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Background: Adherence to home practice rehabilitation programs is important

for efficacy; however, adherence is challenging for many individuals post-stroke.

Accelerometers have emerged as a potential means to support home practice. This

secondary data analysis explored the use of a commercially available accelerometer

with custom software to collect and analyze data to corroborate self-reported practice

collected during a home program.

Methods: The initial study was a single subject design trial that investigated the

effect of preferred music listening on adherence to an upper extremity home practice

program (Trial Number NCT02906956. ClinicalTrials.gov). The participants (n = 7) were

post-stroke adults with aphasia and hemiparesis of the upper extremity. Participants

completed home program exercises while wearing accelerometers and recorded

practice times in a logbook. Data were collected, cleaned, processed, and analyzed

to facilitate descriptive comparisons and clinical interpretations of accelerometer

output data.

Results: Across all participants, an average of 47% of data were captured and usable

for analysis. Five out of seven participants self-reported longer practice times compared

to accelerometer duration output by a mean of 66.5 s. Individual exercise set mean total

angular velocity and standard deviation of acceleration demonstrated potential for use

across time to monitor change.

Conclusions: One challenge of integrating accelerometers into clinical practice is the

amount of data loss and the steps for data processing. The comparisons of available

accelerometer data to the self-reported logs, however, were generally representative.

Future investigations should explore ways to increase data capture and accessibility of

the data for feedback to the client and practitioner.
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INTRODUCTION

Hemiparesis is the most common post-stroke neurological
impairment and affects participation in activities of daily living
(ADLs) and meaningful occupations (Reiterer et al., 2008).
Therefore, rehabilitation of the hemiparetic upper extremity
is a key factor in promoting independence post-stroke. One
effective rehabilitation approach to increase motor function and
prevent learned non-use involves rebuilding neural connections
through task repetitive practice (Lang and Birkenmeier, 2014).
While this approach shows promise, clinicians have limited time
to provide direct services to clients. This barrier often leads
to the use of home programs to extend treatment through
unsupervised practice.

One challenge clinicians face when monitoring home
programs is the limited ability to track adherence to programs.
There are two approaches commonly reported in the literature
to measure adherence to home programs: self-report via
journal/diary/logbook or use of a technological method to track
activity (Frost et al., 2017; Donoso Brown et al., 2020a). The
ability to monitor adherence using technology would allow for
provision of timely feedback as well as reminders to engage in
exercises. Examples of technology include pedometers, virtual
reality gloves, computer games, and accelerometers (Standen
et al., 2015; Donoso Brown et al., 2020a).

Wrist-worn accelerometers may be particularly useful for
tracking adherence to upper extremity home programs because
they are non-invasive, portable, and light weight. In addition,
tri-axial accelerometers are able to measure acceleration in three
perpendicular planes (X, Y, Z). The portable and non-invasive
nature of these devices promotes the ability to wear them
in a real-world environment (Uswatte et al., 2006; Noorkõiv
et al., 2014; Bailey et al., 2015; Urbin et al., 2015). Another
appealing aspect of this device is that there are accelerometers
incorporated into commercially available activity monitors (i.e.,
smartwatches), which could increase accessibility.

Research grade accelerometers, specifically, have been found
to be valid and reliable tools for measuring upper extremity
activity among adults with and without stroke (Bailey et al., 2015;
Urbin et al., 2015). In previous research with persons post-stroke,
Noorkõiv and colleagues used accelerometry to identify active
and inactive periods of hemiparetic upper extremity movement
(Noorkõiv et al., 2014). Additionally, Lee et al. (2018) found that
accelerometers can differentiate between goal-directed and non-
goal directed movements with 87% accuracy. Accelerometers can
also compare right and left upper extremity movement, thus
allowing clinicians to monitor learned non-use, which cannot
be otherwise measured using standardized stroke assessments
(Reiterer et al., 2008; Bailey et al., 2015). Finally, accelerometer
data has been found to correlate with standardized measures of
upper extremity function, which provides some evidence of the
potential for this device to monitor progression in the real-world
environment across the period of time when they are being worn
(Uswatte et al., 2006; Reiterer et al., 2008). Despite the benefits
of using accelerometers to monitor post-stroke upper extremity
rehabilitation, there remain challenges regarding data capture
and management. For example, Uswatte et al. (2006) completed

