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Phylogenetic-based methods
for fine-scale classification of
PRRSV-2 ORF5 sequences:
a comparison of their
robustness and reproducibility
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Cesar A. Corzo1 and Igor A. D. Paploski1

1Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota,
St. Paul, MN, United States, 2Veterinary Diagnostic and Production Animal Medicine, College of
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National Animal Disease Center, United States Department of Agriculture – Agricultural Research Service
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Disease management and epidemiological investigations of porcine

reproductive and respiratory syndrome virus-type 2 (PRRSV-2) often rely on

grouping together highly related sequences. In the USA, the last five years have

seen a major shift within the swine industry when classifying PRRSV-2, beginning

to move away from RFLP (restriction fragment length polymorphisms)-typing

and adopting the use of phylogenetic lineage-based classification. However,

lineages and sub-lineages are large and genetically diverse, making them

insufficient for identifying new and emerging variants. Thus, within the lineage

system, a dynamic fine-scale classification scheme is needed to provide better

resolution on the relatedness of PRRSV-2 viruses to inform disease management

and monitoring efforts and facilitate research and communication surrounding

circulating PRRSV viruses. Here, we compare fine-scale systems for classifying

PRRSV-2 variants (i.e., genetic clusters of closely related ORF5 sequences at finer

scales than sub-lineage) using a database of 28,730 sequences from 2010 to

2021, representing >55% of the U.S. pig population. In total, we compared 140

approaches that differed in their tree-building method, criteria, and thresholds

for defining variants within phylogenetic trees. Three approaches resulted in

variant classifications that were reproducible and robust even when the input

data or input phylogenies were changed. For these approaches, the average

genetic distance among sequences belonging to the same variant was 2.1–2.5%,

and the genetic divergence between variants was 2.5–2.7%. Machine learning

classification algorithms were trained to assign new sequences to an existing

variant with >95% accuracy, which shows that newly generated sequences can

be assigned to a variant without repeating the phylogenetic and clustering

analyses. Finally, we identified 73 sequence-clusters (dated <1 year apart with

close phylogenetic relatedness) associated with circulation events on single

farms. The percent of farm sequence-clusters with an ID change was 6.5–8.7%
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for our approaches. In contrast, ~43% of farm sequence-clusters had variation in

their RFLP-type, further demonstrating how our proposed fine-scale

classification system addresses shortcomings of RFLP-typing. Through

identifying robust and reproducible classification approaches for PRRSV-2, this

work lays the foundation for a fine-scale system that would more reliably group

related field viruses and provide better resolution for decision-making

surrounding disease management.
KEYWORDS
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1 Introduction

In infectious disease epidemiology, the ability to identify closely

related genetic sequences is important for epidemiological

investigations and tracking pathogen spread. There is no standard

or universal approach for classifying and naming viral genetic

diversity below the species level. However, labeling genetic

clusters facilitates monitoring, research, and communication

regarding viral genetic diversity present in host populations (1).

In addition, the ability to cluster sequences according to genetic

relatedness lays the foundation for research evaluating phenotypic

variation among different named clades of the virus.

These applications of sequencing are particularly relevant for

porcine reproductive and respiratory syndrome virus (PRRSV),

where sequencing is not only used for research purposes, but also

for day-to-day disease management implemented by animal health

professionals in the field (2, 3). In the U.S., PRRSV is primarily caused

by PRRS virus-type 2 (PRRSV-2), a positive-sense single-stranded

RNA virus (the species Betaarterivirus suid 2 in the genus

Betaarterivirus, family Arteriviridae, order Nidovirales) (3, 4). With

an economic burden of >$600 mill/year in the U.S. (5), PRRSV-2 is

the most important endemic disease in the U.S. swine industry (6, 7),

impacting farrowing rates, number of weaned pigs, poor growth, and

mortality (5, 8). Approximately 30–50% of U.S. breeding farms have

active PRRSV circulation within their herds (9, 10). The rapid

evolution and genetic and antigenic diversity of PRRSV-2 are

key complicating factors to the control of this disease (3, 11–13).

In addition to the co-circulation of numerous lineages and sub-

lineages of the virus, the routine emergence of novel sub-lineages

creates recurring epidemic waves that spread rapidly and widely

through the industry (14–16).

Sequencing is used as part of routine disease monitoring on

farms, primarily to discriminate newly introduced viruses from

previous/resident strains present on a farm, determine the possible

origin of between-farm spread, and inform choice of immunization

strategy (17). Within the ~15 kb PRRSV-2 genome, open reading

frame 5 (ORF5) encodes for a major envelope protein (glycoprotein

5 – GP5), which is involved in inducing virus neutralizing
02
antibodies and cross-protection among PRRSV variants (18–20).

Even though ORF5 accounts for only 4% of the genome, its genetic

variability and apparent immunologic importance (3, 20–22) has

made this gene the target of nearly all genetic sequencing conducted

by the swine industry, with thousands of sequences generated per

year in the U.S. alone (4). Stakeholder preference for ORF5 rather

than whole genome sequencing also relates to lower cost, rapid

turnaround time, and the higher probability of successfully

obtaining a sequence from samples of various types and quality.

While phylogenetic analysis is the gold standard for interpretation

of sequence data, animal health professionals in the field often find it

timelier and more convenient to have a name that they can use to refer

to a given cluster of genetic sequences as part of everyday

communication and outbreak investigations. Additionally, most

sequences are not publicly available, so phylogenetic analysis can

potentially lead to different interpretations if the available data for

practitioners are not representative. Thus, relying on universal

classifications assures standardization between different users.

Currently, the naming method used by the industry to discriminate

between sequences is RFLP-typing (Restriction Fragment Length

Polymorphisms), sometimes in combination with an additional label

corresponding to phylogenetic lineage (3, 14, 15, 23, 24). However,

using RFLP-types to refer to PRRSV-2 viruses often leads to misleading

or even erroneous conclusions (e.g., viruses assigned to the same RFLP-

type often are not closely related, and vice versa) (15, 25). Moreover,

only 6 sub-lineages are currently prevalent in the U.S. [at least 5% of

detected sequences from 2019–23 (26)], each typically having a mean

genetic distance of <8.5% (but occasionally higher than 10%) for

sequences belonging to the sub-lineage (23), making these

classifications too coarse for on-farm disease monitoring and

decision-making.

