithms can be used for developing an adaptive
virtual school environment that dynamically adjusts
complexity of stimulus presentations and distractors.
Moreover, artificially intelligent platforms can monitor
participant performance and message the virtual teacher when
the participant needs social cues for reorienting attention to
learning material. When working with students, the following
considerations need to be taken into account: 1) not all
participants with or without clinical diagnoses perform in a
consistent manner; 2) children with ADHD show deficient time
on task and more variable visual attending to required learning
stimuli in the classroom (Kofler et al., 2008); 3) evidence has
emerged that the increase in academic demands at young ages has
coincided with increased prevalence of ADHD predicated upon
expectation effects (e.g., parents or teachers) using gold-standard
behavioral rating measures (Brosco and Bona, 2016); 4) and
generally consistent meta-analytic findings for virtual classroom
CPT (3D) performances with previous meta-analyses of
computerized CPTs (2D) regarding the commonly used omission,
commission, and hit reaction time variables.

Virtual Classroom Continuous Performance
Tasks
While there are several Virtual Reality Classrooms, two of the
most widely used for neurocognitive assessment are the Digital
Media Works ClinicaVR suite (Figure 2: presented via eMagine
z800) and the AULA Nesplora (Figure 3; presented via Oculus
Rift). Each of the Virtual Reality Classrooms mentioned uses a
version of the continuous performance test protocol (Digital
Media Works AX CPT; AULA Nesplora X, no-X CPT) with
CPT stimuli presented on the blackboard as distractors occur in
the simulated classroom. In the virtual classroom, around the
user’s avatar are other student avatars seated at desks, a teacher, a

FIGURE 1 | Example of a 2D computerized Stroop.
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window, and a blackboard. During assessment protocols, users
are immersed in the virtual reality classroom and instructed to
respond (button presses) to target stimuli as they are presented on
the virtual blackboard. Virtual distractors (auditory, visual, and
mixed audio/visual) are presented at various times and locations
of the simulated classroom.

For the AULA Nesplora, the X, No-X paradigm is used. The
AULA Nesplora Virtual Classroom CPT is notable for the large
normative database that has been developed with over 1,200
students (N � 1,272 participants; 48.2% female; age range:
6–16 years (M � 10.25, SD � 2.83). Results revealed that while
males typically responded more rapidly (faster reaction times for
both correct and incorrect responses) and with greater motor
activity (e.g., head movement) where they did not have fixed view

of the virtual blackboard, females had greater accuracy regardless
of the level of distraction in the virtual classroom environment.
Given the notable speed and accuracy trade-off, these platforms
should consider the addition of throughput algorithms (Thorne,
2006). While throughput algorithms would not replace reaction
time and accuracy scores, they would offer another metric
(i.e., efficiency) that balances the two. Variability in
performance was also notable across age groups.

The lack of stability relative to gender and age is yet another
basis for inclusion of adaptive algorithms that would allow for
researchers and clinicians to notably reduce testing time and
provide the option to personalize stimulus presentation and
environmental cues relevant to real world treatment/training
targets and optimal classroom functioning recommendations.

FIGURE 2 | Digital Media Works Virtual Classroom. Reprinted with permission (Rizzo, et al., 2006).

FIGURE 3 | AULA Nesplora Virtual Classroom (norms for N � 1,272 participants). Reprinted with permission (Diaz-Orueta et al., 2020).
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Virtual Classroom Stroop
In addition to Virtual Classroom CPTs, there are Virtual
Classroom Stroop tests. Instead of CPT stimuli, the Virtual
Classroom Stroop task superimposes Stroop stimuli onto a
virtual blackboard (Lalonde et al., 2013; Parsons and Carlew,
2016). The Virtual Classroom Stroop Task aims to mimic the
classic Stroop task that is used to evaluate selective attention and
inhibitory control. The Stroop is one of the most utilized
measures of attentional control in the human neurosciences
(Stroop, 1992; Norman and Shallice, 1986). Although some
variations exist in Stroop studies (e.g., type of stimuli; number
of stimuli; stimulus durations), they all aim to evaluate response
conflict, response inhibition, freedom from distractibility, and
selective attention (MacLeod, 1992; Melara and Algom, 2003).