a study in which participants wore accelerometers for two 3-
day periods; however, researchers lost 23% of accelerometer data
due to errors with downloading and storing data, participant
error when wearing the devices, and technological failure.
Additionally, data output from accelerometers can be difficult to
process and interpret intuitively (Urbin et al., 2015).

In addition to these challenges, most investigations in
individuals post-stroke have explored the use of research
grade accelerometers rather than commercially available devices
(Noorkõiv et al., 2014). One benefit of commercially available
accelerometers is the variety of wristband designs which could
increase independence in doffing and donning the device when
in use (Lee et al., 2018). Additional benefits found in an
investigation of the Fitbit R© (Rowe and Neville, 2019) include
accessibility, affordability, and provision of immediate feedback.
Rowe and Neville (2019) compared the Fitbit R©, to the gold
standard accelerometer, ActiGraph R© in healthy adults. The
results found that while less sensitive to the capture of upper
extremity movement measured via step count, the data from
both devices was strongly correlated (i.e., r > 0.8). Similarly,
the commercially available Microsoft BandTM has been found to
consistently track duration, angular velocity, and acceleration as
well as produce anticipated data outcomes when worn by healthy
adults during task-repetitive exercises (Gough et al., 2019).
While these studies outline some benefits of using commercially
available accelerometers and indicate preliminary psychometric
information, there is limited research available regarding the
use of these devices for monitoring home exercise programs for
persons post-stroke. Therefore, the objective of this secondary
data analysis was to understand elements of practicality related
to use of a commercially available accelerometer with custom
software programs to corroborate self-reported data and provide
information on characteristics of practice when completing an
upper extremity home program. We sought to answer three
research questions:

(1) What percentage of self-reported practice sessions
were recorded by accelerometers during the home
exercise program?

(2) How does self-reported practice duration of a home
program compare to the recorded duration captured
via accelerometry?

(3) What can accelerometer outputs, such as angular velocity
and acceleration, tell us about speed or movement quality
during practice over time?

Five variables related to accelerometer data were explored during
data analysis, including (1) data capture (%); (2) duration (s);
(3) percent active time (%); (4) angular velocity (degrees/s);
and (5) standard deviation of acceleration (m/s²) in the X, Y,
and Z planes.

METHODS

Initial Study Background
These data were collected during a single subject design
intervention study (ABAB) to evaluate the impact of preferred
music listening during home program practice on adherence
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(Donoso Brown et al., 2020b). Seven stroke survivors in the
chronic phase of recovery participated in the original study.
Participants ranged from 45 to 83 years in age (Mean = 63.43;
SD = 16.7) and experienced right upper extremity hemiparesis
and mild to moderate aphasia (Donoso Brown et al., 2020b). See
Supplementary Table 1 for details of participant demographics.
Results from the original study indicate that four participants
met or exceeded the target of 10 practice sessions per week
(Donoso Brown et al., 2020b). The remaining participants fell
below 10 practice sessions per week for at least 1 week during the
study period and no consistent effect of preferred music listening
was found. Additionally, participants reported their experiences
with the bands as motivating although some reported needing
assistance to put them on prior to practicing (Wallace et al.,
2018).

Secondary Analysis
The secondary data analysis presented is a descriptive
quantitative analysis of the metrics obtained from the
accelerometer worn on the paretic limb during home practice.
When applicable, metrics such as number of exercises and
duration, were compared to data collected via self-report by the
participants in their logbooks.

