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The unintegrated HIV-1 DNAs formed by reverse transcription in the early hours

after infection are subject to profound transcriptional silencing. The repression of

expression of foreign DNA, as an aspect of the innate immune system, serves to

restrict the activity of many invading pathogens. Newly formed retroviral DNAs

are rapidly loaded with histones upon entry into the nucleus, and the repression

of their expression is mediated by an array of host proteins that introduce histone

modifications characteristic of heterochromatin, including histone methylation

and histone deacetylation. Knockout or knockdown of expression or inhibition of

these host factors can relieve the silencing, allowing for viral gene expression

even in settings where HIV-1 DNA integration is blocked. When viral DNA

integration is allowed, forming the integrated provirus, the silencing in most

cases is dramatically relieved, leading to high levels of expression and formation

of progeny virus. In some settings and cell types, silencing of the integrated DNA

is maintained, or re-established, such that the infected cells retain a silent copy of

the viral DNAwithout production of progeny virus. The basis for the typical switch

from silent DNA to actively expressed DNA upon integration is not yet fully clear.

This review will summarize the current understanding of the regulation of

expression of unintegrated HIV-1 DNAs and the nature of the chromatin that is

formed on the viral DNA, and will especially focus on the host machinery that

establishes repressive heterochromatin-like structures on the unintegrated DNA.

The activation of expression that normally occurs upon integration, and the

special circumstances when viral DNA expression is not activated, will also be

discussed. These cases can result in the formation of populations of infected cells

carrying silent proviruses, which persist for decades in infected individuals in spite

of antiviral therapy. This pool of latently infected cells can be stochastically

reactivated to give rise to spreading virus whenever antiviral drugs are withdrawn,

and constitute the barrier to a true “cure” of AIDS. The hope is that a deeper

understanding of the regulation of expression of viral DNAs will lead to new

means to prevent or control viremia and disease.
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Introduction

One of the major strategies cells utilize to suppress virus

infection – perhaps the most obvious to imagine – is to inhibit

transcription of the viral genes. There are many approaches to

achieve this inhibition. A very draconian approach is to shut off all

transcription in the cell, leading to cell arrest or even death. But

more targeted inhibition can also be used. Cells can inactivate or

destroy viral RNA transcriptases, viral transcription factors, or

components of RNA processing machinery involved in RNA

capping, splicing, or nuclear export. But many host mechanisms

for inhibiting viral gene expression target the viral DNA itself,

rendering the viral DNA or the chromatin associated with the viral

DNA inaccessible to transcription. These systems often act by

targeting histones associated with the viral DNA, making covalent

histone modifications that mark the chromatin for silencing, or

condensing the DNA into heterochromatin-like structures that are

poorly transcribed. This strategy is utilized to silence incoming

DNAs and serves as an aspect of innate immunity, preventing

infection by many pathogens, including DNA viruses, hepatitis B

virus, and retroviruses such as HIV-1. In response, many of these

viruses have evolved countermeasures that act to reverse the host

defenses and allow for successful viral gene expression. In this

review, we will discuss the host machinery involved in the silencing

of incoming HIV-1 DNAs, focusing especially on the silencing of

unintegrated DNA, and the dramatic change in regulation of

transcription that occurs after DNA integration to form the

provirus. We will also comment on the rare cases of proviruses

that remain silent after integration, representing the reservoir of

persistent DNA forms that can reactivate to reinitiate virus

expression. These silent DNA copies are the major barrier to a

true cure to AIDS.
Silencing of unintegrated
retroviral DNAs

Retroviral infection begins with the reverse transcription of the

single-stranded RNA genome to form a linear double-stranded

DNA. This is a complex process, involving the synthesis of a minus-

strand DNA, followed by the synthesis of a plus-strand DNA,

coupled to the degradation of the initial RNA template (for a

detailed description, see (1)). The linear DNA product includes

two copies of the co-called Long Terminal Repeats (LTRs),

sequence blocks which contain signals for forward transcription,

and with short inverted repeats at their very termini. Upon entry

into the nucleus, the linear DNA is integrated into the host genome

by the viral integrase enzyme to form the provirus, a permanent

component of the cell genome. The proviral DNA is retained

through cell division and constitutes a new genetic element that

can be transcribed by host RNA polymerase II to give rise to viral

mRNAs, proteins, and virion particles. When infection occurs in

germline cells, the provirus can become transmitted to progeny and

so create a permanent mark of that phylogenetic lineage.