Thus, better methods are needed to further sub-divide the wide

genetic diversity present within lineages and sub-lineages into

smaller groups of closely related sequences (termed “variants”)

that facilitate monitoring, research, and communication

surrounding genetic diversity. Fine-scale phylogenetic

classification of PRRSV-2 is hampered by several challenges

common to most RNA viruses. Building phylogenetic trees with
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thousands of sequences is increasingly common in studies of viral

evolution and molecular epidemiology, and instability in topology is

often an issue when building such large phylogenies based on

sequences that are closely related and relatively short in length

(i.e., using marker genes such as ORF5 for PRRSV-2) (27). Thus,

while partitioning trees into clusters that meet user-set criteria (such

as the maximum genetic distance allowable within a cluster) is

relatively straightforward using existing methods (28, 29), it is less

clear which methods and their associated user-set criteria produce

stable clusters that are robust and reproducible when analyses are

repeated with different sets of data. However, such reproducibility is

essential for any classification system.

The purpose of this paper is to evaluate different phylogenetic

clustering approaches that could be used as the basis of a fine-scale

classification of PRRSV-2 in the U.S. Particularly, we aim to identify

methodology that would overcome the shortcomings of the current

PRRSV-2 nomenclature systems, and that may be reliable for the

analysis of large phylogenies of RNA viruses more generally. Due to

the paucity of whole genome sequence data and severe limitations in

our understanding of genotype-phenotype interactions, we note that

existing PRRSV-2 classification systems and the additional

refinements explored here are not meant to be based on

phenotypic variation of the virus, but rather have application for

epidemiological monitoring.
2 Methods

2.1 Data source and sequence alignment

Sequence data were obtained from the Morrison Swine Health

Monitoring Project (MSHMP), which is a voluntary initiative

operated by University of Minnesota that monitors PRRS

occurrence in the U.S. MSHMP was initiated in 2011, and

currently collects weekly infection status data for breeding farms

belonging to 37 production systems, accounting for >55% of the

U.S. sow population (10). Participating production systems also

share PRRSV ORF5 sequences that are generated as part of routine

monitoring and outbreak investigations in breeding, gilt developing

units, growing and finishing herds (4). Sequences are generally

obtained either directly from each MSHMP participant or from the

main veterinary diagnostic laboratory where participants submit

their diagnostic samples. Meta-data for each sequence include farm

ID (anonymized), sample collection date, and farm type of origin

(e.g., breeding or growing herd). Sequences without a farm ID or

location information were excluded.

Sequences were divided into short- and long-term datasets. The

short-term dataset, which included three years of sequence data

(6,749 sequences from July 1, 2018–June 30, 2021), was utilized for

developing and comparing different classification methods in

classifying PRRSV-2 genetic variants that co-circulate within U.S.

swine populations. The long-term dataset, which included ~11

years of sequence data (28,965 sequences from January 1, 2010–

September 30, 2021) was used to evaluate the farm-level occurrence

of PRRSV variants.
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2.2 Tree building

Sequence datasets were cleaned to exclude ORF5 sequences

with fewer than 603 bases or with more than 4 (0.5%) ambiguous

bases (23). This resulted in 6,646 sequences for the short-term

dataset, and 28,730 sequences for the long-term dataset. Sequences

were then aligned using the MAFFT’s local pairwise alignment

algorithm (30, 31). Following this, de-duplicated datasets (n=4,502

and n=13,721 for the short- and long-term datasets, respectively)

were generated by el iminating sequences with 100%

nucleotide identity.

All tree-building utilized in this analysis was performed using

IQ-TREE with 1,000 ultrafast bootstraps (32, 33). Substitution

model selection was performed for the short-term dataset using

IQ-TREE, and we selected the model with the lowest BIC that was

also widely available in other phylogenetic software platforms (to

facilitate reproducibility of genetic variants based on phylogenetic

clustering). Thus, the general time reversible substitution model

with empirical base frequencies and gamma plus invariant site

heterogeneity (GTR+F+I+G4) was selected and used for all

subsequent tree-building described herein. Three tree types were

generated for each dataset: a) a maximum-likelihood tree, b) a strict

majority-rule consensus tree from the bootstrap trees (-minsup =

0.5, clades are collapsed if bootstrap support is < 0.5), and c) an

extended majority-rule consensus tree (-minsup = 0). The ggtree

package in R was used for all tree visualizations, with trees re-rooted

on Lineage 5, which contains the PRRSV-2 prototype virus (11, 34).
2.3 Variant classification

A tree-based clustering approach was applied to the phylogenies

using the TreeCluster package available in Python (28); clusters of

genetically related sequences identified in the trees were referred to

as “variants.” Briefly, we used six different methods available within

this package to identify clusters of sequences within a tree: Average

clade (AC): the average pairwise patristic distance between

sequences within a variant is no more than x; the cluster must

also form a monophyletic clade (i.e., include all descendent

sequences from the clusters common ancestor). Median clade

(Med): the median pairwise patristic distance between sequences

within a variant is no more than x; the cluster must also form a

monophyletic clade. Length clade (LenC): a variant does not contain

any branches that are greater than length x; the cluster must also

form a monophyletic clade. Length (Len): same as LenC, but the

variant need not form a monophyletic clade. Single linkage (SL): the

distance between any two sequences in the variant cannot exceed x;

the variant need not form a monophyletic clade. The SL method is

analogous to the distance-based snowball method used previously

to identify PRRSV-2 sequences involved in particular outbreaks

(15). For all methods, thresholds (x) values of 2, 3, 4, and 5% were

used. Early exploration suggested that the average clade method at

the upper threshold of 5% produced clusters that were visually well

aligned to phylogenetic structure in the tree; thus, higher thresholds

of 6, 7, and 8% were also considered for the average clade method to
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assess if higher thresholds produced improved results. TreeCluster’s

