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(CIPHER), University of North Carolina at Charlotte, Charlotte, NC, United States, 3Department of
Computer Science, University of North Carolina at Charlotte, Charlotte, NC, United States, 4School of
Data Science, University of North Carolina at Charlotte, Charlotte, NC, United States, 5Tuple, LLC,
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The emergence of SARS-CoV-2 lineages derived from Omicron, including

BA.2.86 (nicknamed “Pirola”) and its relative, JN.1, has raised concerns about

their potential impact on public and personal health due to numerous novel

mutations. Despite this, predicting their implications based solely on mutation

counts proves challenging. Empirical evidence of JN.1’s increased immune

evasion capacity in relation to previous variants is mixed. To improve

predictions beyond what is possible based solely on mutation counts, we

conducted extensive in silico analyses on the binding affinity between the RBD

of different SARS-CoV-2 variants (Wuhan-Hu-1, BA.1/B.1.1.529, BA.2, XBB.1.5,

BA.2.86, and JN.1) and neutralizing antibodies from vaccinated or infected

individuals, as well as the human angiotensin-converting enzyme 2 (ACE2)

receptor. We observed no statistically significant difference in binding affinity

between BA.2.86 or JN.1 and other variants. Therefore, we conclude that the new

SARS-CoV-2 variants have no pronounced immune escape or infection capacity

compared to previous variants. However, minor reductions in binding affinity for

both the antibodies and ACE2 were noted for JN.1. Future research in this area

will benefit from increased structural analyses of memory B-cell derived

antibodies and should emphasize the importance of choosing appropriate

samples for in silico studies to assess protection provided by vaccination and

infection. Moreover, the fitness benefits of genomic variation outside of the RBD

of BA.2.86 and JN.1 need to be investigated. This research contributes to

understanding the BA.2.86 and JN.1 variants’ potential impact on public health.
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Introduction

The continual emergence of SARS-CoV-2 variants remains a

challenge for global public health initiatives. Notably, BA.2.86,

which shares common ancestry with Omicron (BA.1), was

initially identified in late July 2023 in Israel and Denmark (1, 2).

Since then, BA.2.86 spread globally (3–5). The initial worldwide

spread of BA.2.86 sparked concerns regarding its potential impact

on personal and public health. Acknowledging these concerns, the

World Health Organization (WHO) designated BA.2.86 as a variant

under monitoring on August 17th, 2023 (5).

The genetic makeup of BA.2.86 sets it apart from the original

Omicron variant (B.1.1.529) and the XBB.1.5 variant (5), raising

concerns due to the numerous mutations in BA.2.86. These concerns

are fueled by the observation of the rapid rise of previous variants with

a high mutation count, exemplified by the surge in percent case counts

of Omicron in late 2021 and early 2022, and XBB.1.5 in early 2023 (6,

7). BA.2.86 is distinguished by 35 mutations from the XBB.1.5 variant

(8). Notably, the Spike gene (S) of BA.2.86 exhibits a distinctive profile

with 33 mutations in comparison to the original Omicron variant, with

14 of these mutations occurring in the receptor binding domain (RBD)

(8). Since antibodies primarily target the viral S protein’s RBD (9), it is

considered a region of particular interest in the viral genome.

Moreover, mutations in this vital RBD region can affect the efficiency

of crucial viral-cell binding events (10), impacting the virus’ ability to

bind to the human angiotensin-converting enzyme 2 (ACE2) receptor.

For instance, the emergence of novel SARS-CoV-2 variants featuring

RBD mutations has been associated with an increased affinity for

binding to the ACE2 receptor in XBB.1.5 (10). This heightened RBD

and ACE2 affinity has been linked to the accelerated person-to-person

transmissibility observed in viruses like Omicron B.1.1.529 and

XBB.1.5, leading to their predominance within the population (11).

RBD mutations can also facilitate cross-species infections and increase

the virus’ zoonotic potential (12). Furthermore, RBD mutations can

hinder the efficacy of vaccines that target that region (13, 14).