Most Stroop tests include both congruent (participant names
the color of stimuli of the same color; incongruent (participant
names the color stimuli when incongruent color words are
presented (e.g., BLUE). A standard 2D computerized Stroop is
found in Figure 1. During the Stroop users may be required to
press a labelled (red, green, or blue) computer key that signifies
their response to each color stimulus presented. Often, there are
three blocks (50 trials each):Word Reading (words RED, GREEN,
and BLUE are presented individually in black type on the display
and user reads each word aloud while pressing a corresponding
key for each word (“red” � 1; “green” � 2; and “blue” � 3); Color
Naming (a sequence of XXXXs is presented on the display in one
of three colors (red XXXXs, green XXXXs, or blue XXXXs). User
may be told to say aloud the color of the XXXXs while pressing
the corresponding key based on color; and Incongruent (sequence
of single words (“RED,” “GREEN,” or “BLUE”) may be presented
in a color that does not match the name of the color depicted by
the word. Users may be told to say aloud the color of the word
instead of reading the actual word while pressing the associated
response key for that color. The users respond to each individual
color stimulus as quickly as possible (without making mistakes).
For some Stroop tasks, each new stimulus appears only after the
user correctly identifies the previous stimulus.

The Virtual Classroom Stroop task is very similar to the 2D
computerized Stroop. Users respond physically using an
individual response key that allows for the assessment of
cognitive and motor inhibition. Similar to the Virtual
Classroom CPT, construct validity has also been found for the
Virtual Reality Classroom Stroop (VCST) in both typically
developing participants (Lalonde et al., 2013) and persons with
high functioning Autism (Parsons and Carlew, 2016).

Virtual School Environment
A recent iteration of the Virtual Classroom Stroop task has been
included in an adaptive Virtual School environment (Unity
engine) that includes an interactive virtual human teacher
(Figure 4). While the Virtual Classroom platforms reviewed
above enhance the ecological validity of cognitive tasks, the
lack of artificial intelligence and social interactions in the
nonplayer characters (teacher and students) in the early
Virtual Classroom platforms can be enhanced via the
development and validation of adaptive Virtual School
environments with intelligent virtual teachers and interactive

virtual students. While immersed in the virtual school
environment, the user takes part in an adaptive and interactive
virtual classroom, hallway, and playground environments where
the user interacts with a virtual human teacher.

The adaptive nature of the current iteration of the virtual
teacher and classroom includes several cognitive and affective
(i.e., emotion) measures that can be administered with or without
social cues from the virtual human teacher: Stroop test;
continuous performance test; and picture naming. Like earlier
iterations, the current Virtual Classroom platform includes rows
of desks (that can be moved to various locations and
configurations); a teacher’s desk (at the front but can be
moved); a whiteboard (or blackboard depending on
preference); various decorations, a virtual human teacher
(male and female options); and other virtual avatar peers
seated around the user’s avatar in the virtual room. Once
immersed (uses either HTC Vive or Oculus head mounted
displays) in the Virtual School environment, the virtual
teacher instructs (heard through headphones) the user to look
around, point to objects, and name the objects pointed at within
the virtual environment (one minute acquaintance period). Next,
the virtual human teacher informs the user that they are going to
“play a game” and participants are given instructions for the task
(e.g., virtual Stroop task) and a series of stimuli (e.g., CPT or
Stroop) that appear briefly to the left and right of the virtual
human teacher on the board. A random inter-stimulus interval is
included between the advent of the stimuli (e.g., Stroop) and the
series of asynchronous stimulus onsets (and offsets) to the left
and right of the virtual human teacher. Distracters are presented
throughout. An example of one distractor can be seen in Figure 2.
Two children are passing a note to each other in front of the
participant. For half the trials, the virtual teacher uses social cues
(e.g., gesturing and eye gaze) to reorient the user to the task and to
direct user to the appropriate stimuli. A state system drives the
social cues of the virtual teacher.

