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Depth-based 3D hand trackers are expected to estimate highly accurate poses of the
human hand given the image. One of the critical problems in tracking the hand pose is the
generation of realistic predictions. This paper proposes a novel “anatomical filter” that
accepts a hand pose from a hand tracker and generates the closest possible pose within
the real human hand’s anatomical bounds. The filter works by calculating the 26-DoF
vector representing the joint angles and correcting those angles based on the real human
hand’s biomechanical limitations. The proposed filter can be plugged into any hand tracker
to enhance its performance. The filter has been tested on two state-of-the-art 3D hand
trackers. The empirical observations show that our proposed filter improves the hand
pose’s anatomical correctness and allows a smooth trade-off with pose error. The filter
achieves the lowest prediction error when used with state-of-the-art trackers at 10%
correction.
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1 INTRODUCTION

Depth based 3D hand tracking (or hand pose estimation) is the problem of predicting the 3D hand
pose given a single depth image of the hand at any angle. The major challenges of this problem are: 1)
Self-occlusion where the hand occludes itself, 2) Object interaction where the hand interacts with
other objects, and 3)Movements that require additional hands interacting together. It is used in many
applications in fields such as Human-Computer Interaction (HCI) (Yeo et al., 2015; Lyubanenko
et al., 2017), Virtual Reality (VR) (Cameron et al., 2011; Lee et al., 2015; Ferche et al., 2016), and
gaming. These applications require accurate tracking as any error will affect the immersiveness and,
ultimately, the end-user experience. Important applications such as surgical simulations (Chan et al.,
2013) rely on accurate tracking of the hand to ensure the user’s proper procedural knowledge for
real-life surgeries. Entertainment based applications such as racing simulators and sports games
require accurate poses of the hand poses for truly immersive gaming experiences. Hence, 3D hand
tracking has become a leading problem in Computer Vision with commercial and academic interests.

One of the critical problems in hand tracking is the realism of the output. This problem of hand
pose realism has been studied in a partial aspect as “highly accurate tracking” in earlier work as
increasing the tracker’s accuracy and reducing the poses’ overall position-based error. Many studies
overlooked this problem by focusing solely on the accuracy of the hand trackingmodels. Suchmodels
have low errors in benchmark tests such as the NYU (Tompson et al., 2014), ICVL (Tang et al., 2016),
HANDS 2017 (Yuan et al., 2017) and BigHand2.2M (Yuan et al., 2017). However, high accuracy does
not always translate to realistic hand output. Such an example is a simple case of a hand pose that
matches all joint positions of the actual hand pose except one joint, which is at an anatomically
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implausible angle from the previous joint (such as a finger bent
backward). This error can disrupt the immersiveness of the
individual during the game or simulation. Moreover, from a
human perspective (Pelphrey et al., 2005), the error can affect the
internal human system leading to false information and
mismatch in the motor cortex and the visual system. Other
solutions to this problem include inverse kinematics based
solutions such as Wang and Popović (2009) and using
kinematic priors such as Thayananthan et al. (2003). However,
these solutions are tailor-made for their hand trackers and not
built for generic use. Hence, this problem is the focus and
motivation of our paper.

This paper proposes a filter that functions on the human
hand’s biomechanical principles and kinematics. This filter’s
novelty is the use of bounds and rules derived from the
human hand’s biomechanical aspects to produce a more
realistic rendering of the hand pose. The hand is an
articulated body with joints, and corresponding bounds
(Gustus et al., 2012), and the filter is created using these rules
and bounds. The input is the pose of the human hand in the form
of joint locations and angles from the hand tracker and outputs
the closest possible hand as per the real human hand’s bounds.
The filter can be plugged into any hand tracker and enhance its
performance. Later in Anatomical Anomaly Test, we show that
the proposed filter improves the realism of the hand poses
predicted by the state-of-the-art trackers as compared to the
poses without using the filter. We also elaborate on the filter rules
and bounds in Anatomical Filter.

2 RELATED WORK

In this section, we discuss a few state-of-the-art methods for 3D
hand tracking. Joo et al. (2014) proposed a real-time hand tracker
using the Depth Adaptive Mean Shift algorithm, a variant of the
classic computer vision method known as CAM—Shift (Bradski,
1998). It tracks the hand in real-time, however, only in two
dimensions due to the limitations of traditional computer vision
techniques. Other similar 2D based trackers include works such
as Held et al. (2016); El Sibai et al. (2017). Taylor et al. (2016)
proposed an efficient and fast 3D hand tracker algorithm that
utilizes only the CPU to track the hand using iterative methods.
This method’s drawback is that the hand is treated as a smooth
body, and the joints and bones are not distinguished in the model,
frequently resulting in anatomically implausible hand structures
when tracking.