Despite original concerns about the number of mutations in

BA.2.86, and in a departure from past experiences, this variant has

exhibited a notably low prevalence in the USA as of February 2024

(15). The failure of BA.2.86 to ascend in variant prevalence indicates

that relying solely on mutation counts does not suffice to gauge the

severity of a new SARS-CoV-2 variant. More recently, the JN.1

variant, a relative of BA.2.86, emerged in 2023, once again sparking

a concern owing to its increased mutation count. JN.1 is characterized

by the Leu455Ser mutation in the RBD, which some authors have

said makes it “one of the most immunologically evasive variants.”

(16). Preliminary evidence indicates that the Leu455Ser mutation

diminishes the binding affinity of the ACE2 receptor with JN.1’s RBD,

potentially hindering viral entry into host cells while enhancing JN.1’s

capacity to evade humoral immunity (17). Furthermore, Leu455Ser

may confer greater evasion of JN.1 against the antibodies raised by a

monovalent vaccine (18). In addition to JN.1’s mutation within the

RBD, it bears three additional distinct mutations outside of the RBD

that BA.2.86 lacks (19–21). Despite preliminary indications that RBD

mutations would make BA.2.86 or JN.1 more capable than its

preceding variants of escaping current vaccines, treatments, or

antibodies produced by natural infection, conclusive empirical
Frontiers in Virology 02
evidence is lacking and may not be immediately available.

Furthermore, recent studies indicate that these new variants may

not present pronounced differences in immune escape or infective

capabilities when compared to previous variants despite their

accumulated mutations. For example, Jeworowski et al. attested

that JN.1’s serum neutralization escape did not increase over

previously circulating strains despite its stronger increase in

worldwide circulation when compared to BA.2.86 (16, 22).

We build upon in silico methodologies established in our

previous work (7, 23) to conduct extensive comparative analysis of

the binding affinity of JN.1, BA.2.86, and other previous SARS-CoV-2

variant RBDs (Wuhan-Hu-1, BA.1/B.1.1.529, BA.2, and XBB.1.5) to

the human ACE2 receptor and neutralizing antibodies from infected

individuals and patients vaccinated with different vaccines (including

bivalent vaccines). Our findings hold significance for public health

and contribute new methods to rapidly address the dynamic

challenges posed by the evolving viral variants.

Methods

In short, we examined 31 different RBD structures (27 RBD

structures were extracted from 26 PDB files. One RBD structure was

taken from a previous publication. Three PDB structures were

predicted from six different SARS-CoV-2 variant RBDs (Wuhan-

Hu-1, BA.1/B.1.1.529, BA.2, XBB.1.5, BA.2.86, and JN.1). Whenever

more than one RBD structure was available for a variant, a single

representative was selected based the presence of the interfacing

residues and the results of docking validation experiments against the

corresponding antibody. We cluster together BA.1 and B.1.1.529 in

this study as they have identical RBD sequences. We used In silico

docking experiments to calculate the binding affinity metrics between

the six selected RBD structures and 27 different ligands, including 17

neutralizing antibody structures and ten ACE2 structures, resulting in

162 docking experiments total. All the analyzed structures are

available on GitHub (see “Data Availability Statement”). The

complete methodology is detailed below.
Viral proteins

Given the high infectiousness of the Omicron subvariants and

their predominance in the past two years, we selected BA.1/

B.1.1.529, BA.2, XBB.1.5, BA.2.86, and JN.1 variants’ RBDs, as

well as the original Wuhan-Hu-1 strain (referred to here as “wild

type” or WT) for docking. Table 1 summarizes the sources of

different RBD structures, as detailed below.

We retrieved a complete genome sequence of BA.2 from the

GISAID’s EpiCoV database (41). We annotated and translated the S

gene following a similar method to Jacob Machado et al. (42). We

used the B.1.1.529 RBD sequence from our group’s initial in silico

antibody docking study as a template, following the methodology

described in (23). Finally, we extracted a fragment of the

corresponding RBD region from the BA.2 sequence (within amino

acid residues 336 through 528 in relation to the Wuhan-Hu-1

reference) (43). We obtained the RBD sequences for JN.1 and

BA.2.86 from Yang et al., 2023 (17). These amino acid sequences
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were input to AlphaFold2 (44) via ColabFold using default

parameters (45) to predict RBD structures. Colabfold provided a

subsequent unrelaxed protein structure, meaning that the side chains

within the produced PDB file were in energetically unfavorable and

unrealistic conformations. Therefore, we relaxed the produced PDB

structures with the Amber relaxation procedure prior to docking (46).