Data Collection
During data collection, participants wore one commercially
available activitymonitor (Microsoft BandTM) on each wrist while
completing several, task repetitive exercises, with rest breaks
between sets, in their home environment. The exercises varied for
each participant, as the initial study assessed adherence to home
exercise programs. Exercises were selected based on activities
that were meaningful and motivating to each participant
as well as their upper extremity level of impairment. See
Supplementary Table 1 for each participant’s exercises. Practice
sessions consisted of two to three different exercises. Participants
were typically instructed to practice each exercise in three sets of
20 repetitions. During breaks between each individual exercise
set, participants were asked to rest their hands to aid in data
processing. Participants were asked to complete two practice
sessions per day, 5 days a week, for 4 weeks. In the logbooks,
participants recorded the start time and stop time for each
exercise, number of individual exercise sets for each exercise,
and number of repetitions completed within each individual
exercise set.

The Microsoft BandTM was connected to a mobile phone,
which was not connected to a cellular or wireless network.
The phone contained an application developed by Venetasoft,
Children’s National Hospital, and the University of Pittsburgh,
which was provided to the authors by request, to extract raw
data from the Microsoft BandTM’s triaxial accelerometer and
gyroscope. The frequency of data collection was set at 62
hertz. The band and phone were connected by Bluetooth. The
application was left running continuously during the study
period to eliminate the need for participants to start and stop
data collection on the devices. Participants needed to put the
Microsoft BandsTM on their wrists and then record the start
time prior to beginning their practice session. Participants were

taught to check the phone for a green light, indicating that the
application was collecting data. Additionally, participants were
instructed to contact the research team if technical difficulties
arose. Data weremanually downloaded from the phones once per
week during the study. Only data from the paretic (right) limb
was analyzed.

Data Processing and Cleaning
Data captured by the accelerometer included angular velocity
(degrees/s) and acceleration (m/s2) in each of the X, Y, and Z
spatial planes. These data were downloaded from the phones
as .log files. Due to the size of the files, they were exported
into SPSS R© (IMB, Version 26) and data from each exercise
were extracted based on participant-reported start and stop
times in their logbooks. The data were not filtered; therefore,
we used all data points collected during each exercise in our
analyses. We used all data collected to ensure the variability
of the metrics being studied was well-captured. Accelerometer
data corresponding to each exercise were then saved as .csv files.
The exercise files were then imported into Matlab R© (Mathworks,
Version 2020) and run one at a time through a custom program,
which included a graphical interface to guide the user in each step
of data importation and analysis.

The Matlab R© program read the data from each .csv file and
parsed it into six vectors. Three vectors contained the absolute
value of angular velocity (degrees/s) in each of the X, Y, and
Z planes, respectively. The other three vectors contained the
absolute value of acceleration (m/s2) in each of the X, Y, and
Z planes, respectively. The absolute value was used because we
were interested in the magnitude of these values and not the
direction. From these six vectors, the program generated six
graphs displaying angular velocity and acceleration in each of
the X, Y, and Z planes over the entire length of time represented
by the data set. When possible, visual inspection of the graphs
was used to note patterns representative of repetitive exercise
and rest periods. We also used visual inspection to identify
precise start and stop times (i.e., line numbers in Matlab R©)
for individual exercise sets as well as total exercise. Graphs
were considered readable if each individual exercise set was
preceded and followed by a rest period during which the velocity
values were approximately zero. As needed, multiple graphs (e.g.,
angular velocity X and angular velocity Y) were referenced to
identify the rest periods. The start and stop times were identified
as Matlab R© line numbers corresponding to the times at which
the participant transitioned from a rest period (zero velocity)
to an individual exercise set (non-zero velocity), and vice versa.
See Figure 1 for example of resulting start and stop times from
visual inspection using Matlab R© output. Start and stop times had
to be identifiable across all sets in the exercise in order for the
data to be considered usable for individual set analysis. There
were some exercises for which we were unable to visually identify
distinct start and stop points, as there was no discernable pattern
of activity when the data was graphed. As a result, these data were
not used during analysis.

