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Virtual reality is being used to aid in prototyping of advanced limb prostheses with

anthropomorphic behavior and user training. A virtual version of a prosthesis and testing

environment can be programmed to mimic the appearance and interactions of its

real-world counterpart, but little is understood about how task selection and object

design impact user performance in virtual reality and how it translates to real-world

performance. To bridge this knowledge gap, we performed a study in which able-bodied

individuals manipulated a virtual prosthesis and later a real-world version to complete

eight activities of daily living. We examined subjects’ ability to complete the activities,

how long it took to complete the tasks, and number of attempts to complete each task

in the two environments. A notable result is that subjects were unable to complete tasks in

virtual reality that involved manipulating small objects and objects flush with the table, but

were able to complete those tasks in the real world. The results of this study suggest that

standardization of virtual task environment design may lead to more accurate simulation

of real-world performance.

Keywords: activities of daily living, performance metrics, virtual task environment, upper limb prosthesis,

functional performance

INTRODUCTION

IT was estimated in 2005 that there were two million amputees in the United States, and this
number was expected to double by 2050 (Ziegler-Graham et al., 2008; McGimpsey and Bradford,
2017). The prosthesis rejection rate for upper limb (UL) amputees has been reported to be as
high as 40% (Biddiss E. A. and Chau T. T., 2007). Among the reasons for prosthesis rejection is
difficultly when attempting to use the prosthesis to complete activities of daily living (ADLs), such
as grooming and dressing (Biddiss E. and Chau T., 2007). The prosthesis control scheme plays an
important role in object manipulation, preventing objects from slipping out of or being crushed in a
prosthetic hand. Improving the response time of the device, the control scheme (i.e., body-powered
vs. myoelectric control), and how the device signal is recorded (external vs. implanted electrodes)
will help with ensuring that amputees can complete ADLs with less difficulty (Harada et al., 2010;
Belter et al., 2013). Programs such as the Defense Advanced Research Projects Agency (DARPA)
Hand Proprioceptive and Touch Interfaces (HAPTIX) program have been investigating how to
improve UL prosthesis designs (Miranda et al., 2015).
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Building advanced prostheses is expensive and time
consuming (Hoshigawa et al., 2015; Zuniga et al., 2015),
requiring customization for each individual and integration of
advanced sensors and robotics (Biddiss et al., 2007; van der Riet
et al., 2013; Hofmann et al., 2016). To efficiently study advanced
UL prostheses in a well-controlled environment prior to physical
prototyping, a virtual version can be used (Armiger et al., 2011).
The virtual version can be programmed and calibrated in a
manner similar to a physical prosthesis and can be used to allow
amputees to practice device control schemes with simulated
objects (Pons et al., 2005; Lambrecht et al., 2011; Resnik et al.,
2011; Kluger et al., 2019).

Virtual reality (VR) has also been used to aid in clinical
prosthesis training and rehabilitation. A prosthetist can load a
virtual version of an amputee’s prosthesis to allow him/her to
practice using the control scheme of the prosthesis (e.g., muscle
contractions for a myoelectric device or foot movements for
inertial measurement units) (Lambrecht et al., 2011; Resnik et al.,
2012; Blana et al., 2016). A variety of VR platforms exist for this
purpose, but there is a gap in the literature about what tasks
and object characteristics need to be replicated in VR to predict
real world (RW) performance. A better understanding of how
to design and translate results from VR to RW is needed to
inform clinical practice. This paper presents a study comparing
performance of virtual ADLs with a virtual prosthesis with RW
ADL using a physical prosthesis.We examined what factors affect
performance in VR to determine if these factors translate to RW
performance. This work will inform the design of VR ADLs for
training and transfer to RW performance.

BACKGROUND

Clinical Outcome Assessments
Clinical outcome assessments (COAs) are used to evaluate an
individual’s progress through training or rehabilitation with
their prosthetic device. Research has shown that motor control
learning is highly activity specific (Latash, 1996; Giboin et al.,
2015; van Dijk et al., 2016); therefore, selecting training activities
is important to help a new prosthesis user return to a normal
routine. However, few COAs have been developed to assess upper
limb prosthesis rehabilitation progress; therefore, activities for
assessing function with other medical conditions, such as stroke
or traumatic brain injury (TBI), are used (Wang et al., 2018). One
such test is the Box and Blocks Test (BBT) (Mathiowetz et al.,
1985; Lin et al., 2010), in which subjects complete a simple activity
that is not truly reflective of an activity that a prosthesis user
would perform in daily life. The goal of the BBT is to move as
many blocks as possible from one side of a box over a partition to
the other side in 60 s. Researchers have made modifications to the
BBT to assess an individual’s ability to perform basic movements
with their prosthesis (Hebert and Lewicke, 2012; Hebert et al.,
2014; Kontson et al., 2017).

Another clinical outcome assessment that has been used to
assess UL prosthetic devices is the Jebsen–Taylor Hand Function
Test (JTHFT). The JTHFT is a series of standardized activities
designed to assess an individual’s ability to complete ADLs
following a stroke, TBI, or hand surgery (Sears and Chung,

2010). The seven activities in the JTHFT are simulated feeding,
simulated page turning, stacking checkers, writing, picking up
large objects, picking up large heavy objects, and picking up small
objects. Individuals are timed as they complete each activity,
and their results are compared with normative data (Sears
and Chung, 2010). Studies have been performed with the UL
amputee population to validate the use of the JTHFT as a tool
to assess prosthetic device performance (Wang et al., 2018). This
assessment’s use of simulated ADLs makes it a better candidate
than the BBT for assessing how a person would use a prosthesis
in daily life.

Research has also been performed to develop COAs
specifically to assess upper limb prosthesis rehabilitation
progress. The Activities Measure for Upper Limb Amputees
(AM-ULA) (Resnik et al., 2013) and Capacity Assessment of
Prosthetic Performance for the Upper Limb (CAPPFUL) (Kearns
et al., 2018) were designed to test an amputee’s ability to complete
ADLs with their device. These two COAs consist of 18 and 11
ADLs, respectively, and assess a person’s ability to complete the
activity, time to completion, and movement quality.

While these activities can be completed with a physical
prosthetic device, training in a virtual environment has shown
to be an effective way to train amputees to use their device
(Phelan et al., 2015; Nakamura et al., 2017; Perry et al., 2018;
Nissler et al., 2019). Training in a virtual environment can be a
cost effective way for clinics to perform rehabilitation (Phelan
et al., 2015; Nakamura et al., 2017) and help prosthesis users
learn how to manipulate their device using its particular control
scheme (Blana et al., 2016; Woodward and Hargrove, 2018), and
gamifying rehabilitation has been shown to increase a prosthesis
user’s desire to complete the program (Prahm et al., 2017, 2018).

