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A cluster of research in Affective Computing suggests that it is possible to infer some
characteristics of users’ affective states by analyzing their electrophysiological activity in
real-time. However, it is not clear how to use the information extracted from
electrophysiological signals to create visual representations of the affective states of
Virtual Reality (VR) users. Visualization of users’ affective states in VR can lead to
biofeedback therapies for mental health care. Understanding how to visualize affective
states in VR requires an interdisciplinary approach that integrates psychology,
electrophysiology, and audio-visual design. Therefore, this review aims to integrate
previous studies from these fields to understand how to develop virtual environments
that can automatically create visual representations of users’ affective states. The
manuscript addresses this challenge in four sections: First, theories related to emotion
and affect are summarized. Second, evidence suggesting that visual and sound cues tend
to be associated with affective states are discussed. Third, some of the available methods
for assessing affect are described. The fourth and final section contains five practical
considerations for the development of virtual reality environments for affect visualization.
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INTRODUCTION

Virtual Reality (VR) systems offer endless possibilities for the development of interactive
experiences. They are used for the development of tools in diverse areas such as rehabilitation
therapy (Garcia and Navarro, 2014), exergames (Arndt et al., 2018; Greinacher et al., 2020), and
robotics (Burdea et al., 2013). Their potential is particularly promising when combined with
technological advances in Affective Computing, allowing to interpret users’ affective states as
computer commands (Picard et al., 2001; Sitaram et al., 2011; Hernandez et al., 2014; Leslie
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et al., 2015) and adapt the content of a virtual environment
accordingly (Bermudez i Badia et al., 2019).

Traditional psychological tasks for the treatment and
diagnosis of mental disorders can be replaced by VR systems
(Koenig et al., 2011; Belger et al., 2019; Blum J et al., 2019, 2020).
These new tools are less time-consuming and provide more
realistic environments, hence higher ecological validity.
Furthermore, VR might be helpful for at least two types of
therapy: exposure therapy and biofeedback therapy. Exposure
therapy is commonly used to treat anxiety disorders caused by
phobias. Patients are systematically exposed to the stimuli that
trigger the phobia in a controlled environment and with a
therapist’s guidance. VR is useful for exposure therapy because
it allows delivering realistic experiences while providing control
over the stimuli. Previous research suggests that exposure therapy
in VR might be effective for the treatment of a least three types of
phobias: social phobia (Shiban et al., 2015), claustrophobia
(Shiban et al., 2016), and spider-phobia (Peperkorn et al., 2014).

Biofeedback therapy is used to provide real-time feedback to
the patient about their physiological activity while they perform a
task (J. Blum et al., 2020). The characteristics of the task depend
on the purpose of the therapy. For example, Blandón et al. (2016)
developed a biofeedback game for training attention control in
children with Attention Deficit Hyperactivity Disorder (ADHD).
The player performed tasks in a virtual farm, such as collecting
fruits and repairing a pathway. Participants were challenged to
increase their concentration, impulsivity control, and sustained
attention to do these tasks. Simultaneously,
electroencephalography (EEG) signals were processed in real-
time to identify EEG activity associated with attention state. The
player obtained a game score if attention state was detected in the
EEG signals.

Similarly, Cavazza et al. (2014) developed an interactive
experience to enhance empathy using neurofeedback. The
participant interacted with a fictional doctor that was going
through a difficult situation. Simultaneously, the participant’s
EEG signals were analyzed to estimate the affective response
towards the doctor. If the system detected a positive affective
response in the player, the storyline would change positively (the
doctor would struggle less). It was expected that those changes in
the story line would reinforce the supportive, empathetic
behavior of the player.

Patients who lack affective self-regulation could benefit from
VR biofeedback therapy to train affective self-control, fostering
mood regulation (Desmet, 2015). Li et al. (2016) conducted an
experiment where twenty-three participants’ brain activity was
analyzed in real-time using functional Magnetic Brain Imaging
(fMRI). They asked participants to evoke a happy or sad memory
and provided feedback about their affective state. The feedback
was provided with a bar on a screen. The bar’s level increased
when the fMRI data indicated that the participant successfully
evoked the happy or sad memory. Results suggest that providing
visual feedback allowed participants to learn how to modulate
their neural activity. But it is not clear how to implement this
finding in a therapeutic application that can be accessible for a
large population because 1) fMRI is an expensive technology that
is not accessible for most people, 2) participants must remain

motionless for long periods during fMRI recordings; otherwise,
the data is corrupted, and 3) an ideal therapeutic application
should consist of engaging content that motivates users to use the
system. These challenges could be solved by measuring brain
activity with a less expensive and more portable method than
fMRI, such as electroencephalography (EEG). The visual
feedback could be provided using game-like elements.

The development of an affective visualization tool in VR
would require at least two components: 1) A set of VR stimuli
with affective content whose properties can be adjusted in real-
time, and 2) a technique to continuously assess affective states in
an online fashion without interrupting the VR experience. This
literature review was elaborated to understand how to develop
those components. Both requirements are addressed in three
subsections. Firstly, theories related to emotions and affect are
presented. Secondly, findings related to visual and sound cues
that are associated with affective responses are analyzed. And
thirdly, some of the most common methods for detecting
affective states are summarized.