To analyze individual sets within an exercise, the start and stop
times of each individual exercise set found by visual inspection
were entered into the Matlab R© program. The line numbers
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FIGURE 1 | Example Matlab® output for determination of start and stop points. Participant 3 completed three individual exercise sets during the exercise seen in

graph (A). We were able to visually identify start and stop points for each set. Set 1 started at line 2170 and stopped at line 4809, set 2 started at 6778 and stopped

at 10320, and set 3 started at 10960 and stopped at 15200. Participant 6 reported having completed three individual exercise sets during the exercise seen in graph

(B); however, we were unable to visually identify three individual exercise sets when graphing the data in the custom Matlab® program: (4597, 70940).

for the start and stop times were recorded in order to allow
for consistency when re-running the data for the exercise. The
program then analyzed data obtained between the start and stop
of each set in an exercise (i.e., beginning of first set to end of first
set, beginning of second set to end of second set). These data did
not include the rest periods that participants were instructed to
take between individual exercise sets. The files were run through
the program a second time to analyze the data for the total
exercise (i.e., beginning of first set of an exercise to end of the
last set of exercise). This total exercise data included rest breaks.
By considering both sets of data, we were able to determine if
the variables collected operated as expected in relation to the
inclusion and exclusion of rest breaks.

The Matlab R© program was designed to output the following
variables. Duration (s) was determined by first calculating the
difference in the line numbers representing the stop and start
times and then converting this quantity to seconds. Duration
provided a measure of practice time. The average, standard
deviation, max, and min of angular velocity (degrees/s) and
acceleration (m/s²) between select start and stop times were
also outputted. Angular velocity and acceleration provided
measures of magnitude and variability in practice speed and

were calculated for each of the X, Y, and Z directions as well as
their sum (i.e., total). To answer the specific research questions
outlined for this secondary analysis, the following variables were
used: duration, average total angular velocity (VX+VY+VZ), and
standard deviation of acceleration. The standard deviation of
acceleration was chosen as a primary focus because variability
in acceleration has been shown to positively correlate with
functional performance of the affected upper extremity post-
stroke (Urbin et al., 2015).

Data Analysis
All data outputted by Matlab R© were organized and further

analyzed in Excel©. The sum of the durations, as well as the
angular velocity and acceleration outputs from the individual
exercise sets were compared to those corresponding to the total
exercise. Additionally, the percentages of data capture and active
time were calculated for each participant and averaged across
all assigned exercises. Four analyses were completed to answer
the research questions: (1) amount of exercises with usable
data captured by the accelerometer vs. number of self-reported
exercises; (2) self-reported exercise duration vs. accelerometer
recorded duration; (3) total average angular velocity across an
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entire exercise vs. total average angular velocity during individual
exercise sets; and (4) trends observed in total average angular
velocity and the standard deviation of acceleration over time.

Data Capture
To answer the first research question, the percentage of data
capture was calculated by dividing the number of exercises
captured via the accelerometers by the number of exercises
reported by participants. For each participant, the percentage
of data capture was calculated for each exercise on a weekly
basis and then averaged over all weeks and exercises in the
study period. We then calculated the average percentage of data
capture across all participants to provide a single measure of data
capture for the study. A similar method was used to calculate
the percentage of exercises that were unreadable or lost due to
technological failure for each participant.

Duration
The accelerometer output yielded two variables related to
duration: (1) individual exercise set duration; and (2) total
exercise duration, which included the time spent resting
between sets. For each participant, the self-reported duration,
accelerometer-recorded sum of individual exercise set duration,
and accelerometer-recorded exercise duration were averaged
for each participant and then across all participants in the
study. Descriptive comparisons were made between (1) self-
reported and accelerometer-recorded exercise durations; and
(2) total exercise duration and the sum of individual exercise
set durations. Additionally, the percent of active practice time
during each exercise was calculated using accelerometer output
by dividing the average of the sum of individual exercise set
durations by average total exercise duration.