“support” argument specifies that the branches connecting every

pair of sequences within a cluster must exceed a user-specified

bootstrap support value; this was set to 0, given that sequences

within a cluster are highly related and thus topological uncertainties

internally within the cluster result in low bootstrap values. This is a

particular issue when dealing with large sequence datasets for RNA

viruses (27), and setting a higher support value results in clades

becoming overly granular. For our purposes, it was more important

for the ancestral node of the clade to have high bootstrap support,

thus supporting the existence of the clade overall regardless of its

exact internal topology. While TreeCluster does not evaluate

support at the ancestral node, we summarized this value as part

of our analysis below. For comparison, we also grouped sequences

according to their RFLP-type as well as the combination of (sub-)

lineage+RFLP (Lineage classification was used for lineages 2–9, and

Sub-lineage was used to further stratify Lineage 1, which accounted

for >70% of the sequences). In total, 140 approaches were

compared: 23 TreeCluster methods applied to each of three tree

types (maximum-likelihood, strict consensus, and extended

consensus) built on two datasets (full and de-duplicated), plus

RFLP and Lineage+RFLP. For the de-duplicated analysis,

clustering was determined on the de-duplicated trees so that

identical sequences did not pull down mean and median patristic

distances within the TreeCluster analysis. The duplicate sequences

were assigned to the same ID after running TreeCluster, and initial

genetic characterization included these duplicate sequences.
2.4 Initial genetic characterization

For the short-term dataset, initial characterization of variants

produced by each approach included a) the number of variants

identified, b) the number of “common” variants (n >50 sequences

belonging to the variant), c) the number of “singleton” variants,

d) median sequences per variant and interquartile range, e) percent

of sequences belonging to common variants, f) percent of sequences

belonging to rare variants (n <10 sequences), g) median bootstrap

value of the ancestral node, and h) mean genetic distance (raw p-

distance) within a variant. Taking the within-variant means, we also

summarized the i) the 95th percentile of means across variants.

Finally, we calculated the j) minimum genetic distance from each

variant to the most closely related variant.

For subsequent analysis, we included only approaches that

produced variants with a median of >5 sequences per variant and

no less than 15% of sequences belonging to rare variants. Only 31

approaches met the criteria, which were subsequently compared to

RFLP and Lineage+RFLP.
2.5 Reproducibility of classification among
sets of data

Given that it is important for any classification scheme to

produce consistent results when applied to PRRSV-2 trees based

on different data, we performed several analyses to determine the
Frontiers in Virology 04
extent to which the variant classification produced above could be

replicated when the data was re-analyzed. Trees utilized to assess

the reproducibility of classification schemes included: a) a tree

based on a duplicate IQ-TREE run utilizing the same data as

above; b) a longer-term tree focused on one sub-lineage; c) a

variant associated with a regional PRRSV-2 outbreak defined a

priori from a previous analysis; d) subsets of data; and e) time-scaled

Bayesian trees, which are often considered the gold-standard

phylogenetic reconstruction.

a) Duplicate tree: For this reproducibility analysis, a duplicate

phylogenetic tree was generated by running the same dataset in IQ-

TREE with the same settings and different random seeds, as different

runs of IQ-TREE can produce different trees due to the underlying

stochastic algorithm used to find the tree with maximum likelihood

(35). Variant classification was performed as described above, and

the resulting classification (scheme B) was compared to the original

classification (scheme A). The concordance between the

classifications produced for each tree was quantified through the

Jaccard index. Essentially, the Jaccard index quantifies how often

pairs of sequences are assigned to the same variant ID across both

schemes. It is calculated as the number pairs that are assigned to the

same variant in scheme A and B (A=B) divided by the number of

pairs that are assigned to the same variant in scheme A but not B and

vice versa. The Jaccard index ranges between 0 and 1, with 1

indicating perfect concordance between scheme A and B.

b) Sub-lineage tree with 15 years of data: For this reproducibility

analysis, 7,067 sequences for sub-lineage 1C from a time period of

November 27, 2007–November 21, 2022 were used, which included

797 of the same sequences present in our short-term dataset (all

L1C sequences in the short-term dataset were also in this L1C

dataset). This data set allowed us to ascertain the extent to which

variant classifications produced for these two datasets differed when

considering longer timeframes and more sequences from a single

sub-lineage (i.e., the genetic diversity within this sub-lineage was

more densely sampled). The Jaccard index was used to quantify the

concordance between the classifications produced from each tree.

Because not all sequences in one dataset appeared in the other, the

Jaccard index was only calculated from sequence pairs that were

present in both sets.

c) A priori defined outbreak variant: Since 2020, the swine

industry in the Midwestern U.S. has witnessed large-scale spread of

a novel PRRSV-2 variant, denoted as either L1C.5 or alternatively

L1C-1–4-4 variant based on its sub-lineage and RFLP pattern (15,

23). A previous study used the inclusion criteria of >98% nucleotide

identity to any of other sequences to define this clade. This clade

does not receive a distinguishing label in lineage classification,

RFLP-typing, or the combination of both. To determine whether

our classification methods capture this clade, we calculated the

Jaccard index between our variant classification schemes and the

L1C-1–4-4 clade as a priori defined by Kikuti et al. (15).

d) Trees based on 10 different subsets of the dataset: To

ascertain whether the classifications defined on the full short-term

tree are robust across different subsets of data, we created 10

maximum-likelihood trees based on a distinct 10% of the short-

term dataset– partitioning of sequences to sub-sets was random.

Ideally, sequences that were classified together on the full tree
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should remain clustered on the subset trees. To assess this, we

calculated two measures: clade purity and nearest neighbor

matching. Clade purity was calculated for each variant j in a sub-

tree by first identifying the clade containing those sequences by

finding the most recent common ancestor (MRCAj) of all sequences

belonging to that variant. We then identified all sequences

descending from that ancestral node. Ideally, the descendent clade

should purely contain sequences belonging to that variant; if

sequences belonging to other variants were present within the

descendent clade, this would indicate instability in the variant

classification when constructing trees from smaller sets of data.

We quantified the extent to which sequences belonging to other

variants were present in variant j’s clade by calculating clade purity

(proportion of sequences descending from the MRCA that belong

to variant j, with 1 indicating perfect purity).

Clade purity was highly sensitive to single outlier sequences; if a

single sequence is placed far away from the rest of the variant, then

this results in a deep node being identified as the common ancestor,

which means that a very large number of non-variant sequences are

included in the clade, resulting in low purity metrics that are driven

by a single outlier. To overcome the disproportionate effect of

outlier sequences, we also performed nearest neighbor matching.