THEORETICALMODELS OF EMOTION AND
AFFECT

The terms emotion and affect are often used interchangeably in
the literature, but they are not exactly the same. There is not a
general agreement about how to define these concepts. In this
manuscript, emotions are defined as mental states that
coordinate the operation of cognitive processes. This
definition is based on the assumption that the human mind
is designed as a computational system that consists of a series of
information-processing programs (Putnam, 1967). Emotions
are a particular type of program that coordinate other
programs’ operation (Cosmides and Tooby, 1994). Affect is
defined as the cognitive representation of the bodily changes
that come with emotions (Wundt, 1897; Barrett and Bliss-
Moreau, 2009). Neither emotion nor affect can be directly
observed or measured. However, the definition of affect is
directly associated with the physiological states, while the
definition of emotion is not. Therefore, it is reasonable to use
electrophysiological signals to infer affective states, which might
allow to infer some characteristics of emotional states.

Emotion Theories
The Ortony, Clore and Collins (OCC) theory of emotions
(Ortony et al., 1988) has been widely used in the field of
computer science to model users’ emotional responses (e.g.,
Conati & Zhou, 2002; Jaques and Vicari, 2007). This theory
describes emotions in terms of twenty-two categories and
assumes a clear distinction between each category. This
approach is compatible with existing emotion recognition
algorithms because these are usually based on categorizing
emotions (e.g., Harischandra and Perera, 2012; Mavridou
et al., 2017). According to the OCC theory (Ortony et al.,
1988), the first step in an emotional response is the perception
of the situation. Then the situation is evaluated (appraisal), and
finally, the emotional response emerges. However, this theory
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does not consider the physiological changes associated with
emotions.

Similarly, Robert Plutchnik proposed a structural model of
emotions (Plutchik, 1982), commonly known as Plutchnik’s
wheel of emotions. This model consists of eight primary
states: ecstasy, adoration, terror, amazement, grief, loathing,
rage, and vigilance. According to Pluthnik’s theory, any
emotion can be described as a combination of a subset of
those basic states. Here emotions are defined as a sequence of
reactions towards a stimulus. This sequence includes a cognitive
evaluation of the stimuli (appraisal), feelings (subjective
experience of the emotion), autonomic neural activity, and
behavioral responses.

There are at least three other major emotion theories: the
James-Lang Theory (Lange and James, 1922), the Cannon-Bard
Theory (Cannon, 1927; Bard, 1934), and the Schachter-Singer
Theory (Schachter and Singer, 1962). According to Shiota and
Kalat (2012), these theories have in common the assumption that
emotional responses have four components but differ in the order
those components take place during an emotional response. The
components are:

• Appraisal: The cognitive, rationalized evaluation of the
context where the emotional response is produced.

• Feeling: The subjective, momentary experience of the
emotion.

• Physiological change: The bodily changes produced by the
emotional response.

• Behavior: The observable conduct that comes with the
emotion.

According to the Lange and James (1922), the first step in an
emotional response is the cognitive evaluation of the situation.
Then, physiological changes are produced in the body, at the
same time that a behavioral response is produced. Lastly, feelings
take place.

The Cannon-Bard Theory (Cannon, 1927; Bard, 1934)
proposes that all the elements of an emotional response are
independent of each other, and there is no particular order in
which they occur. This theory is not compatible with the
convincing amount of evidence indicating that emotional
stimuli tend to trigger automatic changes in the body (e.g.,
Dimberg et al., 2000; Huster et al., 2009; Thayer et al., 2009).
Overall, these previous studies suggest interdependence between
physiological changes and the other components of emotion.

According to the Schachter and Singer (1962), physiological
changes occur first. Then the user tries to find an explanation in
the environment for those physiological changes. Depending on
the explanation found, a cognitive label is assigned to the bodily
changes perceived. Therefore, the physiological changes indicate
the intensity of the emotional experience, but cognitive factors
determine the emotion’s valence (pleasant vs unpleasant).

Theoretical Models of Affect
Theoretical models of affect can be classified into two major
groups: discrete and dimensional models. Discrete models are
based on a categorical division of affective responses, while

dimensional models represent affect as an array of continuous
variables. Both types of models are commonly used in Affective
Computing to build affect recognition models (e.g., Sitaram et al.,
2011; Hernandez et al., 2014; Leslie et al., 2015).

In broad terms, discrete models propose the existence of a
few primary states, such as happiness, sadness, and anger.
Affective responses are a combination of a subset of those
fundamental states. A prominent example of the influence of
discrete models in psychology research can be found in an
experiment conducted by Ekman and Friesen (1971) in New
Guinea. In this experiment, stories with emotional content were
told to 153 participants. One hundred thirty of them (84.97%)
had no previous contact with the western culture. After each
story had been told, participants saw a series of pictures of facial
expressions and were asked to choose the more coherent face
with the story. Interestingly, participants associated similar
facial expressions to the same stories, regardless of their
cultural background. Based on this evidence, it was proposed
that there are at least six facial expressions that are universal
(i.e., they are not affected by culture): happiness, anger, sadness,
disgust, surprise, and fear. These results are consistent with
earlier contributions from Charles Darwin, who pointed out the
existence of activation patterns in facial muscles which are
associated with affective states (Darwin, 1872; Ekman, 2006).

Dimensional models have their roots in the early contributions
of Wilhelm Wundt, who proposed that affective responses have
three dimensions: valence (pleasant–unpleasant), arousal
(arousing–subduing), and intensity (strain–relaxation) (Wundt,
1897). On this basis, the Circumplex Model of Affect (Russell,
1980) was developed, representing affect in a two-dimensional
space, where valence and arousal are equivalent to the x-axis and
y-axis, respectively.