Recent state-of-the-art models utilize deep learning to achieve
highly accurate 3D trackers with low errors in the order of
millimeters. Deep learning provides new perspectives to
computer vision problems with 3D Convolutional Neural
Networks (CNNs) (Ge et al., 2017; Simon et al., 2019) and
other such models. There are many survey works and
literature available in the field of hand tracking, concerning
appearance and model-based hand tracker using depth images
(Sagayam and Hemanth, 2017; Deng et al., 2018; Dang et al.,
2019; Li et al., 2019). Model-based tracking (Stenger et al., 2001;
de La Gorce et al., 2008; Hamer et al., 2009; Oikonomidis et al.,

2010) creates a 3D model of the hand and aligns it according to
the visual data provided. Tagliasacchi et al. (2015) made a fast 3D
model-based tracking using gradient-based optimization to track
the hand position and pose. The drawback of this method is that a
wristband must be worn on the hand to be tracked, and the model
does not incorporate the angular velocity bounds of the human
hand. Although the angle bounds are incorporated in the model,
during certain conditions, the hand pose derived from the
algorithm results in hand poses, which are impossible for a
natural hand. Other models still suffer from heavy
computational requirements such as 3D CNNs, which require
voxelization (Ge et al., 2017) of the image for pose estimation.
Works such as Sharp et al. (2015), Malik et al. (2018), Wan et al.
(2018), Xiong et al. (2019), Kha Gia Quach et al., 2016 proposed
fast 3D hand trackers with high accuracy, but at the expense of
heavy computational algorithms and can track only a single hand.
Works such as Misra and Laskar (2017), Roy et al. (2017), Deng
et al. (2018) utilize deep learning for hand tracking but in 2D.

Focusing on realism and multi-hand interaction, Mueller et al.
(2019) proposed a model that uses a single depth camera to track
hands while they move and interact with each other. It can also
take the fingers’ collision to the other hand into account to a
certain degree. It was trained using available and synthetically
created data as well. This method’s drawback is that it is
computationally expensive and cannot predict poses when the
hand moves very fast. There are also discrepancies in some
interactions when the calibration is imperfect.

To the best of our knowledge, none of the existing hand
tracking approaches have explicitly corrected the predicted pose
by using a filter based on the biomechanics principle as is being
proposed in this work. The main contributions of this work are:

1. A filter based on the human hand’s biomechanics, ensuring
that the output of the hand tracker conforms to the rules of
true human hand kinematics and enhances the immersiveness
of the end application.

2. An approach of adding a modular filter that can be easily
plugged into an existing hand tracker with little or no
modifications.

3. A smooth trade-off between realism and the hand pose
accuracy

3 ANATOMICAL FILTER

The anatomical filter takes the pose from the tracker as input and
then adjusts the individual joint angles according to their
biomechanical limits. The overview of the filter is shown in
Figure 1. Filter Construction describes the construction and
working of the anatomical filter. Biomechanics of the Hand
describes the anatomical bounds and rules used to create the
anatomical filter.

3.1 Filter Construction
The filter utilizes the bounds explained in Biomechanics of the
Hand and corrects the hand pose according to the bounds. The
first step is to calculate the joint angles since most hand trackers’
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output is the joint’s location in 3D space and not the joint’s angle of
rotation. Each joint’s angles are computed separately using 3D
transformations such that the joint with its dependent joints are
aligned on the XY plane. Then, using the vectors computed from
each pair of joints, the Euler angles of each joint are calculated.

The second step is to calculate the deviation of each joint from
its limit. Considering the current joint angle of a particular joint
as θc � [θx, θy, θz], where θx , θy , and θz are the individual angles
to each axis, the anatomical error of the particular joint is derived
in Eq. 1

εθd �
⎧⎪⎨
⎪⎩

θd − θupper if θd > θupper
θlower − θd if θd < θlower
0 otherwise

where d � x, y, z (1)

The third step is to correct the joint’s angle using the error derived
from Eq. 1. The correction’s strength is adjusted using a factor α
and is shown in Eq. 2.