Here, we identified the nearest neighbor for every sequence, and

then tabulated whether the nearest neighbor belonged to the same

variant or a different variant. We then calculated the proportion of

sequences whose nearest neighbors were a member of the same

variant. For both metrics, the median and interquartile of each

metric across all sub-trees was reported. Only variants that had >1

sequence present in the sub-tree were considered.

e) Trees constructed with BEAST: Given computational

constraints, time-scaled trees were constructed separately for each

sub-lineage using BEAST v1.10.4 (75 sequences for L1B, 568 for

L1C, 795 sequences for L1H, and 129 for L1E sequences (23, 36), see

Supplementary Methods). Maximum clade credibility trees (MCC)

were built using TreeAnnotator v.1.10.4 and visualized with ggtree,

and clade purity was calculated for each variant.
2.6 Ease of classification

For prospective application of any classification system, it is

desirable to be able to classify new sequences to their respective

variants without performing computationally heavy analysis. While

acknowledging that any algorithm to classify sequences would need

to be routinely updated as the virus evolves, we at the very least

wanted to ensure that there were viable and accurate algorithms

that could discriminate the fine-scale genetic variants defined in this

paper. Therefore, we trained a random forest machine learning

algorithm to assign new sequences to the appropriate variant

grouping. This is the method used for variant assignment for

SARS-CoV-2 (37). The model was trained using the first 90% of

the short-term dataset (i.e., the ‘training’ dataset), holding out 10%

of the most temporally recent data for model validation. Using the

training dataset, the random forest was fitted using the caret

package in R using ten-fold cross-validation and auto-tuning of

the mtry hyper-parameter (38).
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Model performance on the training set was assessed using ten-

fold cross-validation (i.e., performance evaluated on 10% of

observations that were left out of 10 iterative random forest runs).

Two testing datasets were used: A) internal test data: the remaining

(and most recent) 10% of the short-term dataset to simulate

assignment of new sequences generated prospectively, and

B) external test data: 4661 sequences from the University of

Minnesota Veterinary Diagnostic Laboratory from the same three

year period (only sequences that were <100% nucleotide identity to

training sequences were used for model testing – 55.6% of

sequences had 100% identity with the training dataset since these

two datasets overlap). We report the overall accuracy (percent of

sequences correctly classified by the algorithm) for the training

dataset and for testing set A. We also calculated the mean groupwise

precision, recall, and accuracy (i.e., percent of sequences correctly

classified per variant was first calculated, and then a mean of these

groupwise accuracies was reported). The true variant IDs were not

known for testing set B given that these sequences were not part of

the original variant classification analysis. Therefore, to assess the

accuracy of assignments, we constructed a phylogenetic tree for test

set B, and assigned the sequences that had 100% nucleotide identity

with training sequences to their corresponding variant. We then

performed nearest neighbor matching, as described above, and

reported the proportion of testing sequences (with predicted

variant IDs) whose nearest training sequence (with known variant

IDs) in the tree belonged to the same variant. Only variants with

more than one representative on the tree were considered in

the calculation.
2.7 Farm-level occurrence of variants

We used the MSHMP database to tabulate the number of farms

(based on their unique premises ID), number of production

systems, and number of U.S. states (median and interquartile

range) in which each variant was detected. Summaries were

generated excluding rare variants (<10 sequences).

We also analyzed data for any farm in which ≥4 sequences in a

single year were available to assess the stability of variant

classification during micro-evolution that may occur during the

course of an on-farm outbreak. 73 farms met this criterion, from

which 587 sequences were available between January 12, 2010 and

September 7, 2021 (4–43 sequences per farm, with some farms

meeting these criteria in multiple years). Sequences were assigned to

variant ID based on the classification methods applied to the long-

term dataset. Here, we focused on the average clade (ac).06, ac.07,

ac.08 methods from the strict consensus tree constructed with de-

duplicated data, as this approach yielded the best results in the

above analyses. A time-scaled tree was built for the 587 farm

sequences using the same settings in the above BEAST analysis,

and visualized in Nextstrain (39). For each classification method, we

measured the maximum genetic distance and maximum divergence

time (branch lengths represent time in time-scaled phylogenetic

trees) across every pair of sequences belonging to the same variant

on the same farm. For each pair of variants that occurred on the

same farm, we also measured the maximum genetic distance and
frontiersin.org

https://doi.org/10.3389/fviro.2024.1433931
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


VanderWaal et al. 10.3389/fviro.2024.1433931
maximum divergence time between sequences belonging to those

variants. This enabled us to flag situations where sequences that

were assigned to two variants actually formed a tight “sequence-

cluster” for that farm in the phylogenetic tree (i.e., short genetic

distances and divergence time between the two variants on the farm,

thus likely representing the circulation of a single variant on the

farm, Figure 1). Merging thresholds were established based on

maximum genetic distance and divergence time to identify

sequences that would be more accurately represented by a single

variant ID rather than two IDs (i.e., they cluster together in the tree

with short divergence times, hence they likely represent a farm

sequence-cluster associated with a single circulation event). The

percent of farm sequence-clusters with ID changes was calculated as

the number of variant-pairs that met the merging threshold (i.e., a

farm sequence-cluster that has two associated IDs, see Figure 1)

divided by the total number of farm sequence-clusters (i.e., farm

sequence-clusters represented by a single ID). Merging thresholds

were applied only to quantify how often ID-changes occurred, but

were not applied to the overall classification outlined in this paper.
3 Results

3.1 Initial characterization of variants

Of the 140 classification approaches initially considered, 31

approaches met the initial criteria of having a median >5 sequences

and no more than 15% of sequences belonging to “rare” variants

(i.e., fewer than 10 sequences/variant). Only approaches that used a

patristic distance threshold of ≥4% met this criterion, and 30 out of

31 approaches utilized the Average Clade method (denoted as ac.04,

ac.05, etc., with the latter digits representing the patristic distance

cutoff). These 31 candidates were compared to classifications based

on RFLP-typing and Lineage+RFLPs, for a total of 33 approaches.

Summary metrics for the average clade (ac) method applied to the

strict consensus, deduplicated (con50.dedup) trees are shown in

Table 1. Summary metrics for all approaches are shown in

Supplementary Table S1.
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As outlined in detail below, the overall best approaches were

selected from among these 31 candidates based on the

reproducibility of variant classification and the ease of assignment

of new sequences. The best performance was primarily achieved

with one tree-type (the strict consensus-deduplicated tree).