Other authors have proposed the Evaluative Space Model
(ESM) (Cacioppo et al., 1997), which has three dimensions:
Negativity in the x-axis, Positivity in the y-axis, and Net
predisposition (to withdraw or approach a stimulus) in the
z-axis. Unlike the Circumplex Model of Affect (Russell, 1980),
the ESM (Cacioppo et al., 1997) contemplates the existence of
affective responses with simultaneous negative and positive
activation (“bitter-sweet” affective states). For example, while
playing a terror video game, the user might feel fear, and at
the same time, might feel excited because is aware that there is not
a real danger. An analysis about dimensional models of affect can
be found in Mattek et al. (2017).

The ESM proposes the existence of the negativity bias and the
positivity offset. The negativity bias implies that negative
activation produces more changes in the motivation to
withdraw or approach stimuli than positive activation.
Evidence supporting the existence of the negativity bias
indicates that negative stimuli tend to produce more salient
behaviors than positive stimuli (Sutherland and Mather, 2012),
and negative stimuli tend to be associated with higher arousal
than positive stimuli (Lang et al., 2008). The negativity bias
suggests that terror video games should trigger higher arousal
than video games associated with positive affective states.
However, a recent study indicates that the arousal level
triggered by terror video games is slightly lower than the
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arousal triggered by video games associated with positive affective
states (Martínez-Tejada et al., 2021).

The positivity offset implies a slight positive motivation to
approach unknown stimuli in a neutral environment. This
mechanism has been associated with humans’ natural
tendency to explore new, unthreatening environments, even
when that behavior is not associated with a reward (Cacioppo
et al., 1997, p. 12). Further research about the positivity offset
could help understand how to motivate VR users to explore
virtual environments. For example, to stimulate engagement of
players with VR games.

VISUAL AND SOUND CUES

Building a virtual environment for affective visualization requires
content that any user can associate with a wide range of affective
states, regardless of cultural differences or personal preferences.
Therefore, this section presents recent studies suggesting an
association between features of audio-visual elements and
affective states. We aim to provide general guidelines for
representing affect with audio-visual elements, rather than
defining a set of rigid rules.

Visual Cues
Rounded objects are associated with higher valence and lower
arousal than sharp objects (Bar & Neta, 2006). And rounded lines
are perceived as more attractive than straight or angular lines
(Aronoff et al., 1992; Aronoff, 2006). Given that attractiveness is
associated with positive affective states, rounded lines are likely
associated with positive valence. Additional studies suggest that
visual complexity plays a role in the likability of objects. People
tend to prefer extremely simple or extremely complex objects
(Norman et al., 2010). Given that likability tends to trigger
positive valence (Ryali et al., 2020), an intermediate level of
complexity is more likely associated with negative valence.

A cross-cultural study showed that the most critical factors in
the affective meaning of color are brightness and saturation, while
hue has a secondary role (Gao et al., 2007). These results are
consistent with evidence reported in Valdez & Mehrabian (1994)
but contrast with recent studies indicating that hue has a
significant role in the affective state associated with a color
palette (Bartram et al., 2017). Additional evidence suggests
that blue, green, and purple are among the most pleasant
hues, while yellow is among the most unpleasant. Green-
yellow, blue-green, and green are the most arousing, while
purple-blue and yellow-red are among the least arousing
(Palmer and Schloss, 2010). Similarly, it has been found that
the most pleasant colors are those with higher saturation and
brightness (Camgöz et al., 2002; Wilms and Oberfeld, 2018).
However, other studies suggest that there are not universal
associations between colors and affective states. People tend to
like colors associated with objects they like and dislike colors
associated with objects they dislike (Palmer and Schloss, 2010).
Additional evidence indicates that color associations change
according to the context where colors are used (Lipson-Smith
et al., 2020), supporting the hypothesis that there are not

universal associations between colors and affective states. Yet,
it is possible to establish color palettes that allow to communicate
affective states. For example, bright, unsaturated colors are more
suitable to communicate calm, while dark, red colors are more
suitable to communicate disturbance (Bartram et al., 2017).

Textures may influence the affective meaning of color
(Lucassen et al., 2011; Ebe and Umemuro, 2015). This has
been demonstrated by pairing colors with computer-generated
textures and asking participants to rate the color-texture pairs
using four scales: Warm-Cool, Masculine-Feminine, Hard-Soft,
and Heavy-Light. Results suggest that texture significantly
influences the evaluation on the Hard-Soft scale and has a
minor impact on the other scales. However, this evidence does
not allow to identify associations between particular texture
patterns and affective responses.

Non-static visual elements have other visual properties besides
color, shape, and texture. Some of these additional properties are
speed, motion shape, direction, and path curvature. Fast-moving
objects are associated with higher arousal than slow-moving
objects (Feng et al., 2014; Piwek et al., 2015). But there are
contradictory findings regarding the type of valence associated
with speed. One study suggest that fast movements are related to
positive affective states (Piwek et al., 2015), while other study
indicates the opposite (Feng et al., 2014).

Linear motion with straight paths is associated with low
arousal and positive valence (Feng et al., 2014). Jerky paths
are associated with higher arousal than straight paths in
linear motion (Lockyer et al., 2011; Feng et al., 2014). But the
curvature of the path has no incidence in affective
associations when applied to spherical or radial motion
(Feng et al., 2014). Inward movements are related to more
positive affective states than outward movements (Feng
et al., 2014). Downwards-right motion tends to be linked
to positive states, while upwards-left motion tends to be
associated with negative states (Lockyer et al., 2011). In
general, angular paths are related to more negative
affective states than linear paths (Lockyer et al., 2011).
And spherical motion patterns tend to be associated with
higher arousal than linear motion patterns.