Virtual Reality Prosthesis Testing and
Training Environments
Several VR testbeds have been created or adapted to evaluate
different aspects of prosthesis development. The Musculoskeletal
Modeling Software (MSMS) was originally developed to aid
with musculoskeletal modeling (Davoodi et al., 2004), but
was later adapted for training, development, and modeling of
neural prosthesis control (Davoodi and Loeb, 2011). The Hybrid
Augmented Reality Multimodal Operation Neural Integration
Environment (HARMONIE) was developed to support the study
of human assistive robotics and prosthesis operations (Katyal
et al., 2013). Users that interact with the HARMONIE system
control their device through surface electromyography (sEMG),
neural interfaces (EEG), or other control signals (Katyal et al.,
2013, 2014; McMullen et al., 2014; Ivorra et al., 2018). Another
tool, Multi-Joint dynamics with Contact (MuJoCo), is a physics
engine that was originally designed to facilitate research and
development in robotics, biomechanics, graphics, and animation
(Todorov et al., 2012). MuJoCo HAPTIX was created to model
contacts and provide sensory feedback to the user through the
VR environment (Kumar and Todorov, 2015). Studies are being
performed to improve the contact forces applied to objects in
MuJoCo HAPTIX (Kim and Park, 2016; Lim et al., 2019; Odette
and Fu, 2019). These testbeds aid in training and studying of
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prosthesis control in VR, but little is known about how VR object
characteristics impact performance.

User Performance Assessment
Simulations should require visual and cognitive resources similar
to those needed to complete the activity in the real world (Stone,
2001; Gamberini, 2004; Stickel et al., 2010). While previous
studies evaluated VR testbeds or activities implemented in them
(Carruthers, 2008; Cornwell et al., 2012; Blana et al., 2016),
none have identified the characteristics of the tasks that make
an activity easy or difficult to complete in VR. Subjects in these
studies did not complete ADLs from COAs that have been
validated with a UL population, which could limit the ability to
replicate and retest these tasks for RW study.

Study Objectives
The purpose of this study is to provide preliminary validation
for a VR system to test advanced prostheses through comparison
with similar RW activity outcomes. In addition, this study aims
to gain a better understanding of how activity design affects an
individual’s ability to complete virtual activities with a virtual
prosthetic hand. The activities used in this study are derived
from existing, validated UL prosthesis outcome measures that
are used to evaluate prosthesis control. Motion capture hardware
and software were used to collect normative data from able-
bodied individuals to determine how activity selection and virtual
design affects the completion rate, completion time, and number
of attempts to complete the activity. By replicating validated
outcome measures in VR, the results from the VR performance
was then compared with RW task performance to assess how VR
performance translates to RW performance.

METHODS

Task Development
MuJoCo HAPTIX (Roboti, Seattle, Washington) is a VR
simulator that has been adapted to the needs of the DARPA
HAPTIX program by adding an interactive graphical user
interface (GUI) and integrating real-time motion capture to
control a virtual hand’s placement in space (Kumar and Todorov,
2015) (Figure 1). MuJoCo is open source and can be used to
test other limb models as well. Four tasks were designed in the
MuJoCo HAPTIX environment to study movement quality: (1)
hand pose matching, (2) stimulation identification and use of
proprioceptive feedback and (3) sensory feedback to identify
characteristics of an object, and (4) object manipulation. This
research focuses on the MuJoCo object manipulation task, which
is based on existing COAs, the JTHFT and the AM-ULA.

Task Selection and Analysis
Eight ADLs from the AM-ULA (Resnik et al., 2013) and JHFT
(Sears and Chung, 2010) were completed in VR and in RW
(Figure 2 and Table 1). The tasks selected for replication from
the JHFT and AM-ULA were chosen for their capacity to
assess both prosthesis dexterity and representative ADLs such as
food preparation and common object interaction. The moving
cylinders (Move Cyl.) task is representative of activities that

require subjects tomove a relatively large object. The place sphere
in cup (Sphere cup), lock/key (Lock Key), and stack checkers
(Checkers) tasks are representative of activities that require
precise manual manipulation to move a small object. The spoon
transfer (Spoon Tran.) and writing tasks required rotation and
precise targeting. Research has shown that tasks requiring small
objects to be manipulated require more dexterous movement,
while tasks where large objects are manipulated require more
power and less dexterity (Park and Cheong, 2010; Zheng et al.,
2011).

A hierarchical task analysis (HTA) was performed on each
of the ADLs to understand what steps or subtasks need to
be completed in order to complete the ADL high-level goals.
An HTA is a process used by human factor engineers to
decompose a task into subtasks necessary for completion, which
can help to identify use difficulty or use failure for product
users (Patrick et al., 2000; Salvendy, 2012; Hignett et al., 2019).
The HTA used for this research focused on the observable
physical actions that a person must complete. To ensure that
the number of steps presented in the HTA provided sufficient
depth for understanding necessary components of the tasks, the
instructions for the AM-ULA and the JHFT were referenced to
inform the ADL subtask decomposition.

The descriptions of the subtasks utilized seven action
verbs: reach, grasp, pick up, place, release, move, and rotate
(Supplementary Table 1). These action verbs were picked due to
their use in describing the steps to complete tasks in the AM-
ULA (Resnik et al., 2013). Reach consists of moving the hand
toward an object by extension of the elbow and protraction of
the shoulder. Grasp involves flexion of the fingers of the hand
around an object. Pick up includes flexion of the shoulder and
potentially the elbow to lift the object from the table. Move
consists of medial or lateral rotation of the arm to align the
primary object toward a secondary object or shifting the hand
away from one object and aligning it with another. Place involves
extension of the elbow to lower the object onto its target.
Release involves extension of the fingers to let go of the object.
Rotation consists of pronation or supination of the arm to rotate
an object.

Subjects
Able-bodied individuals were recruited for this study due to
limited availability of upper limb amputees. Prior studies have
used able-bodied individuals, with the use of a bypass or
simulator prosthesis, to assess the ability to complete COAs
and ADLs with different prosthesis control schemes (Haverkate
et al., 2016; Bloomer et al., 2018). These studies showed that
the use of able-bodied subjects allows the experimenter to
control for levels of experience with a prosthetic device and that
performance between the able-bodied group and amputee group
is comparable.

Twenty-two individuals (10 females, average age of all
subjects 35 ± 17 years) completed the VR experiments, and 22
individuals (eight females, average age of all subjects 38 ± 16
years) completed the RW experiments. The VR experiment was
completed first, followed by the RW experiment to provide a
comparative evaluation of virtual task performance and its utility
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FIGURE 1 | The virtual environment, Multi-Joint dynamics with Contact (MuJoCo) Hand Proprioceptive, and Touch Interfaces (HAPTIX).