θd(new) �
⎧⎪⎨
⎪⎩

θd − αpεθd if θd > θupper
θd + αpεθd if θd < θlower
θd otherwise

(2)

where d � x, y, z and α ∈ [0, 1]. If α � 0, then there is no
correction and the resultant angle is the original angle. If
α � 1, then the angle is 100% corrected based on the hand’s
biomechanical rules.

3.2 Biomechanics of the Hand
In the human hand, there are 27 bones with 36 articulations and
39 active muscles (Ross and Lamperti, 2006), as shown in
Figure 2. According to Kehr et al., 2017, the lower arm’s
distal area consists of the distal radio-ulnar joint, the thumb
and finger carpometacarpal (CMC) joints, the palm, and the
fingers. These muscles map up to 19 degrees of freedom with
complex functions such as grasping and object manipulation. The
key joints for the movements of the hand are:

1. Metacarpophalangeal (MCP) joint
2. Distal interphalangeal (DIP) joint
3. Proximal interphalangeal (PIP) joint
4. Carpometacarpal (CMC) joint

The wrist is simplified to six-degrees-of-freedom (DoF),
consisting of three DoFs for movement and three DoFs for
rotation across the three axes. The thumb’s CMC joint is

integrated into the wrist and is an important joint since it
enables a wide range of hand movements by performing the
thumb’s opposition. According to Chim (2017), the CMC joint
has three DoFs: 45° abduction and 0° adduction, 20° flexion and
45° extension, and 10° of rotation in the CMC joint.

There are five MCP joints in which the first MCP joint is
connected to the thumb’s CMC joint. The remaining four MCP
joints are attached to the wrist of the hand. The MCP joint of
the thumb is a two DoF joint that provides flexion 80° and
extension 0°, abduction 12° and adduction 7°. The remaining
MCP joints are also two DoF joints and provide flexion 90° and
extension 40°, as well as abduction 15° and adduction 15°. Clear
illustrations and details regarding these bounds can be found
in works such as Hochschild (2015) and Ross and Lamperti
(2006).

There are two types of interphalangeal (IP) joints: the distal
and proximal (DIP and PIP) joints. The thumb only has a single
IP joint, while the other fingers have both DIP and PIP joints. The
PIP joints provide flexion 130° and extension 0°. The DIP joints,
including the thumb IP joint, provide flexion 90° and
extension 30°.

FIGURE 1 | Overview of the anatomical filter. The depth image first passes through the hand tracker, and then a pose is retrieved (the unaltered pose). This pose
then passes through the anatomical filter, and then the filtered pose is given as the output.

FIGURE 2 | Structure of the human hand.
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These rules and bounds are all incorporated in the construction of
the filter and shown inTable 1.When the filter activates, each joint of
the hand-pose is compared with these rules and then corrected to
output a hand-pose that conforms to the hand’s biomechanics.

4 BASELINE HAND TRACKING MODEL

To compare the state-of-the-art trackers with the anatomical filter,
we made a simple hand tracker to serve as a baseline model. The
baselinemodel is trained with the filter attached to compare with the
other state-of-the-art models that were not trained with such filters.

4.1 Architecture
We created our hand tracker using the ResNet-50 (He et al., 2016) as a
backbone with transfer learning (Torrey and Shavlik, 2010) to utilize
the powerful model for 3D hand pose detection. The architecture is
shown in Figure 3, and the process diagram is shown in Figure 1.
Since the ResNet originally performs classification using a softmax
layer, we use the model without the top classification layer which
results in a an output of size 6 × 6 × 2048. The size of the input image
after pre-processing is 176 × 176 × 1 which is then replicated for the
three channels as the input to the backbone model should be a 3-
channel image. The output features from the backbone model is then
compressed by passing it through a single convolutional layer of size
512 × 6 × 6. The resultant features is flattened (to size 512 × 1) and
then passes through two fully connected dense layers of sizes 258 and
63, respectively. The first dense layer uses a ReLU activation function
whereas the last layer uses a linear activation function. This output is
filtered using our anatomical filter and then the estimated pose is
retrieved. The code was built using Keras and used the Adam
optimizer (Kingma and Ba, 2014) with the learning rate set to

0.00035. The model trained on the full training data with 20% of
the data for validation until there was no improvement in validation
error for five epochs.