Sound Cues
Previous research indicates that the location of a sound source
influences the affective states associated with that sound. When
the user cannot see where the object is (outside of the field of
view), it is often associated with more arousing affective states
than when the user can see it (inside the field of view) (Drossos
et al., 2015; Tajadura-Jiménez, Larsson, et al., 2010a). Similarly,
sounds located further away in the space are related to less
arousing responses (Tajadura-Jiménez et al., 2008). The
perception of an approaching sound is associated with more
arousing responses than the perception of it moving away
(Tajadura-Jiménez, Väljamäe, et al., 2010b). These phenomena
are likely to be linked to mechanisms enforced by evolution
(Cosmides and Tooby, 1994). Our primitive ancestors had more
chances to survive if they were aware of the most potentially
dangerous objects, such as those they could not see, were closer to
them, or were approaching them.
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The reverberation of the sound, which is associated with
space’s size, can influence affective associations (Tajadura-
Jiménez, Larsson, et al., 2010a). Lower reverberation (smaller
rooms) is linked to more pleasant states than higher reverberation
(larger rooms). Perhaps, because the primitive human being was
better protected from predators in closed spaces, leading to an
evolutionary process that favors the activation of attentional
resources when we are in open areas.

Other studies indicate that asking people to rate pictures with
affective content while listening to the sound of a heartbeat can
influence their affective evaluations, as well as their heart rate
(Tajadura-Jiménez et al., 2008). Here, the sound of a heart rate
faster than the listener’s one tends to increase their heart rate,
while a slower sound seems to relax the listener’s heart rate.
Therefore, playing a fast heartbeat in the background might be an
effective way of representing an increase in arousal.

On the other hand, music is pivotal for affective visualization
because it can contribute to create more immersive experiences.
However, it is a vast topic that will not be fully covered in this
manuscript. Yet, it is important to mention that tempo influences
music’s affective perception (Fernández-Sotos et al., 2016). Faster
tempo tends to be associated with higher arousal ratings, while
slower tempo tends to be associated with lower arousal ratings. To
the extent of our knowledge, there is no evidence suggesting that
tempo influences valence ratings.

Major and minor chords are associated with positive and
negative affective states, respectively (Gerardi and Gerken, 1995).
Similarly, dissonant harmonies tend to be strongly associated
with anger, and to a lesser extent, with fear (Petri, 2009). And it is
possible to compose music based on people’s affective states
(Williams et al., 2017). However, it remains an open question
whether it is feasible to do it in real-time, based on the user’s
electrophysiological signals.

Personalized Affective Visualizations
There might be individual differences in the affective states that
each user associates with the same audio-visual stimuli. These
individual differences could be amplified as a consequence of
personal experiences. An ideal system for affective visualization
should account for those individual differences, delivering
personalized visual representations of affective states, similar
to Bermudez i Badia et al., (2019).

Semertzidis et al. (2020) developed an Augmented Reality
(AR) system that automatically creates visual representations of
the user’s affective states. The visualizations consisted of fractals
generated using Procedural Content Generation (PCG). The
visual properties of the fractals varied according to the
affective state detected in the user. However, the evidence
reported by Semertzidis et al. (2020) does not allow to
establish whether participants perceived that the fractals’
graphical properties represented their affective states.

Additional studies indicate that it is possible to use PCG to create
content dynamically, adjusting it to the preferences of the user. This
approach is known as experience-driven procedural content
generation (EDPCG) (Yannakakis and Togelius, 2011; Raffe et al.,
2015). In broad terms, EDPCG consists of an iterative process where
the content is constantly modified based on the user’s feedback.

The general functioning of EDPCG is the same as an
evolutionary algorithm (EA), which is an optimization process
inspired by natural evolution. In a natural environment, the
organisms that are better adapted to their habitat tend to have
more reproductive success, hence more likely to pass their genes to
the next generation. Similarly, objects can be created
programmatically in a virtual environment and tested to
identify the most successful ones. The criteria to identify which
objects are more successful is based on a previously defined goal.
This goal is defined by the developer based on the purpose of the
application. During each iteration, the objects that are more
successful at reaching the goal are identified. In the following
iterations, new sets of objects are created, and the characteristics of
the most successful objects tend to remain, whereas the
characteristics of the least successful tend to disappear. It is
assumed that repeating this process several times allows to
reach the optimal parameters required to achieve the goal. For
example, if the goal is to create personalized visual representations
of positive affective states, and the EA detects that the user tends to
associate red, rounded objects with positive affective states, the
game would produce objects that would tend to be more red and
more angular. An introduction to EA can be found in Eiben and
Smith (Eiben and Smith, 2015).

Additional research indicates that it is possible to create
automatically visual compositions in VR using Deep
Convolutional Neural Networks (DCNN) (Kitson et al., 2019).
Overall, the process consists of merging features from two images
to create a third image. This approach could be combined with
EDPCG (Yannakakis and Togelius, 2011; Raffe et al., 2015) to
create personalized affective visualizations. The process would
involve at least three steps: 1) Create a set of VR content that
all users will observe and used that content as a baseline. This initial
set of content could be developed following the guidelines
described in Table 1; 2) Capture user feedback about the visual
stimuli to establish the affective state that each user associates to
each piece of VR content; And 3) use DCNNs to merge features of
the initial content onto new, personalized VR content.

ASSESSMENT OF AFFECTIVE STATES

Users’ feedback should be captured using methods that do not
interrupt the VR experience, such as body movements (see
Section Behavioral Measures) or electrophysiological signals,
similar to Georgiou and Demiris (2017). Methods for assessing
affective states can be grouped into three categories: self-report
questionnaires, behavioral measures, and electrophysiological
signals. Each method has advantages and disadvantages that
will be discussed below.