Frontiers in Virtual Reality | www.frontiersin.org 4 April 2021 | Volume 2 | Article 599274

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


Joyner et al. Comparison Performance in Virtual Reality and Real-World

FIGURE 2 | The tasks that subjects completed. In order: (A) Task 1: move cans to targets, (B) Task 2: put ball in pitcher, (C) Task 3: pour ball in bowl, (D) Task 4:

transfer ball with spoon, (E) Task 5: insert key and turn, (F) Task 6: turn knob, (G) Task 7: stack squares, and (H) Task 8: simulated writing.

TABLE 1 | Description of the tasks and task name abbreviations.

Tasks Descriptions

1. Moving cylinders (Move Cyl.) Pick up two cylinders and move them to

targets on the table

2. Place sphere in cup (Sphere

Cup)

Pick up a ball and place it in a cup on the

table

3. Pour sphere in bowl (Sphere

Bowl)

Pour a ball out of a cup and into a bowl

4. Spoon transfer sphere

(Spoon Trans.)

Use a spoon to move a ball from a bowl to a

cup on the table

5. Lock/key (Lock Key) Pick up a key, place it into a lock, and turn

the key

6. Turn doorknob (Doorknob) Grab a door knob and turn it

7. Stack checkers (Checkers) Stack three checkers on top of each other

8. Simulated Writing (Writing) Pick up a pen-shaped object and pretend to

write on paper

for this application. Only two subjects overlapped between the
two groups due to the amount of time between completing the
VR experiment and being given access to the physical prosthesis.

Because participants learned techniques for completing tasks
that could generalize across RW/VR environments, and we
intended to measure naïve performance, our study design did
not include completion of the tasks in both environments. All
subjects were right-handed. No subjects reported upper limb
disabilities. Subject participation was approved by the FDA IRB
(RIHSC #14-086R).

Materials
Virtual Reality Equipment

The VR software used was MuJoCo HAPTIX v1.4 (Roboti,
Seattle, Washington), with MATLAB (Mathworks, Natick,
MA) to control task presentation. Computer and motion
capture (mocap) component specifications can be found
on mujoco.org/book/haptix.html. Subjects manipulated the
position of the virtual hand with Motive software (OptiTrack,
Corvallis, OR), mocap markers, and an OptiTrack V120: Trio
camera (OptiTrack, Corvallis, OR) while using a right-handed
CyberGlove III (CyberGlove Systems LLC, San Jose, CA) to
control the fingers.
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Real-World Equipment

The RW experiments were performed with the DEKA LUKE
arm (Mobius Bionics, Manchester, NH) attached to a bypass
harness. The bypass harness allowed able-bodied subjects to wear
the prosthetic device. Inertial measurement units (IMUs), worn
on the subject’s feet, controlled the manipulation of the wrist
and grasping (Resnik and Borgia, 2014; Resnik et al., 2014a,b;
Resnik et al., 2018a,b; George et al., 2020). The objects used in
the RW experiment were modeled after the ones manipulated in
VR (Supplementary Figure 1).

Experimental Setup and Procedure
Virtual Reality Experiment

Mocap setup was performed before starting each experiment.
Reflective markers were placed on the monitor, and subjects were
assisted with donning the CyberGlove III and a mocap wrist
component (Supplementary Figure 2). Subjects could only use
their right hand to manipulate the virtual prosthesis. The height
and spacing of the OptiTrack camera were adjusted to ensure
that the subject could reach all of the virtual table (Figure 3A).
A series of calibration movements was performed to align the
subject’s hand movements with the virtual hand on the screen.
The movements required the subject to flex and extend his or her
wrist and fingers maximally. Once the series of movements was
completed, the subject moved his or her hand and observed how
the virtual hand responded. If the subject was satisfied with the
hand movement, then the experiment could begin.

The task environment was opened in MuJoCo, and operation
scripts were loaded in MATLAB. MuJoCo recorded the subject’s
virtual performance for analysis. MATLAB scripts controlled
when the tasks started, progressed the experiment through the
tasks, and created a log file for analysis. Log files contained the
task number and time remaining when the subject completed or
moved on to the next task.

Task objects were presented to the subjects one at a time.
Instructions were printed on the upper-right hand corner for 3 s
and then replaced with a 60-s countdown timer signifying the
start of the task. If the subject completed the task before time ran
out, then he or she could click the next button to move on. Each
task is completed twice in immediate succession. If the subject
was unable to complete the task before time ran out, then the
program automatically moved on to the next task. Analysis was
performed on task completion, number of attempts to complete
the task, and time to complete tasks.

Real-World Experiment

This experiment was performed following the VR experiment.
Subjects tended to struggle with various aspects of completing
task in VR. The VR tasks were replicated in RW based on
the virtual models provided, and a physical version of the
prosthetic was used for the experiments. This real-world follow-
up experiment was performed to better understand which task
characteristics need to be improved in the virtual design for more
realistic comparison to its real-world counterparts.

Subjects were given a brief training session on how to
manipulate the prosthesis before starting the experiment.
Training was done to familiarize subjects with the control schema

of the device and would be insufficient to affect the task success
rates (Bloomer et al., 2018). The training began with device
orientation, which included safety warnings, arm componentry,
and arm control (Figure 4). The IMUs were then secured to
the subject’s shoes, and the prosthetist software for training
amputees was displayed to the subjects to allow them to practice
the manipulation motions. The left foot controlled the opening
and closing of a hand grasp (plantarflexion and dorsiflexion
movements, respectively) as well as grasp selection (inversion
and eversion movements, respectively). The right foot controlled
wrist movements: flexion and extension (plantarflexion and
dorsiflexion movements, respectively), as well as pronation and
supination (inversion and eversion movements, respectively).
The speed of the hand and wrist movement was proportional to
the steepness of the foot angle; the steeper the angle, the faster
the motion. A reference sheet displaying foot controls and the
different grasps was placed on the table for subjects to reference
throughout training and the experiment.

Subjects were given a total of 10min to practice the device
control scheme. The first 5min was used to practice controlling
a virtual version of the device in the prosthetist software, and
the next 5min was used to practice wearing the device and
performing RW object manipulation.

Training objects were removed from the table at the end
of training, and the task objects were brought out. A camera
captured subjects’ task completion attempts for later analysis.
For each task, objects were placed on the table in the locations
in which they would appear in VR (Figure 3B). Subjects could
select the grasp they wanted to use and ask any questions after
hearing the explanation of the task. Grasps could be changed
during the attempt to complete the task, but the task timer
would not be stopped. The experimenter started the camera
after confirming with the subject that they were ready to begin.
Task completion, attempts, time to complete, and additional
observations were recorded by the experimenter as the subject
attempted to complete the task (Supplementary Figure 3).