Angular Velocity
The total average angular velocity from each exercise was
descriptively compared with the total average angular velocity
obtained over individual exercise sets to determine the impact
of rest breaks on these outputs. It was anticipated that total
average angular velocity as a measure of speed would be greater
in the individual exercise sets, as these data did not include rest
breaks. Additionally, for participants with >50% data captured
(n = 3), the individual exercise set average for total average
angular velocity in each assigned exercise was graphed as a
function of time and a line of best fit was found to determine
the trend in total average angular velocity over the study period.
To determine if trends observed over the study period were
statistically significant, an unpaired t-test (α = 0.01) compared
the first nine individual exercise sets’ average total angular
velocity to the last nine individual exercise sets’ average total
angular velocity.

Acceleration
For participants with >50% of data captured (n = 3), the
standard deviation of acceleration in the X, Y, and Z planes
was obtained for individual exercise sets and total exercise. The
individual set values were then averaged within each exercise.
These values were then graphed for each assigned exercise as a
function of time and a line of best fit was found to determine

the trend in individual exercise set average standard deviation of
acceleration over the study period. In order to determine if trends
observed over the study period were statistically significant, an
unpaired t-test (α = 0.01) compared the first nine individual
exercise sets’ average standard deviation of acceleration to the
last nine individual exercise sets’ average standard deviation
of acceleration.

See Supplementary Table 2 for a list of all variables and their
calculation for these analyses.

RESULTS

Data Capture
Across all participants, an average of 47.27% (range 17.33–
70.41%) of all self-reported exercises were captured by the
accelerometers and produced corresponding usable data in
Matlab R©. For three out of seven participants, data were captured
for>50% of all self-reported exercises (P2, P3, P6). Technological
failure accounted for an average of 30.5% (range 8.3–54.8%)
of the remaining self-reported exercises. Five out of seven
participants lost an entire week of accelerometer data due to
technological failure. An average of 19.9% (range 2.3–50.69%) of
the captured data illustrated no discernable pattern of activity.
See Table 1 for details on participant data capture percentages.

Duration
Self-reported total exercise duration was longer than
accelerometer-recorded total exercise duration for five out of the
seven participants. These five participants reported practicing
for an average of 66.5 s longer (range 5.58–182.29) than
accelerometer-recorded total exercise duration. Additionally,
total exercise duration was on average 85.93 s longer (range
17.33–220.59) than the sum of the individual exercise set
durations. Furthermore, during exercise, six out of the seven
participants were active for 75% or more of the time. The
average active time percentage across the seven participants was
85.22%, ranging from 63.99 to 95.5% active time. See Table 2

for average self-reported and accelerometer-recorded duration
values for each participant, as well as active time percentages and
Supplementary Figure 1 for graphs of the difference between
self-reported and accelerometer-recorded durations for each
participant’s assigned exercise.

Angular Velocity
Across all participants a mean difference in average total angular
velocity of 15.02 degrees/s (range 0.39–51.83) was found between
the individual exercise sets and total exercises (includes rest
breaks). See Table 3 for the total average angular velocity
comparisons across all participants. When total average angular
velocity measures were graphed over time, eight out of the
nine slopes were positive with a range of 0.029–3.99. All three
participants demonstrated a statistically significant increase in
individual set total angular velocity in at least one activity over
the study period (p< 0.01). P3 had the two largest positive slopes
of 2.48 and 3.99. See Supplementary Figure 2 for graphs of these
data with corresponding statistical analyses.
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TABLE 1 | Categorization of data capture and comparison to self-reported practice.

Self-

reported exercises

(Total number)

Exercises with

usable data

(Percent)

Exercises with no

discernable pattern

of activity (Percent)

Exercises with

technological failure

(Percent)

P1 147 48.64 22.65 28.7

P2 117 70.41 19.87 9.7

P3 175 59.4 7.2 34.1

P4 72 41 50.69 8.3

P5 129 34.6 2.3 54.6

P6 149 59.5 17.54 22.9

P7 110 17.33 18.87 54.86

Mean 128.43 47.27 19.87 30.45

Range 72–175 17.33–70.41 2.3–50.69 8.3–54.8

Accelerometry data captured during each exercise was categorized as one of three outcomes: usable data, data with no pattern, or technological failure. The percentage of data

corresponding to each outcome is provided below for each participant. Percentages were obtained by dividing the number of exercises included in the category by the total number of

self-reported exercises over the 4-week period (i.e., # exercises with corresponding data/ total # self-reported exercise) and then averaging these values.