Therefore, we focus our discussion mainly on three methods

(ac.06, ac.07, and ac.08) applied to this tree-type. Phylogenetic

trees for the three most abundant sub-lineages (L1H, L1C, and L1A)

are shown in Figure 2. RFLP and Lin+RFLP produced 82 and 142

groups, respectively, with a median of 6 and 4 sequences per group.

The ac.06, ac.07, and ac.08 approaches produced 181, 151, and 115

variants, respectively, with a median of 11 to 14 sequences per

variant. Only 27–30 variants were “common” variants, with at least

50 sequences. These common variants accounted for 73–84% of all

sequences, and only 2.6–4.9% of sequences fell in rare variants (with

fewer than 10 sequences). Bootstrap support for the ancestral node

of each variant was generally high (>70%). Mean genetic distance

within a variant ranged from 2.1% for ac.06 to 2.5% for ac.08, but

could be as high as 4.3 to 5.3% (95th percentile). In contrast, within-

variant genetic distance was generally higher for RFLP (mean: 4.3%;

up to 9.9% for 95th percentile) and Lin+RFLP (mean: 2.5%; up to

6.6% for 95th percentile). Genetic divergence from the closest-

related variant was a median of 2.5–2.7% across the three best

methods. In contrast, the median genetic divergence was only 0.5%

for RFLPs and 0.7% for Lin+RFLP.
3.2 Reproducibility of classification among
sets of data

We performed several analyses to determine the extent to which

the variant classification produced above could be replicated with

different sets of data. When variant clustering was performed on

duplicate phylogenetic trees from different IQ-TREE runs or on a

detailed sub-lineage L1C tree with 15 years of data, concordance

between the classifications produced for each tree was quantified

through the Jaccard index (Figure 3A). Index values of >0.85 are

generally considered highly stable (40). The Jaccard index ranged

between 0.78 and 0.97 for duplicate trees (black points in
BA

FIGURE 1

Example of farm sequence-clusters from five farms, visualized in Nextstrain (39). Farm ID is shown as the tip-labels. (A) Tip colors represent RFLP-type.
(B) Tip colors represent the variant ID (ac.07 method).
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TABLE 1 Summary metrics for the average clade method with a threshold of 2 to 8% (ac.02–08) applied to deduplicated strict consensus trees (con50.dedup).

ac.04
on50.dedup]

ac.05
[con50.dedup]

ac.06
[con50.dedup]

ac.07
[con50.dedup]

ac.08
[con50.dedup]

8 (3–17) 9 (3–20) 11 (4–25) 11 (4–34) 14 (4.5–52)

284 219 181 151 115

23 25 27 29 30

33 23 19 17 11

59.9% 68.9% 72.9% 79.2% 83.6%

10.4% 7.4% 4.9% 4.0% 2.6%

90 (70–100) 98 (68–100) 98 (70–100) 96 (70–100) 91 (67–100)

1.8% (1.1–2.2%) 2.0% (1.2–2.4%) 2.1% (1.2–2.6%) 2.3 (1.2–3.0%) 2.5% (1.3–3.3%)

3.90% 4.10% 4.30% 4.40% 5.30%

2.0% (1.0–3.2%) 2.2% (1.5–3.8%) 2.5% (2.5–4.5%) 2.5% (1.6–5.0%) 2.7% (1.7–5.1%)

99.8% 99.4% 99.4% 99.2% 99.7%

95.9% 96.6% 96.5% 97.6% 96.5%

Not assessed Not assessed 8.70% 8.70% 6.50%

V
an

d
e
rW

aal
e
t
al.

10
.3
3
8
9
/fviro

.2
0
2
4
.14

3
3
9
3
1

Fro
n
tie

rs
in

V
iro

lo
g
y

fro
n
tie

rsin
.o
rg

0
7

RFLP Lin
+RFLP

ac.02
[con50.dedup]

ac.03
[con50.dedup] [c

Sequences per variant-median (IQR) 6
(1.25–
21)

4
(1–

15.75)
4 (2–8) 5 (2–12)

Number variants 82 142 815 428

Number variants (>50) 16 21 17 16

Number singletons 21 40 173 72

% sequences in common variants 93.3% 87.8% 30.4% 48.7%

% sequences in rare variants 2.5% 4.3% 34.5% 17.1%

Bootstrap (%)-median (IQR) 70
(22–76)

74
(45–100)

94 (67–100) 98 (75–100)

Within-variant genetic distance-
mean (IQR)

4.3%
(0.9–
7.1%)

2.5%
(0.8–
3.8%)

1.1% (0.5–1.4%) 1.5% (0.7–1.8%)

Within-variant genetic distance-
95th percentile

9.90% 6.60% 2.80% 3.40%

Genetic divergence from closest-related
variant-median (IQR)

0.5%
(0.2–
1.2%)

0.7%
(0.2–
1.9%)

0.8% (0.3–1.8%) 1.7% (0.8–2.7%)

Assignment accuracy-internal (overall;
prob.<0.2 as undetermined)

95.3% 93.8% NA NA

Assignment accuracy-external (% Nearest
neighbor matching, prob.<0.2
as undetermined)

76.5% 80.4% NA NA

% farm sequence-clusters with ID change 43.30% Not
assessed

Not assessed Not assessed
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Figure 3A), and between 0.31 and 0.95 for the L1C trees (red in

Figure 3A). For the latter, the Jaccard indices improved to 0.83 and

0.95 when considering trees with ≥6% threshold and were notably

poor for lower thresholds, indicating a lack of reproducibility when

the threshold was set too low.

In another reproducibility analysis, trees were constructed with

10 random subsets of the short-term dataset, and then the variant

IDs from the full analysis were annotated onto the trees. We
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quantified the proportion of sequences with a matching nearest

neighbor as well as clade purity across each of the ten trees. All

methods achieved high nearest neighbor matching, with >94% of

sequences having a nearest neighbor that had a matching variant ID

(black in Figure 3B). Only ~80% of sequences had a matching

nearest neighbor when using RFLP or Lineage+RFLP. Median clade

purity ranged from 79–94% across approaches, with higher purities

of nearly 90% or more achieved for lower thresholds (4 and 5%) and
150 

FIGURE 2

Example trees. Phylogenetic trees for sub-lineage L1H (top row), L1C (middle row), and L1A (bottom row). Colors in the first, second, third, and
fourth columns represent classifications with the ac.06, ac.07, ac.08, and RFLP methods. Sequences with the same RFLP-type are denoted with the
same color across all three lineages.
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for approaches utilizing the strict consensus method on de-

duplicated data (red in Figure 3B). Median clade purities were

49% and 69% for RFLP and Lineage+RFLP, respectively.