The primary differences between the VR and RW setups
were the control schemes used and training. This study focused
on examining what characteristics can make a task difficult
to complete in VR where subjects can manipulate the virtual
device with their hand. This was done to show a best-case
scenario control scheme. In the VR setup, subjects used a
CyberGlove to control the virtual prosthetic. This allowed
subjects to use their hand in a manner that replicated normal
motion to complete object manipulation tasks; therefore, no
training was necessary. The RW experiment used a different
control scheme because the only marketed configuration of the
DEKA limb uses foot control. Since the subjects were able-bodied
individuals with no UL, impairment training was provided on
device operation.

Virtual Reality and Real World Data Analysis

Task completion rate, number of attempts, task completion time,
and movement quality were examined to evaluate task design
in VR and compare against RW results. These attributes were
chosen because they could provide a comparative measure of task
difficulty. A task analysis was performed to decompose the tasks
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FIGURE 3 | Virtual reality (VR) and real-world (RW) experiment setups. (A) VR setup: Subjects were seated in front of a computer monitor, and a motion capture

camera was placed to their right. The height and placement of the camera was adjusted to allow subjects to interact with the virtual table. (B) RW experimental setup.

The subject sat in front of the table with a camera to their left to capture their performance for later review. A template was placed on the table to match where the

objects would appear in the virtual environment. A counter-weight system was used to offset the torque placed on the subject’s arm by the DEKA Arm bypass

attachment.

into subtasks that must be completed to complete the task. Task
completion is binary; if a subject partially completed a task, then
it was marked as incomplete. Completion rate was calculated by
summing the total number of completions and dividing it by the
total number of attempts across all subjects. Subtasks were also
rated on a binary scale for completion to better understand what
parts of a task posed the most difficulty. This information, paired
with object characteristics and interactions, provided insight into
each activity and the motion requirements.

Task attempts were defined as the number of times a subject
picked up or began interacting with an object and began
movement toward task completion. Attempts at each of the
subtasks was examined as well. Since there were numerous
techniques a subject could use to complete the tasks, each
subject’s recording of their performance was reviewed.

Time remaining for the VR tasks was converted to completion
time by subtracting the time remaining from the total time.
Completion time, a continuous variable, was defined by how
much time it took subjects to complete a task. Completion
time for the subtasks and the tasks as a whole was compared
to understand whether object characteristics and interactions
affected task difficulty.

Movement quality was defined by the amount of awkwardness
and compensatory movements a subject used during their
attempts to complete a task (Resnik et al., 2013; van der Laan
et al., 2017). Compensatory movements are atypical movements
that are used to complete tasks, e.g., exaggerated trunk flexion
to move an object (Resnik et al., 2013). These compensatory
movements, along with adding extra steps toward subtask
completion such as repeatedly putting an object back on the
table to reposition it in the hand add awkwardness to how a
subject moves (Levin et al., 2015). The amount of awkwardness
and compensatory movements are expected to negatively impact

movement quality. A scale, based on the one developed in the
AM-ULA, was used to quantify movement quality for each
subtask. In the AM-ULA, a five-point Likert scale is used where
0 points are given if a subject is unable to complete a task and
four points are given if the subject completes the task with no
awkwardness. The lowest score received for a subtask in the AM-
ULA is the score given for the entire task. Reducing a task score
down to one value was not performed in this experiment to
provide granularity and insight into which subtasks caused the
most difficulty for subjects. A modified version of this scale was
used to assess the subtasks of each task. This modified scale rated
movement quality on a four-point numerical scale; 1, meaning
the subject moved very awkwardly with many compensatory
movements, to 4, meaning excellent movement quality with no
awkwardness or compensatory movement. A score of N/A was
recorded if a subject did not progress to the subtask before
running out of time.

To analyze the data, log files were run through
a custom MATLAB script (publicly available at
github.com/dbp-osel/DARPA-HAPTIX-VR-Analysis), and
the VR recordings were played in an executable included with
MuJoCo. The VR recordings were inspected to verify that the
task was completed and to identify the number of attempts to
complete a task. The task log file was exported at the end of
each experiment containing the task completion time for off-line
analysis. Statistical analysis was performed with a custom script
written in R. A McNemar test was used compare completion
rate differences. A Mann–Whitney U test was used to compare
attempt rate and completion time. All statistical tests were run
with α = 0.05 and with Bonferroni correction. The tasks were
compared to determine whether there was a significant difference
in task difficulty based on task design. Subtasks scores and values
(e.g., time in seconds) were averaged across all subjects for each
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FIGURE 4 | The DEKA Arm was attached to a bypass to allow able-bodied individuals to wear the prosthesis.

of the high-level tasks. This provided a quick view of which
subtasks were the most difficult for subjects to complete.

RESULTS

Virtual Reality Task Completion Rate
Tasks Sphere Cup, Spoon Tran., Lock Key, and Checkers could
not be completed by the subjects (p= 1), as shown in Tables 2, 3
(statistical comparison of task completion rate in VR for all
tasks; p-values produced from the McNemar test where α =

0.05). Values with an ∗ and highlighted in gray were found to
be statistically significant. The completion rate for Move Cyl

was not significantly different from the aforementioned tasks
(p= 0.0625). Tasks Sphere Bowl, Doorknob, andWriting had the
highest completion rates and were found to have a statistically
significant difference (p < 0.05) from tasks Sphere Cup, Spoon
Tran., Lock Key, and Checkers. Of the seven subtask actions
(reach, grasp, pick up, place, release, move, and rotate), the reach
action had the highest completion rate regardless of the high-level
task (82.73%) (Tables 4, 5).

Virtual Reality Task Completion Time
Since tasks Sphere Cup, Spoon Tran., Lock Key, and Checkers
could not be completed by the subjects, there was no completion
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TABLE 2 | Summary of analyzed task characteristics for virtual reality (VR) and real world (RW).

Tasks VR

completion

rate (%)

RW

completion

rate (%)

VR avg. attempt rate

(avg ± std)

RW avg. attempt

rate (avg ± std)

VR avg. completion

time (s ± std)

RW avg. completion

time (s ± std)

1. Move Cyl. 11 90 3.61 ± 2.18 1.48 ± 0.88 4.8 ± 14.47 29.84 ± 16

2. Sphere Cup 0 100 1.87 ± 1.51 1.1 ± 0.37 0 11.34 ± 10.33

3. Sphere Bowl 32 98 1.37 ± 0.89 1 ± 0 8.5 ± 13.96 18.26 ± 11.69

4. Spoon Trans. 0 74 4.09 ± 1.65 1.84 ± 1.55 0 31.75 ± 14.3

5. Lock Key 0 26 5.45 ± 2.7 3.36 ± 1.87 0 43.59 ± 17.82

6. Doorknob 100 100 1.5 ± 0.7 1.32 ± 0.8 11.24 ± 4.92 13.23 ± 12.1

7. Checkers 0 100 5.86 ± 2.38 1.18 ± 0.5 0 20.06 ± 9.52

8. Writing 43 100 4.52 ± 2.35 1.32 ± 0.71 14.38 ± 19.94 20.16 ± 11.27

TABLE 3 | Statistical comparison of task completion rate in VR for all tasks.