4.2 Dataset Used
The dataset used for the evaluation is the HANDS 2017 (Yuan et al.,
2017), which consists of more than 900,000 images for training and
99 video segments of depth images for testing pose estimators. The
images consist of various poses that are complex and challenging for
estimating the correct pose. Ourmodel is first used without any filter
to evaluate it on the dataset, and then the anatomical filter is used to
correct the hand pose. Then the whole system is re-evaluated with a
grid search to incorporate all possible α values. To use the filter on
the current state-of-the-art A2J model (Xiong et al., 2019) and V2V-
Posenet (Moon et al., 2018), the “frames” subset of the HANDS2017
dataset is used, which contains 295510 independent hand images
that covers a wide variety of challenging hand poses.

5 RESULTS AND ANALYSIS

The focus of this work is improving the realism of the predicted hand
poses. To demonstrate that our proposedmethod can work with any
pose prediction model, we designed the following experiments.

1. We study the effect of the filter on the output of various state-of-
the-art trackers.We chose a simple baselinemodel, theA2Jmodel,
and the V2V-Posenet model as the trackers. We show that the
outputs are more realistic when corrected by the anatomical filter.

2. We quantify the anatomical error and show how the filter
reduces this error with various configurations.

3. We study the effect of α on the baseline model using the filter.

FIGURE 3 | Architecture of the model used for the hand tracker with the anatomical filter.

TABLE 1 | Angular bounds for each joint of the hand derived from Hochschild (2015) and Ross and Lamperti (2006).

Joint Maximum angle Minimum angle

CMC abduction and adduction 45° 0°

CMC extension and flexion 45° −20°
Thumb MCP flexion and extension 80° 0°

Thumb MCP abduction and adduction 12° −7°
Thumb IP flexion and extension 90° −30°
Index, middle, ring and pinky MCP flexion and extension 90° −40°
Index, middle, ring and pinky MCP abduction and adduction 15° −15°
Index, middle, ring and pinky PIP flexion and extension 130° 0°

Index, middle, ring and pinky DIP flexion and extension 90° −30°
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4. We show the best-case and worst-case scenarios of the filter
correction.

5. We test the error of the state-of-the-art models using the filter
with various configurations.

5.1 Filter Function on the State-of-The-Art
Trackers
To understand the filter’s function, Figure 4 shows the working of
the filter for a single frame of the dataset. Figure 4A shows the A2J

model prediction of a simple pose in the dataset and our filter’s
correction of the pose. The figure shows that the thumb is bent in
an anatomically implausible manner, shown in detail (selected by a
dotted circle). The highlighted angle in yellow is known as the
anatomical error (shown in Figure 4A), and the anatomical filter
corrects this error. The corrected angle is shown in green, and the
process is repeated for all joints. The resulting pose is shown in
Figure 4A as the corrected pose. A similar scenario is shown in
Figure 4B for the V2V-Posenet model. These discrepancies in the
poses disrupt the user experience if used in an immersive
application such as gaming or simulation-based training

FIGURE 4 | The type of corrections performed by the anatomical filter. (A) shows the correction by the A2Jmodel and (B) shows the correction of the V2V-Posenet
model. The dotted circles indicate an anomaly in the joint. In the zoomed graph, the yellow semi-circle denotes the joint which has an error, and the green semi-circle
denotes the corrected joint.
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programs. Our filter corrects these errors at the minor expense of
overall 3D error, resulting in a smoother application experience.

5.2 Anatomical Anomaly Test
To quantify the direct factor relating to the anatomical structure
based realism of the human hand pose, we derive a quantity that we
refer to as the anatomical error. This error is derived for the three
models and shown in Figure 5, which is the mean joint degree that
overshoots or undershoots the anatomical bounds of the
corresponding joint of the hand. The higher the error, the more
“unreal” the given hand pose is according to the hand’s anatomical
structure. The error is high for both the A2J and V2V-Posenet
models, which reduces smoothly as α increases. This reduction is
because α directly controls these errors in the filter. Figure 5B
shows the percentage of frames in which the hand pose has an
anatomical error above 100 degrees. The quantified results for these
tests are shown in Table 2. From the graph and table, we infer that
our model predicts more realistic poses with lower anatomical
errors with a small trade-off with 3D Joint Position Error.