The Virtual Classroom Stroop Task found in the Virtual
School Environment has several conditions. In addition to
both low and high levels of distraction (audio and video

FIGURE 4 | Virtual Classroom Stroop task.
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distractors) conditions, there are various modalities for
presenting visual, auditory, and bimodal presentations of
stimuli. Moreover, the addition of a virtual teacher yields
several quantitative metrics: Attention to Task: accuracy
(number of correct responses) and average reaction time for
correct targets [as well as throughput score (Thorne, 2006)];
Teacher-Directed Attention to Task: accuracy (number of correct
responses) and average reaction times relative to virtual teacher
orientation (as well as throughput score); and Attention to Tasks
during Social and Non-Social Distracters: accuracy (number of
correct responses in Social, Non-Social and No Distracter
conditions) and related average reaction times (as well as
throughput score). This research paradigm aims to provide
information relevant to performance with and without social
cues from the virtual human teacher.

Virtual Environments for Attentional
Assessment
Effective Virtual Reality assessment of attention can be enhanced
by adaptive algorithms and decision rules based on predictive
classifiers. The traditional VCSTs may not always offer optimal
assessment of attentional processing as they are not designed to
be personalized to the diverse and dynamic response patterns of
users. Instead, they use environmental distractors to extend the
pre-defined stimulus presentations and activities found in the 2D
computerized Stroop assessments. While this historic approach is
valid, adaptive algorithms offer the potential for more
personalized assessment and training experiences in which the
level and amount of distractors is personalized to the user.
Moreover, adaptive presentations of distractions in the virtual
classroom Stroop tasks may overcome limitations of current 2D
and 3D cognitive tasks ability to meaningfully characterize within
group heterogeneity and intra-individual differences in
performance across time and context for conditions such as
ADHD. (Kofler et al., 2008; Brosco and Bona, 2016; Parsons
et al., 2019).

METHODS

Participants
The study used data collected from sixty undergraduate and
graduate students. Demographics included mean age � 20.3
(range 18–30); 66.67% of the participants were female;
Education level included high school degree and some college.
Ethnicity distributions consist of: N � 7 African American, N � 3
Asian,N � 8 Hispanic,N � 41 Caucasians, andN � 1Other. 86.6%
of the participants were right-handed.

Apparatus and Measures
Procedure
The experimental sessions and data gathering had a duration of
90-minutes. Upon arriving at the laboratory, the participant
(i.e., user) was told about the study’s procedures, potential
risks, and benefits. Potential participants were also, told that
they could choose to not participate. Prior to starting the protocol

(before starting study and pre-immersion), participants were
asked to sign a written informed consent (approved by the
university’s institutional review board) that designated their
approval to take part in testing and immersion in the virtual
environment. Following informed consent, general demographic
data was gathered. Further, participants responded to questions
aimed at assessing their prior computer experience, general
comfort with technologies, computer usage activities, and their
perception of their computer skill level (Likert scale (1–not at all
to 5–very skilled); and what type of games they played (e.g., role-
playing; eSports, etc.).

Virtual Classroom Stroop Task
The Virtual Classroom Stroop task was used to immerse
participants in the virtual environment. The Virtual Classroom
was delivered using the HTC VIVE connected to an Alienware
desktop computer containing an Intel i7 processor with 32 GB of
memory, a Nvidia GeForce GTX 1080 graphics card, running
Windows 10. While immersed in the VCST, the participant’s
avatar is seated at a desk near the center of the virtual class and
surrounded by other avatars at their desks. The Virtual
Classroom does not require the participant to move around in
the environment. So, the participant was seated in the real world
to match the scenario in the environment for a more realistic
experience. Seating the participant also reduced the prospects of
the participant experiencing simulator sickness. As mentioned
earlier, the Virtual Classroom Stroop Task is developed using
principles found in the classic Stroop tasks, which measures
cognitive workload and interference. There are also go/no go
components (assessing motor inhibition) and external
interference from visual and auditory distractors). The
participant views a sequence of Stroop stimuli (e.g., colored
rectangles and colored words) on the blackboard. A female
voice stated the names of colors (red, blue, or green).
Participants were instructed to press a button (as quickly as
possible) when hearing a color that matches the color of the
stimuli on the Virtual blackboard. They were also instructed to
withhold a response if the colors did not match. A total of 144
stimuli were presented, with 72 targets and 72 non-targets.