1. Move Cyl. 2. Sphere Cup 3. Sphere Bowl 4. Spoon Tran. 5. Lock Key 6. Doorknob 7. Checkers

2. Sphere Cup 0.625

3. Sphere Bowl 0.0039* 0.0001*

4. Spoon Tran. 0.625 1 0.00012*

5. Lock Key 0.625 1 0.00012* 1

6. Door-knob 3.6E−12* 1.1E−13* 1.86E−9* 1.1E−13* 1.1E−13*

7. Checkers 0.625 1 0.00012* 1 1 1.1E−13*

8. Writing 0.0001* 3.82E−6* 0.00012* 3.82E−6* 3.82E−6* 5.9E−8* 3.82E−6*

p-values were produced from the McNemar test where α = 0.05. Values with a * and highlighted in gray were found to be statistically significant.

TABLE 4 | Summary of analyzed subtask characteristics for VR and RW.

Subtasks VR

completion

rate (%)

RW

completion

rate (%)

VR avg.

attempt rate

(avg ± std)

RW avg.

attempt rate

(avg ± std)

VR avg.

completion

time (s ± std)

RW avg.

completion

time (s ± std)

VR avg.

motion

quality score

RW avg.

motion

quality score

Reach 82.73 98.41 1.03 ± 0.84 1 ± 0 5.96 ± 8.55 0.98 ± 0.14 2.48 ± 0.69 3.59 ± 0.6

Grasp 31.14 98.41 4.48 ± 3.83 1.48 ± 1.24 0.99 ± 0.08 0.97 ± 0.17 1.48 ± 0.81 3.48 ± 0.7

Pick up 26.26 98.99 0.3 ± 0.55 1.31 ± 0.37 3.95 ± 8.66 0.98 ± 0.14 2.36 ± 0.89 3.39 ± 0.98

Place 5.3 99.24 1.31 ± 0.68 0.77 ± 0.49 3.25 ± 0.96 0.76 ± 0.43 1.96 ± 0.95 2.58 ± 1.62

Release 5.91 100 0.07 ± 0.25 0.99 ± 0.17 1.26 ± 0.9 0.62 ± 0.49 2.63 ± 0.95 3.56 ± 0.71

Move 27.02 99.5 1.24 ± 1.11 1.02 ± 0.29 8.3 ± 10.83 0.99 ± 0.1 2.14 ± 0.82 3.43 ± 0.8

Rotate 26.36 97.73 0.58 ± 1.13 1.13 ± 1.08 2.55 ± 5.13 0.96 ± 0.2 1.68 ± 0.74 2.59 ± 1.5

time data to compare between them resulting in no p-values to
report. The remaining tasks were all found to have a statistically
significant difference in completion time (p < 0.05) (Table 6).
On average, subjects took the longest to complete the reach and
move actions; taking 5.96± 8.55 s and 8.3± 10.83 s, respectively
(Tables 4, 5).

Virtual Reality Task Attempt Rate
The average number of attempts at a task can be seen in Figure 7.
Tasks that had a higher average attempt rate were most often
found to have a lower completion rate. Tasks Sphere Cup, Sphere
Bowl, and Doorknob had no statistical difference in attempt
rates (p > 0.05) due to their low attempt rate. Tasks Lock Key,
Checkers, and Writing had no statistical difference due to their
high attempt rates (p > 0.05). All remaining tasks varied in

the number of attempts and were found to have a statistically
significant difference in attempt rate from one another (Table 7).
Subjects used the most attempts to complete the Grasp action
with an average of 4.48 ± 3.83 attempts. The pick up, release,
and rotate actions all had less than one attempt on average due
to subjects not making it to these subtasks often (0.3± 0.55, 0.07
± 0.25, and 0.58± 1.13 attempts, respectively) (Tables 4, 5).

Real-World Task Completion Rate
Task completion rate varied between the two task environments
(Figure 5). As mentioned previously, Sphere Bowl, Sphere Tran.,
Lock Key, and Checkers could not be completed in VR Table 2.
The Doorknob task was the only task that could be completed
100% of the time in VR and RW. Subjects were able to complete
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TABLE 5 | Average and standard deviation for VR characteristic values across subtasks and their high-level tasks.

Move Cyl. Sphere Cup Sphere Bowl Spoon Tran. Lock Key Doorknob Checkers Writing

Reach MQ 2.2 ± 1 1.9 ± 0.92 2.3 ± 0.84 2.3 ± 0.7 2.4 ± 0.64 2.9 ± 0.49 1.4 ± 1.4 2.7 ± 0.66

CR 0.85 ± 0.36 0.77 ± 0.42 0.91 ± 0.29 0.93 ± 0.25 0.98 ± 0.15 1 ± 0 0.5 ± 0.5 0.98 ± 0.15

T 4.1 ± 3 6 ± 3.5 8 ± 5 12 ± 15 4.5 ± 2.2 3.5 ± 3.4 7.3 ± 16 4.2 ± 2.6

AR 0.93 ± 0.37 0.98 ± 0.34 1.1 ± 0.51 1.7 ± 1.6 1.2 ± 0.45 1.1 ± 0.67 0.61 ± 1 1.1 ± 0.63

Grasp MQ 1.1 ± 0.93 0.64 ± 0.49 1.8 ± 0.97 1.6 ± 0.83 1.1 ± 0.26 1.6 ± 0.74 0.62 ± 0.76 1.6 ± 0.78