Self-Reports
Self-reports allow participants to evaluate their affective state by
answering a series of questions. They can be used to verify the
accuracy of the acquired information through other methods, such
as behavioral and electrophysiological signals. Data collected
through self-reports are often used as a ground-truth in the field
of HCI.
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TABLE 1 | Summary of audio-visual cues associated with affective states, according to previous studies.

High arousal Low arousal High (positive) valence Low (negative)
valence

Static visual cues Shape Angular Rounded Rounded Angular
Lines Rounded Straight
Hue Green-yellow, blue-green, and

green
Purple-blue and
yellow-red

Blue, green, and purple Yellow

Saturation N/A N/A Saturated Unsaturated
Brightness N/A N/A Bright Dark
Visual complexity N/A N/A Extremely complex or extremely

simple
Neither complex nor
simple

Non-static visual
cues

Speed Fast Slow Some studies suggest that fast motion is associated with
positive valence, while others suggest the opposite

Motion shape Spherical Linear N/A N/A
Direction N/A N/A Downwards-right, inward Upwards-left, outward
Path curvature Jerky Straight Jerky Straight

Sound cues Source location Outside field view Inside field view N/A N/A
Distance to the sound
source

Near Far N/A N/A

Sound source movement Approaching Receding N/A N/A
Heartbeat sound Fast (above 100 bpm) Slow (below 60 bpm) N/A N/A

Music Tempo Fast Slow N/A N/A
Harmony N/A N/A Major scale Minor scale

FIGURE 1 | Female character of Pick A Mood (PAM), taken from Desmet et al. (2016). Eight discrete states are represented, plus a neutral one.
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In general, self-report measures are relatively easy to
implement because they only require to display a series of
questions on a paper sheet or a screen. Unlike behavioral and
electrophysiological methods, self-reports are considered a direct
measure because they allow asking participants directly about
their mental states (Perkis et al., 2020). However, they are
susceptible to be biased by rational processes. For example,
participants who believe that it is expected from them to
respond in a certain way might adjust their responses to fulfill
that expectation, causing a phenomenon known as experimenter
bias (Fisher, 1993). Some available tools for the assessment of
affective responses are the Positive and Negative Affect Schedule
(PANAS) (Watson et al., 1988), Self-Assessment Manikin (SAM)
(Bradley and Lang, 1994), and Pick aMood (PAM) (Desmet et al.,
2016). The PANAS (see Figure 1) consists of 20 words related to
negative and positive feelings (ten negatives and ten positives).
Participants use those words to report their affective state. Each
word can receive a rating from one to 5.

The SAM (Bradley and Lang, 1994) is an instrument that uses
three scales: valence (pleasant/unpleasant), arousal (tension/
relaxation) and dominance (inhibition/uninhibition). Each
scale has five pictograms. Participants can select the blank
spaces between each pictogram to indicate intermediate states.
Therefore, answers to each scale can take values between one and
9 (see Figure 2). Given that this instrument is based on
dimensions, it is compatible with dimensional models of
affect. The SAM (Bradley and Lang, 1994) is one of the most
established instruments for assessing affect (over 7.000 citations)
and has been used for the development of batteries of stimuli with

emotional content, such as the International Affective Pictures
System (IAPS) (Lang et al., 2008) and the DEAP dataset (Koelstra
et al., 2012).

On the other hand, the PAM (Desmet et al., 2016) is based on
discrete states. Therefore, it is compatible with discrete models of
affect. This instrument also uses pictorial cues to assess
participant’s states. There are eight mood types plus a neutral
one: excited, cheerful, relaxed, calm, bored, sad, irritated, and
tense. There are three characters for each of these states: a man, a
woman, and a robot (gender-neutral character). In comparison to
the SAM (Bradley and Lang, 1994), PAM’s characters (Desmet
et al., 2016) are more similar to a real human being (see Figure 1),
which might be an advantage because it could be easier for
participants to feel identified with the characters of the PAM
(Desmet et al., 2016).

The PAM has been used to understand how to design objects
and experiences that could stimulate mood regulation (Desmet,
2015), analyze the effect of immersive virtual environments on
gaming Quality of Experience (QoE) (Hupont et al., 2015), and
analyze whether the effect of color on affective states varies across
different VR rooms (Lipson-Smith et al., 2020). Using paper
questionnaires to analyze experiences in virtual environments
might require to interrupt the VR experience. This limitation can
potentially be counterbalanced by using subjective rating scales
inside the virtual environment (Voigt-Antons et al., 2020).

Behavioral Measures
Behavioral measures allow inferring affective states from
observable conducts, such as body movements (Bull, 1978;

FIGURE 2 | From top to bottom: valence, arousal, and dominance scales of the Self-Assessment Manikin (SAM). Taken from (Bradley and Lang, 1994).
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Robitaille and McGuffin, 2019), voice patterns (Scherer and
Oshinsky, 1977; Cordaro et al., 2016), and facial expressions
(Ekman and Friesen, 1971). During an experiment conducted by
Bull (1978), participants listened to a series of audio recordings
with emotional content while their body movements were
videotaped. Results suggested that sadness is associated with
dropping the head while boredom is related to leaning the
face in one hand. Building on that, recent research indicates
that it is possible to infer arousal from body movements in virtual
reality users (Kapur et al., 2005; Robitaille and McGuffin, 2019).
In general, faster body movements are associated with higher
arousal.