For this study, box and word conditions were implemented in
a high distraction condition without teacher social cues. The
current study aimed to focus on participant performance metrics
that can be modeled with machine learning to develop decision
rules for teacher social cues and environmental distractors. The
box condition involved the matching of auditory and visual
stimulus modalities for assessing selective attention.
Environmental distractors were included to assess inhibition of
external interferences. In the box condition, there were
simultaneous bimodal presentations of visual and auditory
stimuli in a virtual classroom environment that included
auditory (e.g., bell ringing) and visual distractors (e.g., students
passing notes). In the visual modality, a sequence of color
rectangles: red, green, or blue) were presented on the
classroom blackboard (red, blue, green). In the auditory
modality, the virtual teacher’s voice is heard naming of colors
(red, green, or blue). After each bimodal presentation,
participants were to pull (as quickly as possible) the trigger
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button on the VIVE controller (with their preferred hand) when
the auditory stimulus (color named) modality matched the visual
stimulus (color shown) modality. Participants were instructed
that they were to withhold responses in mismatched trials.

The color words condition was designed for assessment of
Stroop interference in the presence of environmental distractors.
As in the box condition, the word condition in includes both
visual and auditory stimulus presentation modalities. Printed text
(visual modality) of a word color (red, green, or blue) is presented
on the blackboard at the same time that the colors are auditorily
presented by the virtual teacher’s voice (see box condition).
Participants are to pull the trigger button on the VIVE
controller (as quickly as possible) when the color read is the
same as the font color (target stimuli), while ignoring the color
word read. Of note, participants did complete the simulator
sickness questionnaire, which includes both a pre- and post-
VR exposure symptom checklist. No significant simulator
sickness was found.

Data Analysis
Statistica version 13.3 was utilized for all analyses. Descriptive
statistics were evaluated for classroom Stroop prediction variables
and participant demographics. Case wise deletion was utilized for
any data that was missing from the data set. Prediction variables
were identified from participant data that could be used as input
for the machine learning algorithms (Table 1). Inputs were
selected based upon the criteria that the variables are available
for use in real-time within adaptive environments to supply the
machine learning algorithms with the objective of predicting the
participants performance level. Figure 5 depicts the
dissemination of high performers and low performers for

average classroom response times and average dwell times.
Understanding a participant’s performance level allows the
classroom environment to determine and adjust to the optimal
difficulty level to improve the user experience. Using the
identified inputs, the descriptive statistics were calculated for
each predictor (Table 2).

The machine learning algorithms require data to train on.
Building a training set requires all participants to be
categorized as either a high performer or a low performer.
For the classroom Stroop, the total correct is not a valid
metric for placing participants into high or low performers as
it does not account for response style (conservative, liberal, or
balanced), or a speed-accuracy trade-off. Thus, it is possible
that a user could have a high percentage of correct responses
because they took more time to make sure they picked the
correct answer (conservative style of responding that
emphasized accuracy over speed). These participants
should not fall into the high performer category. Instead,
throughput was calculated for each section of the classroom
Stroop (Thorne, 2006).

( PC Block Interfernce
MRT Block Interfernce p 600) + ( PC Block

MRT Block p 600) + ( PC Congruent Stimuli: Block
MRT Congruent Stimuli: Block p 600) + ( PC Congruent Stimuli: Word

MRT Congruent Stimuli: Word p 600)
4

The mean throughput was calculated across all sections for
each participant, giving an overall throughput score. The mean
throughput score across all participants was 12.05. If the
participant had a larger throughput than the mean throughput
the participant was assigned to the high performer category. If the
participant fell below the mean they were assigned into the lower
performer category. The category distribution was 30 high
performers to 30 low performers.

TABLE 1 | Machine learning input variables.