CR 0.23 ± 0.42 0 ± 0 0.68 ± 0.47 0.41 ± 0.5 0.023 ± 0.15 1 ± 0 0.034 ± 0.18 0.48 ± 0.51

T 9.3 ± 10 – 4.1 ± 3.4 NA ± NA 12 ± 3 2.7 ± 2.5 15 ± 14 25 ± 19

AR 2.1 ± 1.9 1.7 ± 1.9 1.2 ± 1.6 5.9 ± 3.9 8.2 ± 3.7 1.2 ± 0.57 4.1 ± 4.6 6.5 ± 3.4

Pick up MQ 0.49 ± 1 0 ± 0 1.6 ± 1.2 1.4 ± 1.4 0.18 ± 0.69 – 0.17 ± 0.7 1.2 ± 1.4

CR 0.24 ± 0.43 0 ± 0 0.7 ± 0.46 0.55 ± 0.5 0.068 ± 0.25 – 0.045 ± 0.21 0.48 ± 0.51

T 1.3 ± 2 – 1.8 ± 1.3 9.3 ± 13 0.86 ± 0.45 – 16 ± 21 1 ± 0.56

AR 0.26 ± 0.51 0 ± 0 0.73 ± 0.5 0.8 ± 0.9 0.068 ± 0.25 – 0.068 ± 0.3 0.48 ± 0.51

Place MQ 0.4 ± 0.92 – – – – – 0.11 ± 0.47 –

CR 0.16 ± 0.37 – – – – – 0 ± 0 –

T 2.9 ± 1.8 – – – – – – –

AR 0.28 ± 0.61 – – – – – – –

Release MQ 0.43 ± 1.1 0 ± 0 – – – – 0.023 ± 0.21 –

CR 0.15 ± 0.36 0 ± 0 – – – – 0 ± 0 –

T 1.3 ± 0.9 – – – – – – –

AR 0.16 ± 0.37 0 ± 0 – – – – 0.011 ± 0.11 –

Move MQ 2.1 ± 1.2 – 1.2 ± 0.97 0.43 ± 0.81 – – 0.12 ± 0.58 1.2 ± 1.4

CR 0.84 ± 0.37 – 0.68 ± 0.47 0.18 ± 0.39 – – 0.03 ± 0.17 0.45 ± 0.5

T 14 ± 11 – 3.7 ± 1.8 13 ± 17 – – 1.9 ± 2.9 1.4 ± 1.2

AR 0.84 ± 0.37 – 0.73 ± 0.5 0.6 ± 1.5 – – 0.045 ± 0.21 0.48 ± 0.51

Rotate MQ – – 1 ± 0.96 0.15 ± 0.42 – 1.9 ± 0.75 – –

CR – – 0.32 ± 0.47 0 ± 0 – 1 ± 0 – –

T – – 7.9 ± 8 1 ± NA – 0.66 ± 0.61 – –

AR – – 1.1 ± 1.8 0.39 ± 1.1 – 1 ± 0 – –

Movement quality (MQ)–1–4 numerical scale, completion rate (CR)-−0–1%, time (T)—seconds, and attempts—continuous count. Black cells block cells where there were no data to

analyze due to the subtask not being required to complete the high-level task or no subject data to analyze.

TABLE 6 | Statistical comparison of task completion time for all tasks in VR.

1. Move Cyl. 2. Sphere Cup 3. Sphere Bowl 4. Spoon Tran. 5. Lock Key 6. Doorknob 7. Checkers

2. Sphere Cup 0.023*

3. Sphere Bowl 0.039* 5.57E−5*

4. Spoon Tran. 0.023* N/A 5.57E−5*

5. Lock Key 0.023* N/A 5.57E−5* N/A

6. Door-knob 4.72E−11* 5.86E−18* 0.001* 5.86E−18* 5.86E−18*

7. Checkers 0.023* N/A 5.57E−5* N/A N/A 5.86E−18*

8. Writing 0.0012* 1.29E−6* 0.200 1.29E−6* 1.29E−6* 0.11 1.29E−6*

p-values produced from the Mann–Whitney U test with Bonferroni correction where α = 0.05. Values with an * and highlighted in gray were found to be statistically significant. Cells with

N/A had no data to be compared.

all seven subtask actions with over 95% accuracy regardless of the
high-level task (Tables 4, 8).

Real-World Task Completion Time
On average, subjects were able to complete the majority
of the tasks faster in RW than in VR (Figure 6). The
Doorknob task was the only task that subjects were able to
complete faster in VR than in RW. If a task could not be

completed, then the data were excluded from the summary
statistics. Subjects were able to complete all seven subtask
actions in < 1 s on average, regardless of the high-level task
(Tables 4, 8).

Real-World Task Attempt Rate
On average, subjects required more attempts to complete tasks
in VR than in RW (Figure 7). The Lock Key and Checkers tasks
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TABLE 7 | Statistical comparison of task attempt rate for all tasks in VR.

1. Move Cyl. 2. Sphere Cup 3. Sphere Bowl 4. Spoon Tran. 5. Lock Key 6. Doorknob 7. Checkers

2. Sphere Cup 9.32E−5*

3. Sphere Bowl 1.53E−8* 0.098

4. Spoon Tran. 0.140 5.93E−9* 5.79E−13*

5. Lock Key 0.0002* 3.93E−12* 4.27E−15* 0.002

6. Door-knob 6.99E−8* 0.279 0.238 4.8E−13* 2.33E−15*

7. Checkers 2.52E−5* 5.85E−12* 1.49E−14* 0.0002* 0.288 1.37E−14*

8. Writing 0.059 1.79E−8* 5.72E−12* 0.595 0.036* 6.74E−12* 0.006*

p-values produced from the Mann–Whitney U test with Bonferroni correction where α = 0.05. Values with an * and highlighted in gray were found to be statistically significant.

FIGURE 5 | VR and RW task completion percentage for all subjects. Subjects were only able to complete a subset of the tasks in VR, while they were able to

complete all the tasks in RW.

took the most attempts to complete in VR. The Spoon Tran.
and Lock Key tasks required the most attempts in RW. Most
subtask actions took an average of approximately one attempt to
complete (Tables 4, 8).

Motion Quality and Subtask Analysis
Tables 5, 8 present the average and standard deviations for
motion quality (MQ), completion rate (CR), time (T), and

attempt rate (AR) for VR and RW, respectively. All subtask
actions were not required across all tasks, and in some cases,
subjects did not attempt to complete the subtask; these areas
are marked with “NA” on the table. Across all tasks in VR, the
reach action had the highest average motion quality (>2 points),

denoted in green on the table. Completion rate was above 80% for

subtasks with a motion quality score greater than two points in

VR. Subtask actions that had a motion quality score of less than
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TABLE 8 | Average and standard deviation RW characteristic values across sub-tasks and their high-level tasks.

Move Cyl. Sphere Cup Sphere Bowl Spoon Tran. Lock Key Doorknob Checkers Writing

Reach MQ 3.7 ± 0.68 3.6 0.57 3.9 0.21 3.5 0.54 3.5 ± 0.52 3.9 ± 0.21 3.5 ± 0.46 3 ± 0.9

CR 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

T 2.6 ± 2.1 2.3 ± 1.5 2.6 ± 2 2.4 ± 1.5 2.2 ± 1.6 2.2 ± 1.5 1.6 ± 1.6 2.9 ± 2.2

AR 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0 1 ± 0

Grasp MQ 3.6 ± 0.73 3.6 ± 0.56 3.9 ± 0.24 3.4 ± 0.59 3.1 ± 0.93 3.9 ± 0.25 3.5 ± 0.46 2.9 ± 0.97

CR 0.99 ± 0.11 1 ± 0 1 ± 0 0.93 ± 0.25 0.6 ± 0.5 1 ± 0 1 ± 0 1 ± 0

T 5 ± 7.9 2.6 ± 3.1 4.3 ± 2.9 7.4 ± 8.1 22 ± 15 3.9 ± 5.6 2.6 ± 3.5 8.7 ± 10

AR 1.2 ± 0.52 1.1 ± 0.36 1 ± 0 1.8 ± 1.3 3.8 ± 2.4 1.2 ± 0.51 1.1 ± 0.33 1.4 ± 0.83

Pick up MQ 3.6 ± 0.95 3.7 ± 0.46 3.9 ± 0.25 3.5 ± 0.56 2 ± 1.8 – 3.5 ± 0.46 3.2 ± 0.79