All approaches were able to capture the a priori defined outbreak

variant known as L1C-1–4-4, with Jaccard indices of 0.96–0.98. RFLP

and Lineage+RFLP achieved only a concordance of 0.28 and 0.76,

respectively, indicating that these labels did not reliably capture

sequences associated with this outbreak.

Although variants were defined on trees built via IQ-TREE,

Bayesian methods such as BEAST are often considered the most

robust approach. Therefore, we assessed whether the variants

produced on the IQ-TREEs also formed clusters with high purity

on Bayesian trees. The median clade purity for variants on time-

scaled Bayesian trees was essentially 1 in all cases, but the lower

bound of the interquartile range was more variable (black in

Figure 3C) and was particularly low for RFLP and Lineage+RFLP.

Median clade purity was also more variable when considering only
Frontiers in Virology 09
Lineage 1A (red in Figure 3C), which was consistently the most

problematic lineage in all analyses.
3.3 Ease of classification

For each of the 33 classification approach considered, we trained

a random forest algorithm to assign variant IDs to sequences. Model

performance was evaluated with an internal test set (most recent 10%

of data from the short-term dataset) and an external test set

(sequences that were not included in the original analyses,

Figure 4). Predictions from the trained random forest algorithms

include the probabilities of the first, second, and third most likely

variant IDs for a given sequence, with the highest probability ID

being assigned to the sequence for downstream analyses of predictive

performance. However, in some cases, the highest probability ID was

quite low, indicating that the model had poor confidence in the
B

C D

A

FIGURE 3

Comparison of all approaches that produced a median variant size >5 sequences/variant. Best performing methods are highlighted in green.
(A) Reproducibility when reclassified: Concordance (as measured by the Jaccard index) between the classifications produced on duplicate IQ-TREE
runs performed with the same data (black) or between the full analysis and the more detailed set of L1C sequences (red). (B) Reproducibility in 10
random subsets of data: Neighbor match (black)-Proportion of sequences whose nearest neighbor in the tree had a matching variant ID (black), and
average proportion of sequences in a clade that shared the same ID (clade-purity, red). (C) Reproducibility in BEAST: Median and interquartile range
of the clade purity of all variants (black) or L1A variants (red) in Bayesian phylogenies constructed using BEAST. (D) Ease of assignment: Overall
(black) and group-wise accuracy (red) of the assignment algorithm’s ability to correctly assign variant IDs to new sequences (internal test set).
Proportion of newly assigned sequences (external test set) whose nearest neighbor in the tree had a matching variant ID (green – all sequences;
purple – L1A sequences). Proportion of sequences whose variant ID was undetermined (i.e., confidence in assignment was >0.2 probability). In all
plots, the dotted line represents the desired value for each assessment. Tree type is represented by shape.
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assignment. Therefore, we tested two thresholds (prob < 0.2 or prob

<0.6) for calling sequences “undetermined” rather than assigning

them to an ID. The 0.2 threshold was determined by taking the

median probability for mis-classified sequences in the internal test set

(ac.06). We then assessed the improvement in overall and group-wise

accuracy in the internal test data when low-certainty sequences were

removed from the calculation. For the external test data, we evaluated

improvements in nearest neighbor matching overall and for Lineage

1A (the lineage with poorest predictive accuracy). We also tabulated

the percentage of sequences that were undetermined (Figure 3D).

Both uncertainty thresholds resulted in marked improvement

in predictive performance across the board, except for the ac.04

methods and trees built with the extended consensus method (de-

duplicated) which never achieved comparable accuracies as other

approaches. The 0.2 threshold improved the internal test set overall

accuracy to 97.4–100% and groupwise accuracy to 92.3–100%, and

external test set nearest neighbor matching to 95.4–97.6%

(Supplementary Figure S1). The 0.6 threshold improved the

internal test set overall accuracy 99.2–100% and groupwise

accuracy by 97.3–100%, and external test set nearest neighbor

matching to 98.8–99.7% (Supplementary Figure S1). While the

0.6 probability threshold resulted in slightly higher accuracies, it

also resulted in a high percentage (25%) of undetermined sequences
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in the external test set. With comparable predictive performance,

the 0.2 threshold resulted in just 10% of sequences classified as

undetermined (Figure 3D). Therefore, a probability threshold of

<0.2 for calling sequences undetermined was applied to predictions

made by the random forest algorithm. Even for the problematic

sub-lineage L1A, the top 10 approaches all achieved >93% nearest

neighbor matching in the external test set (Supplementary

Figures S1, S2). Recall and precision ranged from 99.6–100% and

99.9–100%, respectively.
3.4 Selection of best
classification approaches

For the reproducibility analysis, the best performing approaches

were defined as those that achieved a Jaccard index of >0.85 for both

re-classification on the duplicate run and on the extended L1C

analysis (criteria 1). Nine of 33 approaches met the criteria. For the

subset analysis, the best performing approaches were defined as

those that achieved both clade purity and nearest neighbor

matching of >0.90 (criteria 2). 14 approaches met this criterion.

For the reproducibility analysis using trees generated by BEAST, the

best performing approaches were defined as those in which the
B

A

FIGURE 4

Phylogenetic trees for sub-lineage L1H constructed with sequences from the UMN Veterinary Diagnostic Laboratory. (A) colors represent the variant
ID for sequences present in the training data, with uncolored tips indicating test set sequences (left); and the predicted ID for the external test set,
with uncolored tips representing training sequences (right). The predicted variant ID was considered correct if the nearest training sequence had the
same variant ID. (B) Mismatches (blue tips) are showin in the left tree, and predictions flagged as poor confidence (blue tips) are shown for the 0.2
threshold (middle tree) and 0.6 threshold (right tree).
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lower bound of the interquartile range for clade purity was >0.75