5.3 Effect of α on our Model Using the
Anatomical Filter
The mean 3D joint position error is usually computed for 3D hand
tracking models, which is computed by calculating the individual
21 joint distances from the estimated model to the ground truth

pose and deriving the mean of that sum. The mean is then
computed for each video segment. To measure the hand pose’s
error, we introduce a metric known as 3D joint angle error. The 3D
joint angle error is similar to the position error; however, this error
measures the difference between the 26-DoF vector derived from
the joint locations as per Biomechanics of the Hand. Together, these
two errors represent the 3D joint pose error. First, the 3D joint
position and angle errors of our model are calculated for different α
values. A graphical representation of the results is shown in
Figure 6. The x-axis is the α set for the filter as per Eq. 2. The
y-axis represents a different measure for each sub-figure in
Figure 6. In Figure 6A, the y-axis corresponds to the mean 3D
joint position error. In Figure 6B, the y-axis corresponds to the
mean degree error of the model. Finally, in Figure 6C, the y-axis
corresponds to the deviation factor, which is the value the error
deviates from the point where the filter was not used (unfiltered
error). Since there are two error metrics computed, each error’s
deviation is computed separately and then combined using the
arithmetic mean. This method is possible since the deviation
factor has no unit. For example, a deviation factor of one means
that the error did not change from the unfiltered model, and the
filter is of no use. However, if the deviation factor is lower than one,
then the new model performs better than the unfiltered model and
vice versa if the factor is above one. Figure 6C shows that the
deviation factor is lowest at α � 0.3. Hence the model shows the
best results when the filter is set at 30% strength. Beyond that

FIGURE 5 | Graphical visualization of the anatomical errors of two state-of-the-art models, namely A2J (Xiong et al., 2019) in (A) and V2V-Posenet (Moon et al.,
2018) in (B) compared to our model using the angle filter attached to the end of the model for every value of α. The x-axis corresponds to the value of α used for the filter.
The y-axis in (A) corresponds to the model’s anatomical error, which is the mean joint degree that overshoots or undershoots the anatomical bounds of the
corresponding joint of the hand. In (B), the y-axis corresponds to the percentage of frames in which the anatomical error exceeded 100 degrees.

TABLE 2 | Percentage of poses with anatomical anomalies at the specified ranges, comparing the baseline model with the state-of-the-art models. The test was performed
on a subset of 20000 test images of the HANDS2017 dataset.

Model Percentage of poses with anatomical anomalies (%)

0–50° 51–100° > 100°

Aseline model 35.6% 28.1% 36.3
A2J 23.3% 17.4% 59.3
V2V 20.8% 19% 6.2%
After anatomical filter (any model) 0% 0% 0%
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value, the deviation factor steadily increases to a point beyond one.
This decrease is shown quantitatively in Table 3, where the error
of the filter is lower than that of the other configurations when
α � 0.3.

5.4 Effect of α on State-of-The-Art Models
Using the Anatomical Filter
In order to study the effect of the filter on the overall 3D joint
position error, the filter was tested on the current state-of-the-
art A2J model (Xiong et al., 2019) and V2V-Posenet (Moon et al.,
2018) using the “frames” subset of the HANDS2017 dataset.
Figure 7 shows the results of the test using various
configurations of the angle filter described in Eq. 2. The position
errors at α � 0 are the reported errors of 8.570 and 9.95 mm,
respectively, as reported by Xiong et al. (2019) and Moon et al.
(2018). When increasing the filter’s strength, the error slightly
reduces (8.530 and 9.94mm) and then increases monotonically
beyond that value. To visualize the minor changes that occur when
α ranges from 0 to 0.4, a smaller test was also performed with alpha
ranging from 0 to 0.4 with a step size of 0.02. This test is done for
both the A2Jmodel and the V2V-Posenet model, and the individual
graphs are also shown in Figure 7. From the figure, we derive that at
α � 0.08, the filter improves the A2J model and α � 0.075 for V2V
Posenet since the error reduces at the filter strength, seen fromboth
the main graph and the zoomed graphs. The 3D joint error at
α � 0.1 is 17.24 for the baseline model and 9.62 for the A2J model
with α � 0.08 and 11.21 for the V2V Posenet model with
α � 0.075. This shows that the simple baseline model has

comparable performance to the state-of-the-art models in terms
of anatomical correctness, and using the filter in the model
improves the overall performance of the model significantly.