CR 0.94 ± 0.23 1 ± 0 1 ± 0 1 ± 0 0.57 ± 0.5 – 0.99 ± 0.11 1 ± 0

T 2.3 ± 5 1.4 ± 3.1 1.2 ± 1.1 5.3 ± 8.5 2.3 ± 6.6 – 1.4 ± 3.4 2.3 ± 5.8

AR 1 ± 0.28 1 ± 0.21 1 ± 0 1.3 ± 0.59 0.62 ± 0.54 – 1.1 ± 0.28 1.1 ± 0.26

Place MQ 3.6 ± 0.88 – – – 0 ± 0 – 2.5 ± 1.5 –

CR 0.95 ± 0.21 – – – 0 ± 0 – 0.63 ± 0.49 –

T 3.4 ± 4.8 – – – 0.7 ± 1.6 – 4.9 ± 7.3 –

AR 0.97 ± 0.18 – – – 0 ± 0 – 0.84 ± 0.55 –

Release MQ 3.6 ± 0.95 3.7 ± 0.45 – – – – 3.5 ± 0.49 –

CR 0.95 ± 0.21 1 ± 0 – – – – 0.95 ± 0.21 –

T 2.1 ± 2.3 2.1 ± 1.8 – – – – 1 ± 1.9 –

AR 0.95 ± 0.21 1 ± 0 – – – – 1 ± 0.15 –

Move MQ 3.8 ± 0.67 3.7 ± 0.44 3.8 ± 0.42 3 ± 1.2 – – 3.5 ± 0.47 3.1 ± 0.68

CR 1 ± 0 0.98 ± 0.15 1 ± 0 0.9 ± 0.3 – – 1 ± 0 0.95 ± 0.22

T 1.3 ± 0.9 1.6 ± 3.7 1.1 ± 0.53 4.3 ± 7.1 – – 1.3 ± 2.8 5.6 ± 7

AR 1 ± 0 1 ± 0.15 1 ± 0 1 ± 0.55 – – 1 ± 0.21 1 ± 0.15

Rotate MQ – – 2.9 ± 1.1 2.7 ± 1.3 0.92 ± 1.6 3.7 ± 0.42 – –

CR – – 0.98 ± 0.15 0.74 ± 0.44 0.24 ± 0.43 0.88 ± 0.33 – –

T – – 6.5 ± 4.3 9.7 ± 13 7.2 ± 11 5.5 ± 8.5 – –

AR – – 1 ± 0.15 1.6 ± 1.5 0.29 ± 0.51 1.2 ± 0.5 – –

Movement quality (MQ)–1–4 numerical scale, completion rate (CR)-−0–1%, time (T)—seconds, and attempts—continuous count. Black cells block cells where there were no data to

analyze due to the subtask not being required to complete the high-level task or no subject data to analyze.

two points (denoted in red on the table) had a completion rate
that was < 50% on average.

In the RW environment, the only subtask action to have an
average motion quality score < 1 was rotate during the Lock and
Key task with an average score of 0.917 ± 1.58 (Table 8). Tasks
with a motion quality score above tow points had an average
completion rate above 50%.

DISCUSSION

Virtual Reality and Real-World Task
Completion Rate
Tasks with a low completion rate were difficult due
to task characteristics and potential object interactions
(Supplementary Table 2). Subjects’ task performance varied
greatly between the two used environments. In VR, subjects
struggled to complete Move Cyl., Sphere Bowl, andWriting tasks
while being completely unable to complete Sphere Cup, Spoon
Trans., Lock Key, and Checkers tasks. In the RW, subjects were
able to complete all the tasks, but struggled the most with the

Lock Key task. The differences in performance can be attributed
to the contact modeling in VR and object occlusion. Subjects
reported an experience of “inaccurate friction,” which caused
objects to slip out of the virtual hand more often than they
would have in RW. Unrealistic physics in object interactions
in VR has been shown to have a negative impact on a user’s
experience (Lin et al., 2016; McMahan et al., 2016; Höll et al.,
2018). This lack of accurate physics causes a mismatch between
the user’s perception of what should happen and what they are
seeing. Improvements are being made to physics calculations to
more accurately calculate how an object should respond to touch
(Todorov et al., 2012; Höll et al., 2018).

In VR, it was more difficult for subjects to see around their
virtual hand to interact with the objects on the table. Because
head tracking was not used in this experiment, the only way for
them to see the task items from a different perspective was to
use a mouse to turn the VR world camera, but this approach
would provide a view that could be disorienting if it did not
reflect the orientation of the hand. Object contact and occlusion
also affected RW performance. In the Lock Key task, subjects
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FIGURE 6 | Average time it took subjects to complete tasks in VR vs. RW. Tasks 2, 4, 5, and 7 do not have an average completion time in VR because they could not

be completed. Task 6 was the only task that subjects were able to complete faster in VR than in RW. Error bars display standard deviation of the data.

tended to have difficulty picking the key up from the table and
would occasionally apply too much force to the key. This would
cause the key to fly off the table. The prosthetic hand would also
block the subject’s view of the key, thus leading the subject to lean
from side to side to get a better view. There were cases where the
subjects would accidently slide the key off the table when the key
was occluded.

The subtask action that inhibited completion rate the most
in the both environments was the grasp action (Tables 5, 8). If
subjects were unable to grasp an object, then they could not
progress through the rest of the task. Grasp failure was caused by
the object falling out of the prosthetic hand causing the subject
to start over or the object falling off the table. Grasping, flexion
of the fingers around an object is a necessary action to perform
many ADLs (Polygerinos et al., 2015; Raj Kumar et al., 2019).
Grasping requires precise manipulation of the fingers to form a
grasp and apply enough force to keep an object from slipping free
as well as deformation of the soft tissue in the hands around an
object (Ciocarlie et al., 2005; Iturrate et al., 2018). Researchers are
developing methods to allow prosthetic devices to detect object

slippage as well as the design of the prosthetic itself to allow for
more human-like motion or finger deformation (Odhner et al.,
2013; Stachowsky et al., 2016; Wang and Ahn, 2017). The ability
to grasp reliably with a prosthetic device is of high importance to
amputees that use prostheses, and the lack of this ability can result
in amputees choosing not to use a prosthetic device (Biddiss et al.,
2007; Cordella et al., 2016).