The process of reverse transcription is initiated soon after entry

into the cytoplasm, and for many years was thought to be completed
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in the cytoplasm. This notion was based on the observation that

avian retroviruses could carry out reverse transcription even in

enucleated cells (2), and that murine leukemia viruses could

similarly synthesize viral DNA in nondividing cells, where entry

into the nucleus was blocked (3). But recently this dogma has been

upended. Studies with HIV-1 have demonstrated that reverse

transcription continues after nuclear entry, is completed in the

nucleus, and indeed may be fully completed only very soon before

integration occurs (4, 5).

Integration is not a highly efficient process, and a significant

portion of the incoming linear DNA does not successfully integrate

in wild-type infections. While the efficiency of integration is likely to

vary with cell type, setting, and multiplicity of infection, various

experiments suggest that only about 10-30% of the total viral DNA

in cells infected in vitro is integrated to form proviral DNA (6–8).

Whenever integration does not occur, a portion of the linear DNA

gives rise to two circular DNA forms: one-LTR circles formed by

homologous recombination between the LTRs, and two-LTR circles

formed by non-homologous end joining (9, 10). The integration

reaction can be specifically blocked in several ways: cells can be

treated with potent inhibitors of the integrase enzyme such as

raltegravir; or infection can be performed with viral mutants

carrying point mutations in the catalytic site of the integrase.

Blocking integration, either pharmacologically or by mutation,

increases the levels of the circular forms. The circular DNAs do

not contain origins of DNA synthesis, and do not replicate. They

can persist for a period of time, but eventually disappear with

dilution as the cells grow and divide. The 2-LTR circles can be quite

stable in some settings, with a long lifetime in nondividing cells

(11–13).

The ability of the unintegrated retroviral DNAs to serve as

templates for transcription by the host RNA polymerase has been

studied for many years. The murine leukemia virus DNAs were

found to be very poorly expressed in the absence of integration (14).

Analysis of various integration-defective HIV-1 mutants revealed

similarly low expression compared to integration-competent virus

(15–17). The level of expression varied considerably across cell lines

(18). Some cell lines showed only modest levels of silencing of

unintegrated HIV-1 DNA relative to integrated DNA, while some

lymphoid cell lines showed dramatic levels of silencing (19). The

silencing of incoming DNA is not limited to retroviral DNAs, but is

a common response to many viral DNAs (20) and even transfected

DNAs (21, 22), and is an aspect of innate immunity to defend

against pathogens.

What factors might be mediating the silencing? An important

clue to the mechanism of this silencing was the observation that

histone deacetylase inhibitors such as trichostatin A dramatically

relieved this silencing and enhanced expression from unintegrated

DNAs, including expression of transgenes delivered by integrase-

defective vectors (23–25), suggesting that histone modifications

might be involved. Analysis of the composition of the DNAs

present in the PreIntegration Complexes (PICs) by Chromatin

ImmunoPrecipitation (ChIP) revealed that the DNAs of MLV

(26) and HIV-1 (27, 28) were rapidly loaded with histones upon

nuclear entry. Both the linear and circular forms were found to be

loaded with histones before integration, and this occurred even
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when integration was blocked pharmacologically or by mutation.