It is possible to automatically analyze users’ affective states
based on their voice patterns (Vogt et al., 2008). Usually, a set of
features are defined and used to build a classificationmodel. Some
of the features used for automatic speech emotion recognition are
pitch, loudness, and tempo (Vogt et al., 2008; Polzehl et al., 2011).
This approach is coherent with evidence suggesting that changes
in vocalization patterns have an effect on the affective evaluation
of speech, e.g. (Scherer & Oshinsky, 1977; Banse and Scherer,
1996).

Eye-tracking has been an essential measure of various
individual states or even personality traits (Hoppe et al., 2018).
Greinacher & Voigt-Antons (2020) demonstrated recently how
this measure could be easily obtained from modern smartphones
using built-in system libraries (Greinacher and Voigt-Antons,
2020). The accuracy of this approach is comparable to other
webcam or selfie-cam-based systems. However, having eye-
tracking systems easily accessible in millions of devices opens
up opportunities for remote or in-the-field studies with a much
higher ecological validity than studies relying on heavy
equipment traditionally used in laboratory investigations.

As mentioned in section Introduction. Theoretical models of
affect, facial expressions are associated with affective states
(Ekman and Friesen, 1971). These expressions can be analyzed
visually and described in terms of the Facial Action Coding
System (FACS) (Ekman and Friesen, 1976). The FACS is an
instrument that describes all the possible movements of the facial
muscles. Each movement is defined as an Action Unit (AU).
Facial expressions can be described as a combination of a subset
of all the Action Units defined in the FACS (Ekman and Friesen,
1976). In a study conducted by Porcu et al. (2020), AUs were used
for real-time analysis of the facial expressions of video streaming
users. Additional studies suggest that human facial expressions
can be collected using crowdsourcing techniques (McDuff et al.,
2012), and its analysis can be optimized using statistical models
that adapt automatically to the characteristics of the data (Feffer
et al., 2018). However, facial recognition with camera sensors
might be challenging to implement in VR because the Head-
Mounted Display (HMD) covers the user’s face. Therefore, facial
electromyography (fEMG), a technique introduced in the
following section, might be more suitable for capturing VR
users’ facial expressions (Mavridou et al., 2017).

Electrophysiology
Electrophysiological methods allow measuring changes in the
electrical potentials of the body. Usually, facial electromyography

(fEMG), electrocardiography (ECG), and
electroencephalography (EEG) are used to record facial
muscle, heart, and brain activity, respectively. This section
focuses on methods to infer emotions in terms of the
Circumplex Model of Affect (Russell, 1980) (see Section
Theoretical Models of Affect). Therefore, the focus is on
techniques that can be used to infer valence and arousal.
There are many approaches for affect detection using
electrophysiological signals that are not based on the
Circumplex Model of Affect (Russell, 1980) and are not
included in this manuscript.

Arousal can be inferred from features extracted from ECG
signals. The beat-to-beat intervals of the ECG signal (often
referred to as RR-Intervals, RRI) are extracted, detecting its
peaks and calculating the time lapse between each peak. These
RRIs are used to analyze the heart rate variability (HRV).
Prominent examples of time-domain features used to analyze
HRV are the root mean square of successive differences (RMSSD)
and the standard deviation of NN intervals (SDNN). It has been
found that higher HRV is associated with higher emotional
arousal (Thayer et al., 2009). It is possible to extract features
from the ECG signal in the frequency domain by calculating the
LF/HF ratio. The low-frequency component (LF) (0.04–0.15 Hz)
is associated with parasympathetic activity, while the high-
frequency component (HF) (0.15–0.4 Hz) is associated with
sympathetic activity (Malik et al., 1996). The activation of the
parasympathetic system is associated with relaxation, and
activation of the sympathetic system is associated with arousal.
Therefore, increased activity in the HF component indicates
higher arousal (Pagani et al., 1984). Further research has
shown that it is possible to infer arousal from EEG signals in
VR users employing long short-term memory (LSTM) recurrent
neural networks (RNN) (Hofmann et al., 2018).

A recent study compared the benefits of implementing HRV
biofeedback in virtual reality with a traditional HRV biofeedback
therapy (Blum S et al., 2019), suggesting that the VR
implementation produces more benefits for users in terms of
relaxation self-efficacy, reduced mind wandering, and control of
attentional resources. A similar approach was proposed in Blum
et al. (2020), introducing a breathing biofeedback algorithm. This
algorithm combines features extracted from electrocardiography
activity with data inferred from diaphragm movements. The
experiment was conducted using a chest band (Polar H10),
which is a reliable, relatively inexpensive sensor. Results
suggest that this approach can help to foster more regular and
slower breathing in VR users.

Valence can be inferred from EMG and EEG signals. Previous
evidence suggests that the Corrugator Supercilii muscle activity
(located above the eyebrows) is associated with negative affective
states. In contrast, the Zygomaticus Major muscle activity
(located in the cheeks) is related to positive affective states
(Dimberg, 1982). Changes in facial muscle activity can occur
without conscious awareness of the participant (Dimberg et al.,
2000; Dimberg and Thunberg, 2012). However, it might be
challenging to implement EMG in a VR system because the
pressure of the Head-Mounted Display (HDM) on the electrodes
can create artifacts on the recorded signal.
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Asymmetry in the cortical activity of the frontal cortex is also
associated with valence. It has been found that positive and
negative emotions are processed in the left and right frontal
cortex, respectively (Ray and Cole, 1985; Huster et al., 2009;
Antons et al., 2014). Additionally, it has been found that cortical
activity decreases as the alpha power (frequencies between 8 and
13 Hz) increases (Pfurtscheller and Lopes da Silva, 1999).
Therefore, increased processing of positive stimuli is associated
with decreased alpha power in the left frontal cortex (higher
activity in the left side of the brain). Similarly, increased
processing of negative stimuli is associated with decreased
alpha power in the right frontal cortex (higher activity in the
right side of the brain) (Davidson, 1992; Pfurtscheller and Lopes
da Silva, 1999; Huster et al., 2009).