(criteria 3). 10 approaches met this criterion. Finally, for ease of

classification, we defined the best performing approaches as those

with >0.95 overall accuracy in the internal test data as well as >0.90

for both the mean groupwise accuracy in the internal test set and

nearest neighbor matching in the external test set (criteria 4). 21

approaches met this criterion. Values that missed the threshold by

<0.01 were allowed for all criteria. Only one approach

(variant.06.ac.dedup.con) met all criteria, which was the approach

with a 6% threshold for average clade method applied to a strict

consensus tree with the deduplicated dataset. An additional three

approaches satisfied three of the four criteria and missed only one

criterion by no more than 0.05 (Figure 3). Given that one tree type

(strict consensus tree with de-duplicated sequences) accounted for

three of four of the best approaches, we proceeded with that tree

type for the remaining analyses.
3.5 Farm-level occurrence of variants

We used the long-term dataset (which spans approximately 11

years of sequences) to tabulate the number of MSHMP-

participating farms, production systems, and U.S. states in which

each variant was detected. These summaries excluded rare variants

(<10 sequences), which accounted for 3.5, 2.4, and 1.8% of

sequences, respectively for ac.06, ac.07, and ac.08. Variants (ac.06,

ac.07, and ac.08) were found in a median of 8 to 9 farms (max 24), 3

(max 6) production systems, and 2 (max 3) states.

To assess the stability of variant classification during micro-

evolution that may occur during virus circulation on a farm, 73

farms with at least 4 sequences in a single year were identified from

the long-term dataset. From these, 587 sequences were available (4 –

43 sequences per farm, with some farms meeting the yearly criteria

multiple times). For each pair of variants that occurred on the same

farm, we measured the maximum genetic distance and maximum

divergence time between those sequences to help identify situations

in which sequences from a single sequence-cluster (characterized by

low genetic distance and short divergence times) on a farm were

classified as two distinct IDs (Supplementary Figure S3). For ac.06

and ac.07, all variant pairs with maximum genetic distance <0.05

and/or divergence time <2 years were manually inspected on the

trees as to whether those sequences would be more accurately

represented by a single variant ID (i.e., they cluster together in the

tree, Figure 1). Based on this manual inspection, a merging

threshold of <0.02 genetic distance and <3 years divergence time

was applied to all pairs of variants from the same farm. Variant

pairs from the same farm that met both these conditions were

flagged as farm sequence-clusters in which an ID change occurred

as a result of micro-evolution (though we cannot rule-out the

possibility of two separate introductions of closely related viruses

onto the farm). An ideal classification system should minimize the

occurrence of such ID changes. The percent of farm sequence-

clusters with an ID change was 8.7%, 8.7%, and 6.5% for ac.06,

ac.07, and ac.08, respectively. In contrast, ~43% of farm sequence-

clusters had an RFLP change.
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4 Discussion

Due to the rapid diversification and spread of PRRSV-2, current

classification systems based on lineages/sub-lineage systems do not

provide adequate resolution on PRRSV-2 diversity, and RFLP-

typing does not reliably group together related sequences. In this

paper, we compare the performance of different phylogenetic

clustering approaches on a large dataset of PRRSV-2 sequences

from the United States. One of our key objectives was to evaluate

alternatives for fine-scale classification of PRRSV-2. We first

identified approaches for delineating variants within phylogenetic

trees that were statistically supported and provide robust and

reproducible results when analyses were repeated with various

subsets of data. We found that our best-performing approaches

achieved high consistency in which sequences were identified as

belonging to the same genetic variant across multiple analyses, thus

demonstrating the robustness of these approaches.

In addition, we show a substantial advantage of the new

approaches over RFLPs and Lin+RFLPs in grouping together

highly related sequences and disaggregating genetically more

distant sequences. This demonstrates that these alternative

systems address the shortcomings of RFLP-based classification,

where genetically similar sequences often receive different RFLP-

types and genetically distant sequences have the same RFLP-type.

Likewise, these new approaches provide a more granular sequence

classification that lineages and sub-lineages, and thus can be used to

quickly indicate an emergent variant clade. In addition, we also

found that our best-performing approaches were able to minimize

ID changes that occur during a single PRRSV-2 circulation event on

a farm, with just 6–9% of circulation events having an ID change as

compared to >40% of on-farm circulation events having an RFLP-

type change.

Our comparison of clustering methods lays the foundation for

fine-scale classification of PRRSV-2 that meets the needs of animal

health professionals utilizing sequence data as part of disease

monitoring and management. That being said, any nomenclature

based on ORF5 sequences will not fully represent the evolutionary

ancestry or phenotypic expression of a given virus, as

recombination across the genome may alter the evolutionary

relationships between different parts of the genome. In some

cases, recombinant clades (i.e., groups of sequences likely

descended from a recombinant ancestor) appear as divergent

groups in ORF5 phylogenies, even if the recombination event

occurred outside of the ORF5 gene (17, 41). Hence, their unique

evolutionary trajectory is sometimes discernable in ORF5

phylogenies in instances where the recombination event produced

numerous descendants in the viral population, but this is not always

true (42). Whole genome sequencing would be required to fully

characterize these recombination events, but a fine-scale

classification approach based on ORF5 would be able to discern

these distinct groups in many cases (17).

It is unknown if genetic diversity captured by the variants

identified here translate into phenotypic diversity of the virus,

either at an antigenic or virulence level. While the ORF5 gene is

immunologically important, other parts of the genome contribute
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to the antigenicity and virulence (20, 43, 44). Whole genome data

would be needed to understand the interplay between genotype and

phenotype, and observed clinical manifestations are also influenced

by external factors (e.g., co-infections); science has not yet

progressed to the point that we can predict phenotype from

whole genomes for PRRSV (22). That being said, sequencing

conducted by animal health professionals is often conducted for

epidemiological monitoring purposes, and this informed the level of

granularity that we tried to achieve in this analysis.

While we utilized a data set of PRRSV-2 sequences that is

representative of ~55% of the U.S. pig population, with even

representation across all major pig producing regions (10), it is

possible that there are pockets of genetic diversity not represented

in our dataset that may constitute distinct variants. A more

comprehensive dataset could mitigate this possibility. In addition,

our analysis is U.S. specific, and not representative of global PRRSV-2

diversity. Due to the granularity of the variants defined here (typically

<2.5% within-variant genetic distances), PRRSV-2 in other countries

would likely be sufficiently diverged to be classified as distinct variants

from those of the U.S., but the ability to define PRRSV-2 variants in

each country is dependent on sequence availability.