The histones soon acquired covalent marks of silent DNAs,

including low levels of acetylation and high levels of H3

trimethylation on lysine 9 (H3K9me3). Analysis of the DNA by

micrococcal nuclease protection assays suggested that the histones

were present in the form of nucleosomes, and were well phased and

positioned relative to the viral promoter sequences in the LTR (28).

These findings suggested that nucleosomes are positioned on the

unintegrated DNA relatively early, and that the positions are

roughly maintained after integration. It should be noted that the

loading is unusual in at least one way: it is occurring on naked DNA

that has not previously seen nucleosomes, unlike the usual situation

occurring at replication forks where nucleosomes are placed onto

both leading and lagging strands of the newly copied DNA. Notably,

the DNAs of the PICs contained high levels of the noncanonical or

variant histone H3.3 (27), which are often associated with promoter

regions of both active and inactive genes (29). H3.3 is typically

loaded by the distinctive chaperone complexes HIRA and DAXX,

and can be deposited on DNA in a replication-independent

manner, consistent with the setting of the PICs. The so-called

“linker histones” H1a/b were also present (27), suggesting that the

viral DNA was condensed into heterochromatin-like structures. All

these findings suggest that the incoming HIV-1 DNA is organized

into condensed chromatin that is poorly accessible to RNA

polymerase II.
Host machinery involved in the
silencing of unintegrated HIV-1 DNA

What host machinery is responsible for the silencing of

unintegrated DNAs, and for the histone loading and marking?

No KD screens have yet found circumstances that completely

prevented the loading of histones on PICs per se, suggesting that

there may be redundant complexes capable of loading histones.

Different cell types may contain a distinctive set of complexes

performing the loading. But a number of factors involved in

chromatin organization have been identified that play roles in

silencing (30). The histone methyl transferase SETDB1/ESET is

involved, introducing H3K9 trimethyl marks. A variety of histone

deacetylases, including HDAC1 and 4, are likely to be involved.

Knockout of a large DNA binding protein, NP220, was found to

substantially relieve the silencing of HIV-1 DNA (30). This protein

recognizes short polypyrimidine sequences in the LTR and may

tether additional factors to the DNA to mediate the silencing. While

NP220 interacted with the so-called HUSH complex (31) to silence

MLV, knock down of HUSH had little effect on the silencing of

unintegrated HIV-1 DNA (30, 32), indicating that other factors may

be recruited by NP220 in the case of HIV-1.

A scan of histone chaperones in HeLa cells suggested that two

chromatin modifiers, CHAF1A and CHA1B, play a major role in

silencing (33). KD of either of these two factors led to a substantial

loss of silencing of unintegrated HIV-1 DNA. Perhaps these factors

help position the nucleosomes, or otherwise organize the

nucleosomes into a heterochromatin-like state that is poorly

transcribed. Although the CHAF1A/B factors are known to act in
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some settings as subunits of the canonical CAF-1 complex, their

activity on HIV-1 DNA was independent of the RBBP4 subunit of

that complex. It was further interesting that KD of these two factors

had no impact on silencing of unintegrated DNA of MLV,

indicating that distinct arrays of factors are active on distinctive

retrovirus genomes.

Genome-wide screens have identified additional factors that are

important for silencing. Such screens have discovered that SLF2, a

factor involved in the localization of the SMC5/6 complex (for

Structural Maintenance of Chromosomes), is important for

silencing (32, 34). SMC5/6 is a loop-extruding motor complex,

and is essential for the maintenance of cellular DNA repeat regions

(35, 36). Knock down of these factors resulted in a modest but

significant relief of the silencing of unintegrated HIV-1 DNA.

Several other known players in DNA repair were not found to be

needed in silencing the viral DNAs, suggesting that SMC5/6 served

a special role in this activity. SMC5/6 proteins were found to use a

surprising enzymatic activity to induce silencing: they mediated the

SUMOylation of unintegrated chromatinized HIV-1 DNA, and

inhibiting SUMOylation by mutation of an E3 SUMO ligase, or

pharmacologically, relieved silencing (37). The target and

consequences of the SUMOylation remain to be determined. One

possible mechanism of action of the SMC5/6 complex is to mediate

the localization of the viral DNA to SUMO-rich nuclear

condensates, such as PML bodies.