We obtained the XBB.1.5 structure from our group’s previous in

silico paper. The XBB.1.5 structure was generated using ColabFold

prior to this study (7). We downloaded other available SARS-CoV-2

Spike RBD crystal structures from the Protein Data Bank (PDB) (47).

We derived the WT and BA.1/B.1.1.529 RBD structures from the

Protein Data Bank as they represent empirically derived structures

from an RBD-Antibody or RBD-ACE2 complex (24–30, 37, 40, 48).

For every RBD-antibody and RBD-ACE2 complex we isolated

on PDB, we extracted the RBD structure from that complex. We

extracted the RBD structure from each complex and subsequently

docked that structure against the corresponding Antibody or ACE2

structure to reproduce the initial complex for validation and ensure

an accurate docking location.
Antibody selection

We expanded the antibody selection compared to previous

studies that focused on therapeutic antibodies (7, 23). In this
Frontiers in Virology 03
study, we selected 17 antibodies from the PDB, including those

that were derived from vaccinated patients, patients vaccinated with

breakthrough SARS-CoV-2 infection, and patients who experienced

SARS-CoV-2 infection without vaccination. We included two

therapeutic antibodies. 13 of the 17 selected antibodies were

derived from memory B-cells from human patients (25, 26, 34,

48, 49). The initial complexed RBD was docked to each antibody

structure alongside the representative RBD structures we derived

from PDB and ColabFold. Antibodies are listed in Table 2.
Human ACE2 structures

We used PDB’s ACE2 structures derived from studies analyzing

the structure of the ACE2-RBD complex. The ACE2 structures were

isolated for docking. We docked the initial complexed RBD to each

ACE2 structure alongside the RBDs that we derived from PDB and

ColabFold. We selected ACE2 structures with the PDB IDs 6M0J,

7A98, 7DF4, 7YJ3, 8SPI, 7WBl, 7WPB, 8DM6, 7ZF7, and 7X09 (24,

29, 30, 34–40). We chose ten different structures of ACE2 to have an

increased sample size with a diversity of minor structural deviations

that may affect docking.
Protein-to-protein docking

To prepare the Fab structures for docking, we renumbered the

amino acid residues according to HADDOCK’s (v2.4) requirements

such that there were no overlapping residue IDs between the heavy

and light chains (50, 51). We selected residues in the Fab structures’

complementarity-determining regions (CDRs) as “active residues”,

for docking analysis to assess antibody neutralization. We selected

residues in the ACE2 binding pocket forming polar contacts with

the RBD in the crystallized structure as “active residues” for docking

prediction and analysis of ACE2-RBD binding. We used the same

active residues for each ACE2 and antibody structure for each dock

to the six RBD structures. We selected residues in the S1 portion of

the RBD as active residues. Each RBD has similar active residues

when docking against an antibody. However, there are variations in

active residue selection to account for differences in amino acid

composition between variants. We docked each of the 17 antibody

structures and 10 ACE2 structures against six RBD structures using

HADDOCK, a biomolecular modeling software that provides

docking predictions for provided protein structures (50, 51).

Specifically, we used the HADDOCK Web Server (v2.4) for the

docking simulations with the default parameters (50, 51).

HADDOCK utilizes a linear scoring function to calculate

HADDOCK score, which is composed of a weighted sum of

multiple calculated variables such as van der Waals energy,

electrostatic energy, desolvation energy, and restraints violation

energy1, as shown in the equation below. We used the active

residues identified in our structure preparation process as inputs

into HADDOCK to guide molecular docking.
TABLE 1 Viral RBD structures.