Virtual Reality and Real-World Task
Completion Time
Subjects on average were able to complete the tasks faster in
RW than in VR. Object contact and occlusion affected these
results as well. With each failure to maintain object contact
in the RW and VR environments, subjects were required to
restart the object manipulation attempt. When objects were
occluded while attempting object interactions, it would take time
to realize missed object pickups, or time was spent to manipulate
objects into high-visibility locations to ease interactions. The
door knob task was the only task subjects completed faster
in VR than in RW because it was easier to turn the virtual
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FIGURE 7 | Average number of attempts subjects made while trying to complete a task in VR vs. RW. All tasks required fewer attempts in RW than in VR. The

characteristics of the items in the tasks (e.g., small size) had a more marked effect on number of attempts in VR than in RW. Error bars display standard deviation of

the data.

door knob. The resistance to turn the door knob was very low;
thus, minimal contact was needed. The control scheme for the
RW prosthesis could have slowed down the completion time
for this task as well. The rotation speed of the RW prosthesis
wrist was proportional to the tilt angle of the subject’s foot.
For example, the Doorknob task could be completed faster if
the subject used a steeper inversion angle to make the wrist
rotate faster.

Virtual Reality and Real-World Task
Attempt Rate
Attempt rate and completion rate were negatively correlated
for most of the tasks. Tasks Lock Key and Stacking Checkers
had the highest attempt rates out of all the tasks and the
lowest completion rates due to small object manipulation and

occlusion. This is also reflected in the increased number of
attempts at the grasp subtask action in these tasks (Tables 5,
8). In comparison, Tasks Sphere Bowl and Doorknob had
the lowest attempt rates and high completion rates due to
the manipulation of large objects or objects locked onto
the table. However, Tasks Sphere Cup and Writing did not
show the same negative relationship. Task Sphere Cup had a
low attempt rate due to its early exclusion action that also
contributed to the low completion rate. Task Writing had a
high attempt rate due to the round pen being flush with the
table causing it to roll away from the subjects as they attempted
to pick it up. However, the subjects were able to prevent the
pen from rolling off the table, allowing them to complete
the task.

Repeated, ineffective attempts at completing a task can
negatively impact a person’s willingness to use a prosthetic

Frontiers in Virtual Reality | www.frontiersin.org 14 April 2021 | Volume 2 | Article 599274

https://www.frontiersin.org/journals/virtual-reality
https://www.frontiersin.org
https://www.frontiersin.org/journals/virtual-reality#articles


Joyner et al. Comparison Performance in Virtual Reality and Real-World

device. Gamification of prosthesis training is intended to make
prosthesis trainingmore enjoyable and provide a steady stream of
feedback (Tabor et al., 2017; Radhakrishnan et al., 2019), though
these training games need to be designed appropriately to avoid
unnecessary frustration. Training and device use frustration has
been shown to cause people to stop using their device (Dosen
et al., 2015).

Effect of Motion Quality on Completion
Rate
Motion quality scores were positively correlated with task
completion rate in both environments. Object view obstruction
contributed to the decrease in motion quality scores. Subjects
would flex and abduct their shoulders or perform lateral bending
of their torso in an effort to view around the prosthetic
device they were using. Subjects were also more likely to use
compensatory movements when they knew they were running
out of time to complete the task. Between the two environments,
VR had lower motion quality scores, which is due to the slow
movement of subjects while attempting to complete these tasks
and the rushed reactions to objects moving away from them.
Compensatory movements are known to put extra strain on the
musculoskeletal system (Carey et al., 2009; Hussaini et al., 2017;
Reilly and Kontson, 2020; Valevicius et al., 2020). This strain
can eventually lead to injuries that could cause an individual
to stop using their prosthesis. It is important for prosthetists to
identify compensatory movements and help train amputees to
avoid habitually relying on these types of motions.

Study Limitations
The lack of RW-like friction, object occlusion, and prosthesis
control issues all negatively affected the results. These factors
made it difficult for subjects to complete tasks, increased the
amount of time needed to complete a task, and required subjects
to make multiple attempts to complete the task. While task
completion strategies positively impacted the results, the tactics
that could be applied in one environment were not always
compatible with the other environment. In RW, subjects would
slide objects to the edge of the table to give themselves access
to another side of the object to interact with or to make it
easier to get their prosthesis under the object. This tactic could
not be applied in VR due to the placement of motion capture
cameras and the inability of the hand to go beneath the plane
of the table top. Future VR environments should allow subjects
to practice all possible RW object manipulation tactics and
control in restricting possible tactics to prosthetists for training
purposes. Future work will need to explore the use of within-
subject design to study the translatability of findings between the
two environments.

Another limitation is the difference in training between the
two environments. Subjects in the VR experiment were not given
training or time to practice picking up objects. The use of the
CyberGlove allowed subjects to use their hand to manipulate the
virtual prosthetic, therefore reducing, the need to train on device
control, but subjects did not know how the virtual prosthesis and
objects would interact. Practicing object manipulation on non-
task-related items may have improved performance outcomes in

VR. While subjects in the RW experiment were given training,
it was not significant enough to impact performance. In a study
by Bloomer et al., they showed that it would take several days
of training to improve performance with a bypass prosthetic
(Bloomer et al., 2018). The training given to subjects in this
experiment was meant to provide them with baseline knowledge
on how to use the device. Future work should provide light
training for subjects in VR and RW to ensure that subjects have
comparable baseline knowledge.

CONCLUSIONS

The results showed that performance between the two used
environments can vary greatly depending on task design in VR
and the used environment in RW. VR could be used to help
device users practice multiple methods to complete a task to later
inform strategy testing in RW.

Given the results of this study, virtual task designers should
avoid placing objects flush with a table and requiring subjects to
manipulate very small objects, and ensure that contact modeling
is sufficient for object interactions to feel “natural.” Objects
that are flush with the table and small can be easily occluded.
Task objects would be less likely to fall out of the virtual hand
with improved contact modeling when subjects are attempting
different grasps. These factors make it difficult to manipulate
objects in VR, causing inaccurately poor results that limit the
translatability of the training and progress tracking. The results
of the move cyl., sphere bowl, doorknob, and writing tasks
were most similar between the VR and RW environments,
suggesting that these tasks may be themost useful for VR training
and assessment.

Prosthetists using VR to assist with training should use VR
environments in intervals and assess frustration with the training.
Performing VR training in intervals would provide time for both
the prosthetist and amputee to assess how this style of training
is working. Reducing the amount of frustration will improve
training and help reduce the chance of the amputee forgoing
his/her prosthetic.

Additional research is needed using the same prosthesis
control schemes between the two environments. Two different
control schemes were used in this study, one natural control
(“best-case”) scenario and one with the actual prosthetic device
control scheme. Even with the best-case scenario control scheme,
subjects were unable to complete half of the tasks due to the
aforementioned issues. A comparison of performance in VR and
RW with the same control scheme would provide more insight
into what types of tasks prosthetists could have amputees practice
virtually. The ability to virtually practice could help amputees feel
comfortable with their devices’ control mechanisms and open the
door for completely virtual training sessions.
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