Yet another screen for silencing factors, by siRNA knockdown,

identified a number of factors including PolE3, which together with

PolE4, forms the POLE holoenzyme functioning as a histone H3

and H4 chaperone (38). PolE3 was found to help maintain

unintegrated HIV-1DNA in a repressive chromatin state (39).

Depletion of PolE3 enhanced early virus expression, but it

actually reduced the overall efficiency of virus replication,

suggesting that premature expression of the viral genome could

prevent proper establishment of proviruses, or even be toxic to cells.

In this context, the silencing of unintegrated DNA may enhance the

recovery of cells acquiring silent integrated proviruses, and thus the

establishment of the long-lived reservoir of latently infected cells.

Yet another genome-wide CRISPR-Cas9 knock-out screen has

very recently identified an essential role of the PTEN gene (for

phosphatase and tensin homolog) in the silencing of unintegrated

HIV-1 DNA (40). PTEN’s phosphatase activity negatively regulates

the PI3K-Akt pathway which otherwise would promote transcription

from unintegrated HIV-1 DNA. The knockout of PTEN, or the

inhibition of PTEN’s phosphatase activity by point mutagenesis,

increased Akt phosphorylation, activated its kinase activity, and

thereby enhanced transcription from unintegrated HIV-1 DNA.

The activated Akt kinase utilized several transcriptional factors

(NF-kB, Sp1, and AP-1) to promote viral expression.

It is very likely that more host factors involved in silencing are

yet to be found. The presence of H3.3 histones offers some

possibilities; in particular, H3.3 is responsive to distinctive

“readers” , including ZMYND11, which recognizes the

H3.3K36me3 mark to suppress both transcription and RNA

splicing (41).

While the unintegrated HIV-1 DNAs are often silent, it is also

true that in many cell lines and settings, there is substantial
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expression (42–44). Some nondividing cells were especially capable

of expression from unintegrated DNA (45, 46). An important

observation is that this early viral expression is strongly promoted

by Vpr, a virion-associated accessory protein (17, 47, 48). Vpr is an

enigmatic protein with many functions. It promotes the nuclear

import of the preintegration complex (PIC); and it induces a strong

G2 cell cycle arrest. At least some of the activities involve its

u t i l i z a t ion o f the Cu l4A/DDB1 complex to induce

ubiquitinylation and degradation of a number of target proteins,

including CCDC137 (49). The identity of the targets most

important for unintegrated DNA expression, however, are not

completely clear. They may include SLF2, the tethering factor for

SMC5/6 (32). The magnitude of the effects of Vpr are large, and

though the level of expression may not be as high as from an

integrated provirus, it can be sufficient to even allow for the

completion of a full replication cycle of integrase-defective viruses

(18, 50). This expression from nonintegrating lentiviral vectors is

sufficiently high that such vectors have been promoted for use in

gene therapy applications, avoiding the potentially oncogenic

consequences of insertional activation caused by provirus

formation (51–53). Such expression, however, would last only as

long as the lifetime of the unintegrated DNA.

A very surprising factor that activates HIV-1 expression from

unintegrated DNAs is the HTLV-1 Tax protein. Tax is the

transactivator protein for the HTLV-1 virus, which recruits the

transcription factors CREB and CPB/p300 to viral CREB-response

elements (vCRE) located in the U3 region of the 5′ LTR (54) as well

as the general transcription factors TFIIA and TFIID. Cells infected

by HTLV-1 and expressing Tax were found to support expression of

unintegrated HIV-1 DNA (55, 56). Presumably Tax activation of

these various transcription factors is sufficient to overcome the

normal repression of expression of the HIV-1 DNAs. While Tax is

not likely to be functioning very often in the case of HIV-1 infection

in patients, it does indicate that there can exist activated cell states

that permit early expression. Rare cells that are activated by

nonviral means may be especially susceptible to HIV-1 infection

by this route.