Variant Type Citation PDB GISAID

WT Empirical (24–33) 7X2H, 7XD2,
6XCN,
7KMG
7K8M,
8DW9,
6M0J, 7QEZ,
7A98,
8DWA,
7MMO,
7DF4

BA.1/
B.1.1.529

Empirical (26, 34–36) 7ZF3, 7ZFB,
7YKJ, 7WLC
7WPB,
7WEE,
7WBL,
7WEF

BA.2 Mixed (30, 34,
37–39)

7YJ3, 7ZF7,
7XO9,
8DM6, 7ZF8

8002210

XBB.1.5 Mixed (7, 40) 8SPI

BA.2.86 Predicted (17) Not
Applicable

JN.1 Predicted (17) Not
Applicable
WT indicates “wild type,” or Wuhan. Whenever more than one RBD structure was available
for a variant, a single representative was selected based on sequence length, interfacing motif
completeness, and the results of docking validation experiments against the corresponding
antibody. The six RBD structures selected to represent each variant are available on GitHub
(see “Data Availability Statement”).
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HADDOCK  Score = 1:0 · van der Waals energy

+0:2 · electrostatic energy

+1:0 · desolvation energy

+0:1 · restraints violation energy

The HADDOCK software produces multiple output PDB files

of docking results and their subsequent docking metrics. We placed

the top-scoring PDB output file, after qualitative analysis, to ensure

a realistic binding pose for each docking experiment with

HADDOCK into the software PRODIGY (v2.1.3) for further

analysis. PRODIGY is a web service collection focused on binding

affinity predictions for biological complexes (52, 53). PRODIGY

uses a model that calculates binding affinity from a weighted sum

derived from the number and type of contacts formed between

proteins in a complex as shown below.

DGpredicted = −0:09459 · ICscharged=charged

−0:10007 · ICscharged=apolar

+0:19577 · ICspolar=polar

−0:22671 · ICspolar=apolar

+0:18681 · NIS%apolar

+0:38100 · NIS%charged

−15:9433

This process resulted in 162 sets of docked structures. We

selected the screened top predicted output structure, per

HADDOCK, for each antibody-RBD or ACE2-RBD pair for

quantitative analysis after assessing the binding pose. Statistical

tests were conducted in R (54), implementing the Kruskall-Wallis

and the paired Wilcoxon-Mann-Whitney test to compare the

docking metrics produced by HADDOCK and the binding

affinity prediction of PRODIGY between variants (55, 56). We

also used the selected HADDOCK output structure to visually

analyze the structural conformation of interfacing residues and

docked proteins using PyMol (v2.5.5) (57). A visual representation

of our general methodology is shown in Figure 1.
Results

Docking results for assessment of antibody
and ACE2 binding affinity

We compared docking predictions of viral proteins to antibodies

and ACE2 with Kruskall-Wallis and paired Wilcoxon-Mann-Whitney

tests. The tested variables were HADDOCK score, van der Waals

energy, electrostatic energy, desolvation energy, buried surface area,

and PRODIGY’s DG predictions. These tests return values that are not

statistically significant between JN.1/BA.2.86 and previous Omicron

variants at a 95% confidence level for every displayedmetric, with a few

exceptions, in Figures 2, 3. Tabular representations of the metrics
1 HADDOCK Metr ic s : h t tps : / /www.bonv in lab .o rg/sof tware/

haddock2.4/analysis/
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TABLE 2 Selected antibodies from different conditions and their
PDB structures.

Condition Vaccine Antibody PDB Citation

Vaccinated BBIBP-CorV 6-2C 7X2H (25)

Vaccinated BBIBP-CorV 10-5B 7XD2 (25)

Vaccinated but
infected with
BA.1
Breakthrough
infection

BNT162b2 P3E6 7YKJ (26)

Vaccinated but
infected with
BA.1
Breakthrough
infection

BNT162b2 P2D9 8DW9 (26)

Vaccinated but
infected with
BA.1
Breakthrough
infection

BNT162b2 P1D9 8DWA (26)

Vaccinated but
infected with
BA.1
Breakthrough
infection

BNT162b2 Omi-3 7ZF3 (34)