TABLE 2 | Comparison of self-report and accelerometer recorded duration.

Total number of

exercises used for

analysis

Self-reported

duration (s)

Total accelerometer-

recorded

duration (s)

Sum of

accelerometer-

recorded individual

exercise set

durations (s)

Difference of

self-reported

durations and

accelerometer-

recorded durations

(s)

% Active time

(Percent)

Difference of total

exercise and sum of

individual exercise

set duration (s)

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

P1 74 416.44 (200.89) 403.11 (220.97) 248.45 (137.22) 15.60 (170.56) 63.99 (15.19) 220.59 (201.07)

P2 87 675.37 (473.08) 597.36 (453.76) 561.47 (451.76) 73.94 (175.35) 90.88 (7.89) 42.42 (50.25)

P3 109 262.99 (159.52) 262.07 (151.46) 223.91 (130.01) −9 (49.31) 85.48 (10.81) 38.87 (45.37)

P4 31 761.25 (315.45) 604.90 (274.42) 430.43 (229.96) 182.29 (246.83) 76.55 (16.93) 210.5 (259.81)

P5 42 520.00 (401.63) 514.05 (406.50) 471.32 (370.64) 5.58 (53.60) 95.50 (3.84) 17.33 (13.15)

P6 90 718.82 (312.40) 670.52 (292.65) 599.43 (276.99) 55.09 (76.59) 92.77 (6.72) 45.23 (57.06)

P7 16 388.80 (189.83) 558.15 (363.77) 339.24 (222.16) −154.23 (315.02) 91.37 (5.25) 26.58 (20.19)

Mean 534.81 515.74 410.61 24.77* 85.22 85.93

Range 262.99–761.25 262.07–670.52 223.91–599.43 −154.23 to 182.29 63.99–95.50 17.33–220.59

For each participant, self-reported exercise durations were obtained, and these values were averaged across all exercises. Accelerometry data was used to determine the duration of each

exercise as well the sum of the duration of individual exercise sets. For each participant, the average exercise duration across all assigned exercises and the average of the sum of individual

exercise set durations across all assigned exercises is provided below. The following calculations were completed for each exercise and then across all exercises for each participant.

The percentage of active time was calculated as the ratio of sum of accelerometer-recorded individual exercise set durations/total accelerometer-recorded duration. The difference

in self-reported total exercise duration and accelerometer-recorded total exercise duration was calculated as self-reported duration - total accelerometer-recorded duration. Similarly,

the difference between exercise duration and the sum of individual exercise set durations was calculated as total accelerometer-recorded duration - sum of accelerometer-recorded

individual exercise set durations.

*Mean of column 5 excluding P3 and P7: 66.5.

Standard Deviation of Acceleration
When analyzing the graphs of individual exercise set average
standard deviation of acceleration over time, the slopes of all
trendlines associated with P2 and P6 ranged from −0.0005 to
0.0004 and represented minimal change in individual exercise
set average standard deviation of acceleration over the length of
the study period. For P3, seven of the nine slopes were positive
(range: −0.0017 to 0.0117) and five of these corresponded to
a statistically significant increase in the individual exercise set
average standard deviation of acceleration over the study period

(p < 0.001). See Supplementary Figures 3–5 for graphs of these
data and corresponding statistical analyses.

DISCUSSION

This paper presents the secondary analysis of data captured
via a commercially available accelerometer during completion
of an upper extremity home program for individuals with
chronic stroke. Our analysis found that data captured via
the accelerometer across all participants on average was
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TABLE 3 | Comparison of individual exercise set and total exercise total average angular velocity (degrees/s) across all exercises.