Is the silencing of unintegrated DNA significant in any way to

inhibit virus replication in humans? The importance is likely to be

limited to a short window of time, because upon integration of the

viral DNA, the block to transcription is largely relieved (see below).

Tests of the course of MLV infection in mouse cell lines after KO of

the silencing machinery did reveal a noticeable increase in the rate

of virus spreading (30), and though the increase was modest, this

could be important in the setting of virus transmission from patient

to patient. HIV-transmission is very inefficient, and is typically due

to a single virus termed the transmitted/founder virus. This suggests

that there is a tight bottleneck at this early stage (57), so even small

increases in virus infectivity could be very significant. It is unclear

what characteristics of the virus are most important to pass through

this bottleneck (though it is known that almost all transmitted virus

utilize the CCR5 coreceptor). Some studies suggest that the

transmitted/founder viruses are especially resistant to inhibition

by type 1 interferon (IFN-a) (58), though other studies did not

detect a similar resistance to IFN in the transmitted viruses of

particular clades (59). It has been pointed out that even minor
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differences in replication efficiency could promote transmission

through the bottleneck (60). The incoming Vpr protein, as noted

above, could be one means for the virus to inactivate the silencing

machinery. Whatever feature of the virus is most heavily

responsible for relieving the silencing, early expression from the

unintegrated DNA could increase the efficiency of successful

provirus formation, or the establishment of a spreading infection.

If expression were high enough, it could even induce the early

formation of new virion particles before the later high-level of virion

formation from the integrated provirus.

Could the silencing of expression early in infection actually be

of any benefit to the virus? This is not clear, but it is possible that it

helps the virus evade detection by the innate immune system early

in infection. HIV-1 typically achieves entry, reverse transcription,

and integration of the viral DNA, without any dramatic activation

of the innate immune responses (61). In part this is due to the

sequestration of the viral RNA and DNA within the virion particle,

preventing its recognition by host factors such as MDA-5 or RIG-I.

Mutations in the viral capsid that destabilize the particles can allow

for activation of innate immunity and inhibition of infection (62,

63). High expression from unintegrated DNA might similarly

trigger antiviral responses, and the lack of such expression could

therefore promote the evasion of detection and successful

progression through the early stages of infection. Once the

establishment of the provirus in a permissive cell has occurred,

the subsequent high-level expression likely will trigger innate

immune responses, but at that time it is too late for the cell to

fully block infection: the provirus is not readily removed, and

expression can follow at any later time to induce new virion release.
Activation of expression upon viral
DNA integration

Upon integration of the HIV-1 DNA in permissive cells, there

follows a robust transcriptional activation of the provirus from the

enhancer and promoter sequences of the viral LTR. This expression is

to some extent promoted by the integration site preference of the virus

for actively expressed regions of the genome. Transcription is initiated

by RNA Polymerase II of the host at the U3-R junction of the LTR,

producing 5’ capped mRNAs that can either be unspliced or spliced to

encode the various viral proteins. Initial transcription typically pauses

until binding of the Tat protein to the TAR element near the 5’ end of

the transcripts. Tat acts to recruit the P-TEFb factor, which directs

phosphorylation of the RNA polymerase C-terminal tail to allow

elongation down the provirus (64–67) (for recent review see (68)). It

is notable that the activation of proviral expression is subject to

dramatic positive feedback by virtue of the transactivation by Tat

leading to production of more Tat. Thus any early transcription that

results in even low levels of expression of the Tat protein will result in

dramatic increases in subsequent transcription events. Tat is extremely

potent and active at very low concentrations.