Vaccinated but
infected with
BA.1
Breakthrough
infection

BNT162b2 Omi-31 7ZFB (34)

Vaccinated but
infected with
BA.1
Breakthrough
infection

BNT162b2 Omi-18 7ZFB (34)

Infected (strain
not specified)

Not
Applicable

COVOX-150 7ZF8 (34, 49)

Infected
with WT

Not
Applicable

CV2.1169 7QEZ (31)

Vaccinated CoronaVac XGv282 7WLC (48)

Vaccinated CoronaVac XGv265 7WEE (48)

Vaccinated CoronaVac XGv289 7WEF (48)

Infected (strain
not specified)

Not
Applicable

C105 6XCN (28)

Infected (strain
not specified)

Not
Applicable

C102 7K8M (28)

Therapeutic Not
Applicable

LY-
COV1404

7MMO (32)

Therapeutic Not
Applicable

LY-COV555 7KMG (33)
f

Note that the BNT162b2-CorV vaccine is commonly known as the “Pfizer-BioNtech” vaccine.
Sinopharm developed BBIBP-CorV and was the first whole inactivated virus SARS-CoV-2
vaccination to obtain an emergency use authorization by the World Health Organization (25).
The entries without a vaccine are antibodies obtained from unvaccinated patients before mass
SARS-CoV-2 vaccination was available in the USA. The first 13 entries within the table are
derived from memory B-cells collected from patients, whereas the last 4 entries were antibody
structures generated from antibody sequences obtained from convalescent donors before mass
vaccination or therapeutic antibodies developed for clinical use.
rontiersin.org

https://www.bonvinlab.org/software/haddock2.4/analysis/
https://www.bonvinlab.org/software/haddock2.4/analysis/
https://doi.org/10.3389/fviro.2024.1419276
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Yasa et al. 10.3389/fviro.2024.1419276
represented in Figures 2, 3 are shown in Supplementary Tables S3, S4

respectively. The difference in Desolvation Energy is statistically

significant, via the paired Wilcoxon-Mann-Whitney test, between

XBB.1.5 and JN.1 in the antibody comparison, with JN.1 having a

lower Desolvation Energy. The difference in desolvation energy

between JN.1 and BA.1/B.1.1.529 is statistically significant in the

ACE2 comparisons, with BA.1/B.1.1.529 having a lower desolvation

energy. In the ACE2 analysis, the Kruskal-Wallis test yields statistically

significant differences between all groups.

The Wuhan or WT variant exhibited a higher binding affinity,

which is statistically significant, to ACE2 than the BA.2.86 and JN.1

variants when assessing DG value in Figure 3. The WT variant also

exhibited a lower desolvation energy score when binding to ACE2,

which is statistically significant, than the BA.2.86 and JN.1 variants.

The WT variant exhibited a higher, statistically significant,

electrostatic energy score than BA.2.86.

The Kruskal-Wallis test, which assesses statistical significance

for group comparisons as a whole, returns a statistically significant p

value at a 95% confidence interval in the ACE2 comparisons for

Desolvation Energy in Figure 3.

We use the PRODIGY DG score as the primary metric to

measure binding affinity. Thus, we conclude that all the Omicron

subvariants’ (including BA.2.86 and JN.1) performance for the

ACE2 and antibody docking simulations were similar. Slight

reductions in antibody-RBD and ACE2-RBD binding affinity

were observed for JN.1 when compared to BA.2.86, but they are

not statistically significant at a p-value of 0.81 and 0.22, respectively,

for a 95% confidence interval.

Figure 2 illustrates various metrics produced by HADDOCK

and PRODIGY estimations of the protein-to-protein binding

affinities between our aggregate antibody arsenal and RBD

structures. It includes 17 antibody structures and six variant RBD

structures (102 experiments in total). The results of ACE2 to RBD

docking experiments are shown in Figure 3, including 10 ACE2 and

six RBD structures (60 docking experiments in total). Figures 2, 3

also show the non-significative p-values of the Kruskal-Wallis

statistical test in the bottom left of each plot and the Wilcoxon-

Mann-Whitney signed-rank test between each RBD, again with the
Frontiers in Virology 05
exceptions mentioned above. These figures are derived frommetrics