Machine learning input
variables

Description

Mean_RT_Box_Interference Average response time for correct responses: Box interference condition
Mean_Dwell_Box_Interference Average button press dwell time for correct responses: Box interference condition
Mean_RT_Box_ Interference_Incorrect Average response time for incorrect responses: Box interference condition
Mean_Dwell_Box_ Interference_Incorrect Average dwell time for incorrect responses: Box interference condition
Mean_RT_Box_Congruent Average response time: Box congruent condition
Mean_Dwell_Box_Congruent Mean dwell time for correct responses: Box congruent condition
Mean_RT_Box_Congruent_Incorrect Average response time for incorrect responses: Box congruent condition
Mean_Dwell_Box_Congruent_Incorrect Average dwell time for incorrect responses: Box congruent condition
Mean_RT_Word Average response time: word condition
Mean_Dwell_Word Mean dwell time for correct responses: Word condition
Mean_RT_Congruent_word Mean response time for congruent stimuli: Word condition
Mean_Dwell_Congruent_word Average dwell time for congruent word condition
Mean_RT_Incongruent_word Average response time for incongruent word condition
Mean_Dwell_Incongruent_word Average dwell time for incongruent word condition
Mean_RT_Word_Incorrect Average response time for incorrect responses: Word condition
Mean_Dwell_Word_Incorrect Average dwell time for incorrect responses: Word condition
Mean_RT_Word_Correct Average response time for correct responses: Word interference condition
Mean_Dwell_Word_Correct Mean dwell time for correct responses: Word interference condition
Mean_RT_Congruent_Word_Interference Mean response time for congruent stimuli: Word interference condition
Mean_Dwell_Congruent_Word_Interference Average dwell time for congruent stimuli: Word interference condition
Mean_RT_Incongruent_Word_Interference Average response time for incongruent stimuli: Word interference condition
Mean_Dwell_Incongruent_Word_Interference Average dwell time for incongruent stimuli: Word interference condition
Mean_RT_Word_Interference_Incorrect Average response time for incorrect responses: Word interference condition
Mean_Dwell_Word_Interference_Incorrect Average dwell time for incorrect responses: Word interference condition

Frontiers in Virtual Reality | www.frontiersin.org August 2021 | Volume 2 | Article 6731916

McMahan et al. Feasibility Study to Identify Machine

https://www.frontiersin.org/journals/virtual-reality
www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


1) Support Vector Machine: Utilizing a hyperplane, support
vector machine (SVM) segments binary labelled data into
two classes. SVM use data from both categories to train and
attempts to place the data into a higher dimensional space.
The objective of the SVM is produce a hyperplane that
separates the two categories with a maximum distance.
SVM algorithms have several options for building
hyperplanes including linear, polynomial, and radial basis
function. Once the SVM is trained, testing data can be
used with the algorithm, and it will attempt to place the
test data into one of the two categories. The SVM chooses the
category based upon the side of the hyperplane the test data
lands. Selecting the maximum margins between the

hyperplane and data is one method for optimizing the
hyperplane. The SVM algorithm can achieve this by
transforming the data from input space to feature space.
This study implemented a Type 1 classification using C �
2.0 and a radial basis function kernel (gamma � 0.04167). The
maximum number of iterations was set to 1,000 with a stop
error of 0.001. 10 v-fold cross validation which segmented the
data into 90% training and 10% testing was used to validate
the classifier.

2) Naïve Bayes: The Naïve Bayes (NB) classifier is based upon the
Bayes theorem and is best used when the dimensionality of
inputs is high. NB provides an advantage over other classifier
in that it does not require a large set of training data. The NB

FIGURE 5 | Distribution of input variables based upon High and Low performance.
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classifier calculates a probability using 1) to determine what
category a data point should be assigned. Using the highest
calculated probability, the NB algorithm chooses the category
for the data point. The NB is a supervised learning algorithm
and is efficient at calculating the probability that data belongs
to a specific group. This makes the algorithm highly effective
in real-time applications. NB assumes that the algorithm
inputs are independent from other inputs. For each
category, the algorithm creates a feature vector to store the
training data. When testing data, the classifier uses maximum
likelihood to put data into the correct categories. 10 v-fold
cross validation which segmented the data into 90% training
and 10% testing was used to for testing for the Naïve Bayes
classifier. A normal distribution was assumed for each
predictor.

P(xi|y) � 1����
2πσ2

y

√ exp⎛⎝ − (xi − μy)2
2σ2y

⎞⎠
3) k-Nearest Neighbor: The k-Nearest Neighbor (kNN) is a

supervised learning algorithm that uses location to decide
which category data fits. During the training phase kNN uses
feature vectors to store the categories datum. During the
testing phase the algorithm uses 2) to assess the shortest
distance to one of the two categories for new data. kNN
suffers from uneven data distribution, which will cause the
algorithm to select one category over the other. In this study,
the kNN classifier used 10 v-fold cross validation which
segmented the data into 90% training and 10% testing. The
distance measure was set to Cityblock (Manhattan).