How integration of the DNA triggers the dramatic increase in

transcription, as compared with the minimal expression of the

unintegrated DNA, is not known. The nucleosomes established on

the unintegrated DNA are largely retained on the provirus, with the
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important exception that the single nucleosome at the transcription

start site is evicted (28). There are also minor shifts in the

positioning of nearby nucleosomes, and additional nucleosome-

free regions appear upon induction of expression (69). Tat binding

recruits histone acetyltransferases that modify nucleosomal histones

present on the proviral DNA (70). Tat also interacts with chromatin

remodelers that may be important in altering nucleosome mobility

around the promoter (71, 72). The activation of expression does not

seem to require the displacement of histones that occurs during the

transit of a replication fork through the provirus, because

expression is observed even with infection by lentiviral vectors in

arrested cells (73, 74). It is clear that integration is associated with a

dramatic switch in the histone marks that are present on the viral

nucleosomes (75). While the histones on unintegrated DNAs are

marked by low acetylation and high H3K9 trimethylation, the

integrated proviral DNA histones show high acetylation and low

H3K9methylation. Whether this is a cause or a consequence of the

high expression is not completely clear, but enhancing acetylation

by HAC inhibitors can profoundly increase proviral expression

(76). One hypothesis for the mechanism of the change in chromatin

status is the “spreading” of the active chromatin from the host

flanking sequences into the inactive chromatin of the previously

unintegrated DNA. Chromatin spreading has been described in

other settings (77–80), and can be imagined to occur by the

recognition of active histone marks on one nucleosome mediating

the placing of a similar active mark on an adjacent nucleosome.

Thus, a “reader” of an active mark would recruit a “writer” to place

an active mark nearby; a protein recognizing an acetylated histone

could recruit a histone acetyltransferase to modify another histone.

Which machinery might be performing this function in a typically

HIV-1-infected T cell is not certain.

The site of integration may play a role in determining the

activation of expression, and the level of expression. The integration

site profile and the preference for integration into active or open

chromatin has been extensively studied and is too large a topic be

covered here (for a recent review, see (81)). There is a trend for

HIV-1 DNA integration to target expressed genes, uniformly across

the transcribed sequences and not exclusively at the transcription

start sites (as is the case for MLV). These preferences involve

interaction of the viral integrase IN with host factors including

the transcription factor LEDGF, an IN cofactor, and probably other

transcription factors. The C-terminal sequences of IN, in particular,

interact with many host proteins and nucleic acids to modulate sites

of integration (82). The integration profile is also affected by the

capsid protein CA, which interacts with host factor CPSF6 and

controls the depth of progression of the PIC into the nucleus before

integration (83). CA retained on the PIC may affect the extent and

timing of the activation of expression. Another interesting finding is

that the viral IN protein can “jump start” the transition from silence

to active expression. A mutant IN engineered to prevent the normal

acetylation of the IN C-terminal tail was able to mediate normal

integration with a normal integration site selectivity, but exhibited a

delay in the transition to active expression (84). The results suggest

that the wild-type IN may remain at the site of integration to

stimulate transcription, perhaps by recruiting positive transcription

factors to the provirus.
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The high-level expression of the integrated provirus is driven by

DNA sequences in the U3 region of the 5’LTR, which include the

binding sites for a number of positive transcription factors (85). The

LTRs are highly variable among the various HIV-1 clades and even

within a clade. Common features in the core promoter include sites

for binding by NFkB, a potent activator of expression; multiple sites

recognized by SP1, a ubiquitously expressed zinc-finger protein;

and the TATA box bound by TFIID, a large complex consisting of

TATA binding protein (TBP) and a number of TBP associated

factors (TAF). Upstream of these core elements are an array of

enhancer elements that include binding sites for the basic-leucine

zipper proteins C/EBP and AP-1, as well as USF, Ets-1, and LEF-1.