These findings are coherent with results obtained by
Reuderink et al. (2013) in a study where the brain activity
of video game players was recorded using EEG. Participants
were asked to report their affective state using the SAM
(Bradley and Lang, 1994) after the game session ended.
Results indicated a positive correlation between self-
reported valence and alpha asymmetry. Likewise, Koelstra
et al. (2012) analyzed the brain activity of 32 participants
who watched forty musical videos and rated their emotional
reactions to each video using the SAM (Bradley and Lang,
1994). A positive correlation was found between self-reported
valence and alpha power in the right occipital region of
the brain.

Eye-movements and eye-blinks cause artifacts in the EEG
signals and are usually reflected in the activity of the frontal
region of the brain. In non-stationary VR applications, it is
particularly challenging to remove artifacts caused by muscle
activity, head movements, or electrical activity from the VR
headset (Klug and Gramann, 2020). It is possible to remove
these artifacts using Independent Component Analysis (ICA).
This technique allows to identify the components of an EEG
signal that are not produced by brain activity (Makeig et al.,
1997). The maximum number of independent components
(ICs) that can be identified using ICA depends on the
number of electrodes used. For example, a recording with 32
electrodes will allow to identify up to 32 ICs. Therefore,
increasing the number of electrodes might help identify the
artifacts in the signal with more precision. For a complete
analysis about using ICA in non-stationary and stationary
settings, see Klug and Gramann (2020).

An additional challenge is to process the EEG signals in real-
time. ICA can be used in real-time (Pion-Tonachini et al., 2015),
but it was not designed for that purpose. An alternative is Artifact
Subspace Reconstruction (ASR) (Mullen et al., 2015; Blum S et al.,
2019), a technique designed for online artifact removal. ASR uses
data recorded from the user as a baseline. Then, principal
component analysis (PCP) is applied to identify the EEG
channels that contain artifacts. The data of the corrupted
channels are reconstructed using the baseline data as a
reference. There is software available that can facilitate the
implementation of ASR, such as BCILAB (Kothe and Makeig,
2013), OpenBiVE (Renard et al., 2010) and Neuropype (Intheon
Labs, California).

Brain-Computer Interfaces
The implementation of electrophysiological signals in VR
systems leads to the development of interfaces that allow
interpreting users’ brain activity as computer commands
(Wolpaw et al., 2002). One of the basic assumptions
underlying the development of Brain-Computer Interfaces
(BCIs) is that mental processes originate in the brain. But
there are BCIs that measure electrophysiological responses in
other places of the body (e.g., Cassani et al., 2018), such as the
heart and face, because processes that originate in the brain can
produce changes in the activity of other body parts.

There are different techniques for measuring brain activity
that can be used for the development of BCIs. For example,
electrocorticography (ECoG), Positron Emission Tomography
(PET), and functional Magnetic Resonance Imaging (fMRI),
among others. However, electroencephalography (EEG) is the
method most frequently used in BCIs because 1) it provides high
temporal resolution (i.e., relatively large amount of data points
recorded per second); 2) does not create health risks for the user
because the electrodes can be easily placed and removed from the
scalp; 3) can be portable, which is important for applications
where the user is moving; and 4) is less expensive than most of the
other methods (Zander and Kothe, 2011).

According to Zander and Kothe (2011), there are three types of
BCIs: active, passive, and reactive. Active BCIs require the active
participation of the user to generate an action. For example, patients
who lack motor control can use mental commands to move a
wheelchair (Voznenko et al., 2018). Passive BCIs do not require
the conscious involvement of the user. They can be used, for example,
to analyze the cognitive load of car drivers automatically (Almahasneh
et al., 2014). Reactive BCIs usemental activity that occurs as a response
to external stimuli. An example is a neurofeedback video game where
threatening stimuli are presented, and players have to control their
anxiety to obtain game score (Schoneveld et al., 2016). A VR
application for affective visualization, would usually involve either a
passive or a reactive BCI.

The typical workflow in a BCI involves at least four steps
(Zander and Kothe, 2011; Antons et al., 2014):

1) Preprocessing pipeline: Filter out the signal’s noise and keep
only the components that reflect brain activity. This process
involves (but is not limited to) filtering frequency bands and
removing artifacts caused by eye-movements or muscle
activity. An introduction to signal processing can be found
in Unpingco (2014).

2) Feature extraction: Isolate the information related to the
psychological construct of interest based on previous
neuroscience studies (see Section Electrophysiology).

3) Classifier definition: A classification model is created using
prerecorded data. The classifier is tested offline, and an
estimate of the accuracy of the classification is calculated.
In general, classifiers are trained using data that has been
previously labeled by humans. Machine Learning algorithms
are used to identify patterns in the data that tend to be
associated with each label.

4) Classification application: The classification is implemented
in the BCI to perform online analysis of the brain activity.
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The outputs of the classification are used as computer
commands.

PRACTICAL CONSIDERATIONS

This section contains five practical considerations that might help
during the development of a VR system for affective visualization.

1) Which are the initial steps for designing a virtual environment?
First, define who will use the virtual environment (target
group) and what the user will do inside that environment.
This will help to have a more clear idea about the interaction
events that will occur during the experience. Look for other
interactive experiences, such as games and art installations,
that can serve as inspiration. This will trigger ideas and will
help to understand how to implement them. Then, define the
graphical layout of your environment (color palette,
typographies, and textures).