D(a, b) �
���∑n
i�1

√
(bi − ai)2

Results
The chosen inputs (Table 2) from the randomly chosen
participants were used to categorize participants into high
performers and low performers using a Support Vector
Machine (SVM), a Naïve Bayes (NB) classifier, and k-Nearest
Neighbor (kNN) classifier (Table 3). With an N � 60 participants
the data was randomly segmented into 54 algorithm training
samples and 6 algorithm testing samples. Each sample contains
24 data points that are used as inputs for the machine learning
algorithms.

The strongest classifier was the SVM, which produced an
accuracy rate of 86.7% (std dev: 3.27) followed by NB (81.7%, std
dev: 2.5) which was with a little bit better then kNN (76.7%, std
dev: 5.74). The SVM also had better Precision and Sensitivity,
indicative of superiority at correctly assigning high performing
participants. kNN was better when attempting to correctly assign
low performing participants (Figure 6). The kNN algorithm may
have favored the low over the high performer category due to the
sensitivity level achieved. Naïve Bayes performance was average
likely because the dataset was not Naïve. It is also possible that the
inputs were not completely independent, resulting in more false
positives. Figure 7 shows the confusion matrices for the 24
predictors.

DISCUSSION

Virtual classroom assessment environments have demonstrated
measurement value by providing a dynamic simulation with
distractors that mimic the conditions of the real world (Iriarte
et al., 2016; Parsons et al., 2019). The next incremental
advancement is the ability for testing conditions to adapt
based upon individual user performance. Computerized
adaptive testing provides concise item pools and avoids floor
or ceiling effects that can significantly reduce testing length, while
providing equal to or greater precision at establishing ability
levels compared to normative data referenced paper-and-pencil
tests (Gibbons et al., 2008). Artificially intelligent and adaptive
virtual classroom environments may also overcome limitations of
current 2D and 3D cognitive tasks with static presentations.
Machine learning offers the capacity for dynamically adaptive
environments that canmore meaningfully characterize the within
group heterogeneity and intra-individual differences found in
performance across time and contexts for persons with ADHD
(Kofler et al., 2008; Brosco and Bona, 2016). Further, an adaptive
classroom environment can theoretically provide data driven
treatment outcome metrics that have greater likelihood to
generalize to actual classroom academic performances and
barriers to learning. When participant performance feedback is
messaged to the virtual teacher, social and reorienting cues can be
communicated to the participant to bring their attention away
from distractors to learning material.

TABLE 2 | Descriptives of inputs variables.