Some of these factors are T cell specific and contribute to the cell

type specificity for vigorous virus replication. The ultimate level of

expression of the integrated provirus is thus the result of a complex

interplay between the various LTRs of the virus and the array of

host factors expressed by the particular infected cell. The presence

of the multiplicity of binding sites for positive acting transcription

factors gives the virus a wide range of cell types that offer some

potential for replication, though the activated T cell is perhaps the

most permissive host.
Silent proviruses in latently
infected cells

While the majority of proviral DNAs integrate in active

euchromatin and are highly expressed, there is always a minority

that integrate in heterochromatin or that otherwise remain silent. Some

proviruses that are initially transcribed may subsequently go silent.

Cells carrying these proviruses collectively will ultimately give rise to

the latent pool of infected cells that persist in persons living with HIV-1

(PLWH). The factors that determine the choice between high

expression and latency are not fully known, but the data suggest that

the decision is largely bimodal – either “on” or “off” (86–88). Those

cells that actively produce virus are either killed by the virus directly or

recognized by the adaptive immune system and killed by CD8-positive

T cells. There is thus a selection over time for cells with silenced

proviruses. The few surviving cells that keep the proviral DNA silent

are invisible to the immune system, and these cells can have a very long

lifetime – often these arememory T cells, but they can include other cell

types. When these cells are put in culture and activated, for example by

PMA and ionomycin or by stimulation by anti-CD3, viral expression is

induced and infectious virus is produced. The ability of the virus to

establish latent infections may be highly beneficial to the virus in the

long run; it may constitute a successful mechanism of survival, andmay

have been selected over evolutionary times as a “bet-hedging”

strategy (89).

It is not known what special features of these latently infected

cells promote the silence of their proviral DNAs. There may be

more than one mechanism by which the cells can maintain silence.

Some could be due to location of integration, and some experiments

suggest that there is an enrichment for proviruses located in

heterochromatic chromatin, as in centromeric regions, over long

periods of time on antiviral therapy (90, 91). Some mechanisms

could be by imposition of unusual repressive histone marks, DNA
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marks, or chromatin conformations placed on the proviruses.

Methylation of cytosines in the proviral DNA may be involved in

repression (92), though recent work suggests this is not a major

player (93). Some mechanisms could involve selection for unusual

transcriptional factor profiles in the infected cell – either loss of a

positive factor, or presence of a repressor.

There is much interest in the very rare cohort of infected

patients that can maintain low or undetectable levels of virus

without antiviral therapy – so-called “elite controllers” or

“transient elite controllers”. These individuals can maintain the

integrated proviruses in a state of silence, or suppress replication of

any low-level virus production before high level replication occurs,

even without antiviral therapy. It is unclear if they all carry

proviruses in unusual chromosomal locations, but there is

evidence that at least some have proviruses in centromeric

satellite DNA or zinc-finger genes, both associated with

heterochromatin features (94–96). In addition, they may have

unusual immune responses to the virus that are capable of

suppressing virus spread (97). Inducing such a state of control

over provirus expression would be a major step toward an effective

cure of AIDS – the so called “block and lock” approach. Ensuring

that such control is strong and long-lasting, acting on all the

proviruses in the pool of infected cells, will be challenging.
Reactivation from latency

Though the proviral DNAs in the reservoir in patients treated with

effective antiviral therapies are largely silent, the reappearance of

replicating virus upon withdrawal of therapy is surprisingly rapid,

suggesting that low levels of expression may be continuing. There is

evidence that the pattern of expression is in stochastic transcriptional

“bursts” – short blips of expression that can initiate full-blown viremia

if not brought under control (98). Expression can be thought of as

“noisy” and acting in random cells at random times (99, 100), driven by

a variety of host factors (101).The bursts would be amplified by the Tat

activation, as if the provirus existed in a hair-trigger state that could be

switched from off to on whenever a threshold level of expression is

crossed. There is great interest in devising means to enhance the

silencing of integrated proviruses, or suppress these blips and so

prevent the reemergence of replicating virus (102). One approach

would be to inhibit Tat, and indeed small-molecule inhibitors of Tat

have been identified (103, 104). Such inhibitors can significantly extend

the virus-free period after cessation of antiviral therapy (105), though

not indefinitely. Inhibition of any host factors utilized by Tat could

similarly impact reactivation. Unfortunately, these factors are

important for the expression of many cellular genes, and so

inhibition of Tat in this way without global effects is not plausible.