5.5 Best-Case and Worst-Case Scenarios
When the filter corrects the hand’s pose based on the hand
biomechanics, inevitably, the hand pose drifts from the original
pose. This drift can eithermake the pose closer to the ground truth or
defer from it. The former is the best-case scenario, while the latter is
the worst-case scenario. The scenarios are shown in Figure 8. The
yellow dots correspond to the predicted joints’ position, and the blue
dots correspond to the ground truth joints’ position. The yellow dots
must be as close to the corresponding blue dots as possible, ideally
overlapping them. The first case is the positive scenario where one
joint error occurred in the pose.When the anatomical filter corrected
this pose, the error was reduced. The second case is the non-ideal
scenario where the error resides in the bottom joint. When this error
is corrected, the secondary joints above the corrected joint all shift
their positions, hence drifting from the ground truth. The final
correction shifts the distance even more, hence, increasing the total
error. This shift results in a hand pose that conforms to the rules.
However, the overall pose is now further from the ground truth.

6 SUMMARY, LIMITATIONS AND FUTURE
WORK

This paper proposed the anatomical filter, which functions on
the human hand’s biomechanical principles. The filter is

TABLE 3 | 3D Joint Errors (3DJE) and 3D Angle Errors (3DAE) derived from the HANDS2017 dataset with all the models. Bold values represent the lowest error in each
column.

Model Filter used Lowest 3DJE
(mm)

AE at
given α

Lowest 3DAE
(°)

3DJE with
α= 1

AE at
α= 1

Ours Unfiltered 14.97 88 (α � 0) 16.32° — 0
Anatomical filter 13.67 61 (α � 0.3) 14.13° 17.24 0

A2J Unfiltered 8.57 125 (α � 0) 9.57° — 0
Anatomical filter 8.53 112 (α � 0.08) 9.56° 9.62 0

V2V Unfiltered 9.95 137 (α � 0) 12.2° — 0
Anatomical filter 9.94 121 (α � 0.075) 12.18° 11.21 0

FIGURE 6 |Graphical visualization of the results computed for every value of α used in the filter on our custommodel. The x-axis corresponds to the value of α used
for the filter. In Panel 6A, the y-axis corresponds to the mean 3D joint position error of themodel, which is the mean distance of each joint of the estimated pose to the joint
of the corresponding ground truth pose. In Panel 6B, the y-axis corresponds to the 3D joint angle error of the model, which is the mean error between the 27 DoF vector
of the estimated pose to the corresponding vector of the ground truth pose. Finally, in Panel 6C, the y-axis corresponds to the deviation factor, which is the value the
error (both joint position and angle errors together) deviates from the point where the filter was not used (unfiltered error).
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modular and can be easily plugged into existing hand trackers with
little or no modifications. The results showed that the filter does
improve the current state-of-the-art trackers when used in 10%
strength, and it was also shown that the state-of-the-art trackers
have high errors in terms of anatomical rules and bounds.

The filter’s computational requirements are high since the
angles and bounds are calculated and compared for each joint in

the hand. This process increases the time taken to estimate output
for each input frame and runs at lower speeds when running real-
time tracking. Our future work is to optimize the filter to compute
angles and bounds in fewer functions and reduce the time taken
to estimate the filtered pose. Optimized methods such as inverse
kinematics based modeling (Aristidou, 2018) methods can
effectively correct the joints in real-time. Future works also

FIGURE 8 | Simple 2D illustration for the best-case andworst-case corrections performed by the anatomical filter. (A) shows the best-case scenario and (B) shows
the worst-case scenario. The blue circles indicate joint locations of a single index finger from the ground truth. The yellow circles indicate the position of the estimated
joints from the hand tracker.

FIGURE 7 | Graphical visualization of the results of two state-of-the-art models, namely A2J (Xiong et al., 2019) and V2V-Posenet (Moon et al., 2018) using the
angle filter attached to the end of the model for every value of α. The x-axis corresponds to the value of α used for the filter. The y-axis is the mean 3D joint position error of
the model, which is the mean distance of each joint of the estimated pose to the corresponding ground truth pose. Since the improvement is minor, a zoomed version of
the selected regions is also shown for the respective models.
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include utilizing the law of mobility as per Manivannan et al.
(2009), which states that the two-point discrimination improves
from proximal to distal body parts. Hence, the filter’s strength can
be changed from the hand’s proximal parts towards the hands’
distal part. Other future works include enhanced optimizations
such as implementing the filter function into the model
architecture itself instead of attaching the filter at the end of
the model. The baseline model used in this paper highlights the
importance of using anatomical rules during training and can
improve the model’s accuracy, not only in anatomical correctness
but also in pose error. Using the filter inside the model may also
reduce training and testing time and also reduce excessive
computations.
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