2) Which software should I use for VR development? Unity is
probably one of the best options. There are alternatives, such as
Vizard, a virtual reality software for research. However, to the
extent of our knowledge, Unity is the only game engine
compatible with open-source solutions, such as LSL and
Excite-O-Meter. Therefore, it is relatively easy and
inexpensive to develop virtual environments that rely on the
user’s physiological data using Unity.

3) How to integrate Unity with electrophysiological equipment?
One possibility is to use LabStreamingLayer (LSL), a tool for
collecting time-series data in experimental settings.
Essentially, LSL allows to collect and synchronize the data
and stream it into Unity. At the same time, it allows to send
data from Unity (e.g., markers) to the signal processing
software. Another option is to setup a UDP Broadcast to
send information through your network.

4) Is there a ready-to-use solution for integrating Unity with
electrophysiological equipment? Yes. Excite-O-Meter
(Gaebler et al., 2021) is a Unity plugin for visualizing
cardiovascular activity, which is built on top of LSL. It can
be used to visualize Heart Rate Variability (HRV) (see Section
Electrophysiology). By default, the Excite-O-Meter provides a
time-series graph of the data. But you can customize it to build
other types of visualizations.

5) How to define the sampling rate for recording
electrophysiological signals? According the Nyquist-Shannon
sampling theorem, the sampling rate should be twice the
maximum frequency of interest. For example, if you are
interested in frequencies of up to 128 Hz, you should use a
sampling rate of at least 256Hz. A sampling rate of 256 Hz
means that you are collecting 256 data points per second.

6) The usable information for each type of signal is located in a
different frequency range. Therefore, the maximum frequency of
interest for each signal is different. For example, the usable
information in an ECG signal is up to 100 Hz. Therefore, the
sampling frequency for ECG signals should be at least 200 Hz.
However, previous studies indicate that ECG recordings at
200Hz contain noise in the high-frequency components

(Malik et al., 1996). This noise can be reduced by recording at
a higher sampling rate. Therefore, it is considered a good practice
to record ECG signals at a sampling rate between 256 and 512Hz,
EMG signals at a sampling rate between 512 and 1024Hz, and
EEG signals at a sampling rate between 256 and 512Hz.

DISCUSSION

This manuscript aims to understand how to develop VR systems
for affective visualization. These systems would involve the
development of at least two components: a virtual
environment and an affect detection technique. The
development of both components requires the understanding
of theories related to emotion and affect. Therefore, the
manuscript analyses previous research related to 1) theories of
emotion and affect, 2) audio-visual cues associated with affective
states, and 3) methods for assessment of affective states.

Studies discussed in Section Visual and Sound Cues suggest that
specific visual and sound cues can represent users’ emotions.
However, most of these studies were conducted in experimental
settings where the stimuli were carefully controlled. It is unclear
whether the same psychological responses would occur if a
combination of these cues were used simultaneously. For example,
a particular combination of colors associated with positive states may
result in an unbalanced visual composition that produces negative
affective states. Or there might be motion patterns that are more
prone to produce motion sickness in VR users, triggering negative
states. Moreover, the novelty of a VR system in new users might bias
the emotions they associate with the audio-visual stimuli.

Other studiesmentioned in SectionVisual and SoundCues suggest
that leftwards linear motion tends to be associated with negative
valence (Lockyer et al., 2011; Feng et al., 2014). This finding was
obtained during experiments conducted in a western society, where
time is represented as a progression to the right (Fuhrman and
Boroditsky, 2010). Therefore, it is likely that western users associate
leftward motion with negative affective states because that type of
motion is culturally associated with regressing in time. However, in
other cultures, such as the Hebrew culture, people represent time as a
progression to the left (Fuhrman and Boroditsky, 2010). Therefore, it
is possible that Hebrew users would associate leftward linear motion
with positive valence.

Recent studies have demonstrated that affective states can be
elicited by triggering psychogenic shivering (PS) (Haar et al.,
2020; Schoeller, et al., 2019a), using a device that controls the
temperature in the upper back of the participants. Additional
research indicates that the ability to be empathetic with others’
emotions can be influenced by delivering electrical stimulation in
the vagus nerve (Colzato et al., 2017), and by inducing affective
states in the observer through videos (Pinilla et al., 2020). It
remains an open question how to use those findings to develop
Mixed Reality (MR) technologies for empathy enhancement, as
proposed by Schoeller, et al. (2019b).

Most of the existing techniques for inferring affective states
from electrophysiological signals are based on a small number of
discrete states e.g., (Harischandra and Perera, 2012; Mavridou
et al., 2017). But the amount of distinct affective states that can be
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detected using this approach is limited. Therefore, it might be
convenient to formulate affect detection problems in terms of
statistical regression. This approach would allow creating a model
capable of describing affective states in terms of a continuum
containing an infinite amount of distinct affective states. Previous
studies suggest that it is possible to infer arousal from EEG signals
(Hofmann et al., 2018) as a continuous variable. Future studies
could investigate whether it is possible to use a similar approach
to express valence in terms of a continuous variable.

Finally, it is possible to use a programmatic approach to create
virtual reality content in real-time, using procedural content
generation (PCG) (Yannakakis and Togelius, 2011; Raffe et al.,
2015; Bermudez i Badia et al., 2019; Semertzidis et al., 2020). PCG
allows to create content dynamically that adjusts to user feedback.
Electrophysiological signals could be used to capture user
feedback without interrupting the VR experience. This
approach would allow to create personalized virtual
environments for emotion visualization, similar to Kitson et al.
(2019) or Bermudez i Badia et al., (2019).
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