Total number of

exercises for analysis

Individual exercise set

angular velocities (A)

Degrees/s

Mean (SD)

Total exercise angular

velocities (B)

Degrees/s

Mean (SD)

Angular velocity

difference (A–B)

Degrees/s

P1 74 159.01 (3.90) 107.18 (19.70) 51.83

P2 87 70.07 (7.4) 63.4 (4.13) 6.67

P3 109 161.74 (18.88) 136.73 (19.094) 25.01

P4 31 67.55 (1.56) 49.89 (3.37) 17.66

P5 42 71.08 (61.73) 68.79 (59.03) 2.29

P6 90 40.57 (11.70) 40.18 (10.38) 0.39

P7 16 45.32 (14.01) 44.14 (13.97) 1.18

Mean 87.91 72.89 15.02

Range 40.57–161.74 40.18–136.73 0.39–51.83

For each participant, accelerometry data was used to calculate the total average angular velocity within each individual exercise set. These values were averaged for each assigned

exercise and then averaged over all assigned exercises for each participant (A). Similarly, accelerometry data was used to calculate total average angular velocity of the entire exercise

(including rest breaks) for each assigned exercise and then averaged over all assigned exercises (B). The difference in these two variables was calculated (A–B) to understand how the

inclusion and exclusion of rest breaks affects angular velocity.

missing more than half of the self-reported exercises. However,
self-reported duration and duration as measured by the
accelerometer were similar in exercises captured. In addition,
total angular velocity matched anticipated differences between
total exercise and individual exercise set values. Furthermore,
angular velocity provided a measure of change across time,
demonstrating an increase for all participants. The standard
deviation of acceleration also demonstrated a change over time
for one participant.

Data capture is an area of primary concern, particularly
considering the amount of data loss in our investigation was
almost twice the amount reported by Uswatte et al. (2006).
Factors that could have contributed to the level of technological
failure include the length of time data were captured unchecked
and the loss of the Bluetooth connection between the phone
and the devices. To support increased data capture, mechanisms
to allow for data capture directly on the device or to have
real time capture and uploading to an online server for daily
monitoring could be beneficial (Lee et al., 2018). Research grade
accelerometers have developed these features (ActiGraph, 2018),
but accelerometers have not been reported as consistently used in
clinical practice post-stroke (Donoso Brown and Fichter, 2017).

Despite the limited data capture, the available data were
consistent with self-reported data. The greatest difference
observed on average was ∼3min when comparing self-reported
and accelerometer-recorded duration. One explanation for the
differences in self-reported and accelerometer-recorded duration
could be the elapsed time between recording in the logbook and
beginning the exercise. Our comparisons between accelerometer
and self-reported data differ from previous research, which has
often compared accelerometer outputs to standardized stroke
assessments (Uswatte et al., 2006; Reiterer et al., 2008). These
findings differ from a previous studywhich investigated reporting
of daily paretic arm use to values captured via accelerometry
and found that most participants either under or overreported

their arm use in comparison to accelerometry measures (Waddell
and Lang, 2018). One possible explanation for the difference
between previous research and our study was that participants
were directly recording practice in an individualized logbook,
whereas previous investigations used a standardized self-reported
assessment with a rating scale. This direct recording could have
increased the accuracy between the self-reported and objective
measure for data captured. Overall, having an objective report
of time spent practicing could corroborate client report of
practice and facilitate discussion about potential challenges. In
addition, the ability to use total exercise duration and individual
exercise set duration to calculate an active time percentage allows
clinicians to understand more about how clients use breaks while
engaging in home practice.