Targeting them only when they are present in the context of a Tat

complex might be a means to reduce toxicity. The presence of the

multiple binding sites for so many positive transcription factors in the

viral LTR, however, suggests that there are many ways by which virus

can be reactivated, and inhibiting them all will be very challenging.

Intentionally inducing relief from silencing, followed by

clearance of the infected cells, is one conceptual approach to a
Frontiers in Virology 06
cure of AIDS (the “shock and kill” approach). The pool of infected

cells is probably not a monolithic population, will carry proviruses

in many genomic locations, and may be silent for a diversity of

mechanisms. Because of this potential heterogeneity, it may be very

hard to uniformly and completely activate all the silent copies in a

person (106). And the retention of only a few, or perhaps even one

copy of a replication-competent provirus in a small number of cells

may permit reactivation and reinitiation of viremia. Such cells may

even reside in selective tissues and organs that will be hard to access

(107, 108). The “shock and kill” route may be a very challenging

means to eliminate the reservoir (109).

The ultimate means to prevent reversal from latency, of course,

is to eliminate the viral DNA itself – to clear all the infected cells

that carry latent proviruses. These cells, however, carry no

distinctive mark that we know of that differentiate them from

uninfected cells, since they do not express viral proteins, and we

know of no truly selective bullet to kill them. There is a shotgun

approach of killing the entire lymphoid cell population and

replacing it with a bone-marrow transplant of virus-resistant cells

– as with cells of CCR5-mutant donors, or genetically engineered

stem cells – and while this approach has been successful in a small

number of patients, it is extremely demanding, risky, and expensive.

Devising a way to target the proviral DNA in situ, without ex vivo

manipulations, perhaps using CRISPR-based gene editing, may

someday provide a true cure that is scalable to all PLWH. In cell

culture proviruses can be excised with engineered restriction

enzymes or RNA-guided CRISPR nucleases (110–113), but never

with complete efficiency, and in vivo any residual proviruses would

always have the potential for reactivation and renewed viremia.
Discussion and closing thoughts

The study of the silencing of HIV-1 DNAs, both early in infection

and at later times has taught us much about the regulation of gene

expression in general, and about the roles of histone modifications and

chromatin structure in silencing incoming DNAs. The findings have

suggested new mechanisms and new targets that may allow for better

control of HIV-1 replication and pathogenicity. There may especially

be useful new means to reduce virus transmission from patient-to-

patient, a particularly vulnerable stage in the virus life cycle. The brief

window time after infection – the first 6-12 hours of infection – is a

critical period when virus is susceptible to restriction, and targeting the

unintegrated DNA is the best way to interrupt the viral life cycle before

it is too late, after the provirus has been formed. There may also be new

ways to deal with late-stage infections, when proviruses have been

established in large numbers of cells scattered throughout the body.We

may ultimately find ways to activate expression and clear cells carrying

proviruses, or alternatively to permanently suppress proviral expression

and provide an effective cure for AIDS, even without truly eliminating

the virus. But these mechanisms are going to require new tools not yet

in our toolbox. What may be a path forward is the establishment of a

pool of virus-resistant cells in a patient, providing normal cellular

immunity even when virus is present. Bone marrow transplants from

rare donors lacking the CCR5 coreceptor have effectively cured a
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handful of patients, providing proof in principle of the approach. What

will be needed is a means to create such virus resistance in situ, without

the need for bone marrow transplant or ex vivo gene engineering. New

gene editing tools, introduced by new gene delivery methods, may one

day provide such cures at acceptable cost.
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