Finally, the farm-level analysis was dependent on available

retrospective data from routine veterinary care, and therefore

sequences assigned to farm-specific sequence-clusters (i.e., closely

related sequences from a single farm that likely represent a single

PRRSV circulation event) were not collected in a systematic

manner. Indeed, farms that met our criteria for sequence

availability may favor the inclusion of farms experiencing atypical

circulation events (i.e., those with prolonged circulation or more

severe clinical signs) due to biases in what is selected by

veterinarians for sequencing. That may contribute to the

surprisingly high percentage of farm sequence-clusters that had

RFLP-type changes, which may be an overestimate as a result of

these biases. That being said, ID changes pose a particular challenge

in farms with prolonged circulation vents, due to greater elapsed

time for micro-evolution on the farm.

More generally, our comparison of different methodologies for

clustering sequences within phylogenies highlights several insights

that may be applicable to other RNA viruses. Phylogenies built with

many closely related sequences, especially when a relatively short

marker gene is used, can result in trees with low bootstrap support

and unstable topologies (27). Here, we show that improved

reproducibility of the clustering analysis can be achieved if a strict

consensus tree is used, as nodes with low support are collapsed; only

nodes with high bootstrap support are retained in the tree. We also

show that the average clade method consistently outperforms the

other methods tested.

Through identifying methodology that group together related

sequences in a robust and reproducible manner, this work lays the

foundation for fine-scale classification of PRRSV-2 in the U.S. Next

steps that build upon this work are to test the performance and

robustness of this nomenclature when performed on a rolling basis,

which will evaluate the ability of a new classification system to
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accommodate expanding genetic diversity as the virus continues to

evolve. Additional next steps include defining a standardized system

to label genetic variants, developing procedures for prospective

implementation, and establishing mechanisms for defining variants

in international contexts. In these future steps, input from

stakeholders is crucial to establish a system that meets the needs

of diagnostic labs and animal health professionals.
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37. O’Toole Á, Scher E, Underwood A, Jackson B, Hill V, McCrone JT, et al.
Assignment of epidemiological lineages in an emerging pandemic using the pangolin
tool. Virus Evol. (2021) 7:veab064. doi: 10.1093/ve/veab064

38. KuhnM. Building predictive models in R using the caret package. J Stat Software.
(2008) 28:1–26. doi: 10.18637/jss.v028.i05

39. Hadfield J, Megill C, Bell SM, Huddleston J, Potter B, Callender C, et al.
Nextstrain: real-time tracking of pathogen evolution. Bioinformatics. (2018) 34:4121–
3. doi: 10.1093/bioinformatics/bty407

40. Mount J, Zumel N. Practical data science with R: simon and schuster. Shelter
Island, New York, USA: Manning Publications (2019).

41. Pamornchainavakul N, Kikuti M, Paploski IAD, Makau DN, Rovira A, Corzo
CA, et al. Measuring how recombination re-shapes the evolutionary history of prrsv-2:
A genome-based phylodynamic analysis of the emergence of a novel prrsv-2 variant.
Front Veterinary Sci. (2022) 9:846904. doi: 10.3389/fvets.2022.846904

42. van Geelen Albert GM, Anderson TK, Lager KM, Das PB, Otis NJ, Montiel NA,
et al. Porcine reproductive and respiratory disease virus: evolution and recombination
yields distinct orf5 rflp 1–7-4 viruses with individual pathogenicity. Virology. (2018)
513:168–79. doi: 10.1016/j.virol.2017.10.002

43. Su J, Zhou L, He B, Zhang X, Ge X, Han J, et al. Nsp2 and gp5-M of porcine
reproductive and respiratory syndrome virus contribute to targets for neutralizing
antibodies. Virol Sin. (2019) 34:631–40. doi: 10.1007/s12250-019-00149-6

44. Fan B, Liu X, Bai J, Zhang T, Zhang Q, Jiang P. Influence of the amino acid
residues at 70 in M protein of porcine reproductive and respiratory syndrome virus on
viral neutralization susceptibility to the serum antibody. Virol J. (2016) 13:51.
doi: 10.1186/s12985-016-0505-7

45. VanderWaal K, Pamornchainvakul N, Kikuti M, Linhares D, Trevisan G, Zhang
J, et al. Phylogenetic-based methods for fine-scale classification of prrsv-2 orf5
sequences: A comparison of their robustness and reproducibility. bioRxiv. (2024).
doi: 10.1101/2024.05.13.593920
frontiersin.org

https://doi.org/10.1128/spectrum.02916-23
https://doi.org/10.1177/104063879801000204
https://doi.org/10.1177/104063879801000204
https://Fieldepi.Org/Domestic-Swine-Disease-Monitoring-Program/
https://Fieldepi.Org/Domestic-Swine-Disease-Monitoring-Program/
https://doi.org/10.1038/s41586-018-0043-0
https://doi.org/10.1371/journal.pone.0221068
https://doi.org/10.1371/journal.pone.0221068
https://doi.org/10.1089/aid.2016.0205
https://doi.org/10.3390/v14040774
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msx302
https://doi.org/10.1111/2041-210X.12628
https://doi.org/10.1111/2041-210X.12628
https://doi.org/10.1093/molbev/msu300
https://doi.org/10.1093/molbev/msz172
https://doi.org/10.1093/molbev/msz172
https://doi.org/10.1093/ve/veab064
https://doi.org/10.18637/jss.v028.i05
https://doi.org/10.1093/bioinformatics/bty407
https://doi.org/10.3389/fvets.2022.846904
https://doi.org/10.1016/j.virol.2017.10.002
https://doi.org/10.1007/s12250-019-00149-6
https://doi.org/10.1186/s12985-016-0505-7
https://doi.org/10.1101/2024.05.13.593920
https://doi.org/10.3389/fviro.2024.1433931
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org

	Phylogenetic-based methods for fine-scale classification of PRRSV-2 ORF5 sequences: a comparison of their robustness and reproducibility
	1 Introduction
	2 Methods
	2.1 Data source and sequence alignment
	2.2 Tree building
	2.3 Variant classification
	2.4 Initial genetic characterization
	2.5 Reproducibility of classification among sets of data
	2.6 Ease of classification
	2.7 Farm-level occurrence of variants

	3 Results
	3.1 Initial characterization of variants
	3.2 Reproducibility of classification among sets of data
	3.3 Ease of classification
	3.4 Selection of best classification approaches
	3.5 Farm-level occurrence of variants

	4 Discussion
	Author’s note
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