Our findings also suggest the potential for angular velocity
and standard deviation of acceleration to monitor changes in
practice. When graphed across time for the three participants
with >50% data capture, the averages of individual exercise
set total angular velocity indicated an increase in speed for all
participants in at least two assigned exercises. This increase
in speed would be anticipated as participants became more
familiar with the exercises overtime. These findings suggest
that the average of individual exercise set angular velocities
could be valuable to clinicians in observing changes in practice.
Additionally, the standard deviation of acceleration was able to
capture a notable change for one participant. Another point
of note was that neither of these variables appeared to change
in a manner expected with the inclusion or removal of the
intervention in the initial study (i.e., ABAB design). However,
this finding is consistent with the results in the initial study
as it did not demonstrate a consistent difference in adherence
with the presence or absence of preferred music listening.
Future investigations should continue to explore how best
to use these variables for home practice and measurement
of outcomes.
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Limitations
There were several limitations to this secondary data analysis,
including the limited diversity of the sample, selection of
activities, potential error with data processing, and accuracy
of self-reported data. Regarding the sample, all participants
were in the chronic phase of stroke recovery; however, future
investigations should include persons in the earlier phase
of stroke recovery to allow for observation of change in
variables like the standard deviation of acceleration. Exercises
represented functional activities that occupational therapists
would likely use as interventions for people post-stroke and
were personalized to be motivating and relevant to each
participant. Although these exercises allowed us to evaluate the
use of accelerometers for real-life clinical activities; selection of
other motor exercises that required different movements and
positions of the upper extremity that were consistent across
all participants may have allowed for more controlled data
collection and precise analysis. Data processing contained many
steps and future investigations would benefit from streamlining
and automating many of these steps to allow for increased
clinical utility and reduction of measurement error. For example,
instead of visual inspection for start and stops, modifying
the programming of the analysis program to identify these
times based on minimum and maximum thresholds for angular
velocity would decrease the time related to processing and reduce
the influence of human error. Finally, while participants were
trained to use the aphasia-friendly logbooks and competency
was ensured prior to initiating independent practice, there
is a potential for error and inaccuracies with collecting self-
reported start and stop times. This error could impact how
the .log files were initially cut during data processing, as well
as comparisons made between self-reported and accelerometer-
recorded duration.

Future Research
Future research can explore a variety of areas to further increase
the potential of using commercially available accelerometers
for home programs in research and clinical settings. First,
cloud-based monitoring of accelerometer data during home
exercise could potentially increase data capture and support
real-time, technology-related problem solving. It would also
be beneficial to compare the results of this study to a
baseline study where exercises are performed in the presence
of a rehabilitation therapist to mitigate data collection and
technological errors. Additionally, machine learning could be
investigated to increase the accessibility of clinically meaningful
data for clients and rehabilitation therapists to receive feedback
more easily. These potential areas of exploration (machine
learning and cloud-based monitoring) would eliminate many
technological issues and data processing steps, thus closing the
gap between human-computer interaction challenges andmargin
of error.

In addition to refining the human computer interaction
within the use of accelerometers for engaging in home
programs, exploration of the utilization of these devices with
virtual reality applications is an area for future investigations.

Some initial explorations of combining accelerometry with
virtual reality have used the accelerometer to monitor physical
activity levels (Gomes et al., 2019), while others have aimed
to create a device that can control objects in a virtual
space (Perng et al., 2020). Findings from our study can
support further integration into virtual reality applications by
identifying variables of potential interest when monitoring
practice remotely.

CONCLUSIONS

Our study specifically explored duration, angular velocity,
and standard deviation of acceleration outputs, which can
provide key feedback regarding practice times, quality of
practice, and improvement in function over time during post-
stroke rehabilitation programs. Overall, this study increases our
understanding of how to interpret accelerometer output variables
as clinically meaningful data during home exercise programs for
post-stroke adults. Using commercially available accelerometers
promotes the accessibility and affordability of accelerometers
to be used in home environments, unlike related studies
that often use research-grade devices. While the commercially
available accelerometers produced data that aligned with the
anticipated outcomes for the variables considered, challenges
regarding the human-computer interaction between post-
stroke adults and use of accelerometers must be overcome
prior to implementation of this technology into real-world
stroke rehabilitation programs. Additional research should be
conducted to explore ways to increase data capture and expedite
data processing. Ultimately, accelerometer data should be easily
translated into information that is meaningful and motivating
both to the client and rehabilitation therapists, as feedback is an
important factor in the stroke rehabilitation process (Lee et al.,
2018).
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