Input variables Mean SD Min Max

Mean_RT_Box_Interference 0.70 0.097 0.51 0.99
Mean_Dwell_Box_Interference 0.15 0.027 0.09 0.21
Mean_RT_Box_ Interference_Incorrect 0.48 0.29 0.0 1.34
Mean_Dwell_Box_ Interference_Incorrect 0.17 0.19 0.0 1.12
Mean_RT_Box_Congruent 0.69 0.10 0.51 1.02
Mean_Dwell_Box_Congruent 0.15 0.028 0.08 0.23
Mean_RT_Box_Congruent_Incorrect 0.54 0.37 0.0 1.50
Mean_Dwell_Box_Congruent_Incorrect 0.26 0.44 0.0 2.61
Mean_RT_Word 0.75 0.09 0.57 0.97
Mean_Dwell_Word 0.15 0.03 0.08 0.23
Mean_RT_Congruent_word 0.69 0.10 0.49 0.94
Mean_Dwell_Congruent_word 0.15 0.03 0.09 0.26
Mean_RT_Incongruent_word 0.80 0.15 0.0 1.08
Mean_Dwell_Incongruent_word 0.14 0.03 0.0 0.22
Mean_RT_Word_Incorrect 0.66 0.31 0.0 1.16
Mean_Dwell_Word_Incorrect 0.25 0.35 0.0 2.05
Mean_RT_Word_Correct 0.77 0.088 0.60 1.00
Mean_Dwell_Word_Correct 0.14 0.03 0.08 0.20
Mean_RT_Congruent_Word_Interference 0.71 0.09 0.55 0.97
Mean_Dwell_Congruent_Word_Interference 0.15 0.03 0.09 0.20
Mean_RT_Incongruent_Word_Interference 0.81 0.18 0.0 1.07
Mean_Dwell_Incongruent_Word_Interference 0.14 0.04 0.0 0.20
Mean_RT_Word_Interference_Incorrect 0.64 0.29 0.0 1.09
Mean_Dwell_Word_Interference_Incorrect 0.19 0.18 0.0 0.79
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Machine learning is one tool that can be utilized to develop an
adaptive virtual teacher and classroom environment. First,
existing metrics need to be identified that can be used as
inputs for the machine learning algorithm to detect when the
environment must adapt for the user. Herein, the input variables
were drawn from specific selective attention and executive functioning
tasks (e.g., box and word conditions of Stroop tasks). These input
variables (cognitive performance in the presence of distractors) were
modeled using three machine learning algorithms: Support Vector
Machine (SVM), Naïve Bayes (NB), and k-Nearest Neighbor (kNN).
Moreover, these three machine learning algorithms were compared
regarding optimal ascertainment of instances when an environment
needs to adapt to participant performance. 24 input variables were
selected from participants performing tasks within the virtual
classroom environment. The 24 predictors are considered an upper
threshold to identify the best predictors. Using 10 v-fold cross
validation the SVM classifier was strongest with superior accuracy
(86.7%) and precision (87%), as well as sensitivity (87%) and
specificity (87%) for assigning high or low performance
categorization. kNN did very well at assigning low performing
participants, but this may be due to it favoring the low performing
category.

Once the adaptive virtual classroom environment categorizes a
participant as high performing or low performing it must
then adapt the environment to best tailor the individual user
deficits or needs. Thus, sets of decision rules must be
developed for determination of how to optimally adapt for
each performance category (e.g., low performer), specific
task, or identified treatment outcome (e.g., attending to
teacher during lecture). For example, if a user is
considered a high performer, the system could adapt to
make the current task more difficult by modifying the
complexity of the distractor presentation (number,
frequency, location, multi-modal, etc.) or teacher
interaction behaviors until the user becomes a low
performer for training enhancement purposes.
Alternatively, reducing or modifying distraction
presentations (e.g., distractors occur more proximal to
teacher) in the environment may help improve low
performances. Providing supplemental practice time could
be an additional adaptation for low performers who simply
may be slower learners. These are but a few examples of many
possibilities to leverage adaptive capabilities to optimize
intervention and assessment metrics.

TABLE 3 | Machine learning classifier results.

Machine learning Accuracy (%) Misclassification
(%)

Precision (%) Sensitivity (%) Specificity (%) F-Measure

SVM 86.7 13.3 87 87 87 0.87
kNN 76.7 23.3 73 79 75 0.76
NB 81.7 18.3 86 78 86 0.82

FIGURE 6 | Comparison of classifiers accuracy, precision, sensitivity, and specificity based upon 10 v-fold cross validation data.
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LIMITATIONS

The goal of this paper was to identify specific machine
learning predictors that can be utilized in the development
of an adaptive framework for the social cues and
environmental distractors occurring in the virtual
environment during the Stroop Task in a Virtual School
Environment for potential attention enhancement or
remediation purposes. Thus, the VSE is intended to
function as an integrated assessment and intervention
paradigm. The initial step in developing this system is
identifying and evaluating the predictors that can be
utilized in the machine learning algorithms. The current
model implements 24 input predictors as an upper-level
boundary to identify the best predictors and the strongest
classifier to implement within the framework. When a user
is working within the adaptive environment not all
predictors will be available at the start of the assessment.
The framework will take this into account and adjust the
model as data is collected in the assessment. Optimizing
these techniques is required in future work. This study does
not address all issues that might arise from implementing
an adaptive task, nor was the goal to change the parameters
or standardization of the Stroop task. Future research will
examine design features, stimulus presentation
configurations, and computational aspects of a validation
methodology for the adaptive Stroop Task. The adaptive
framework must be rigorously tested to substantiate the
learning model for accuracy as the test is adapted to
the user.
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