obtained from the best PDB complex structure, determined by

HADDOCK, for each experiment.
Structural analysis

Figure 4 shows the structural analysis of the interfacing residues

between the RBDs of JN.1 and BA.2.86 with antibodies. The only

difference in the RBD in JN.1 and BA.2.86 is the Leu455Ser

substitution in JN.1. The residue at position 455 does not form

polar contacts in either the JN.1-RBD or BA.2.86-RBD complexes

in Figures 4A, B, nor is the residue at position 455 near the docking

interface for either complex. The Leucine at position 455, in the

RBD of BA.2.86, may interact with residues within the RBD. The

substitution of Leucine for Serine at position 455 may alter

intramolecular interactions of the RBD, inherently affecting its

tertiary structure. This disparity in structure may affect the

binding pose of the RBD in complex with the antibody, which is

highly dependent on the antibody mechanism. In Figure 4A, one

can note that BA.2.86 generally forms polar contacts with residues

that do not propagate steric hindrance. In contrast, Figure 4B shows

that JN.1 forms two Histidine polar contacts, a side chain that

introduces more steric hindrance and rigidity. Histidine contacts

may reduce proximal residue interdigitation, providing a lower

binding affinity score. Whereas a less sterically hindered side chain

that maintains a polar contact, such as Lysine in its place, may

increase interdigitation and binding. In Figure 4C, the

Phenylalanine at position 489 of BA.2.86’s RBD interdigitates well

with antibody residues, potentially increasing nonpolar interactions

and decreasing the effect of the steric hindrance from the bulky

Phenylalanine side chain. In Figure 4D, one can notice that residues

appear less interdigitated than in Figure 4C. This may be due to the

destabilizing effect of the Serine at position 455 in JN.1, in addition

to the alteration of the RBD tertiary structure mentioned previously.

Leucine455 is shown in yellow in Figure 4C, close to Isoleucine100

of the antibody. Both of these residues may form nonpolar

interactions, strengthening binding. In Figure 4D, this Serine
FIGURE 1

Generalization of our in silico methodology, illustrating three primary steps: structural generation, molecular docking, and statistical analysis.
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substitution has caused a lack of attraction between the two

residues, potentially causing the segment within the RBD to

retract back in docking and decrease binding affinity.

Figure 5 shows the structural analysis of the interfacing residues

between the RBDs of JN.1, BA.2.86, and XBB.1.5 with ACE2. When

assessing Figures 5A, B, one can notice that XBB.1.5 and JN.1 adopt

a markedly different binding pose to each other; the angle of binding

has approximately a 90-degree disparity. However, they do
Frontiers in Virology 06
maintain similar interfacing residues. First, it is to note that at

position 445, XBB.1.5 has a Proline residue while JN.1 has a

Histidine residue. Proline offers enhanced rigidity to that of

Histidine, potentially adding to the disparity in tertiary structure

between XBB.1.5 and JN.1, affecting binding. Second, there is a

deletion in the JN.1 RBD at position 483, where there is a Valine in

position 483 in XBB.1.5. This Valine does not interface with ACE2.

However, this deletion may lead to an alteration in tertiary structure
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FIGURE 2

Boxplots illustrating the comparative docking scores of ACE2 and RBD structures generated by HADDOCK and PRODIGY. Each boxplot highlights
the distribution of docking scores for different variants. Pairwise comparisons were performed using the Wilcoxon-Mann-Whitney signed-rank test,
indicated by the horizontal lines. The Kruskal-Wallis test was used to compare the independent samples’ medians, indicated in the bottom left.
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that causes a variation in binding pose. Lastly, there is a Serine at

position 490 in XBB.1.5, while there is a Phenylalanine in the

corresponding position of 489 in JN.1. When assessing XBB.1.5, this

Serine may form contacts in slight alterations of the docking pose

with the Threonine27, Lysine31, and Glutamate35 in ACE2. These

contacts could potentially increase stability. A future mutation of

the Serine to an Aspartate or Glutamate may provide a more stable

interaction with ACE2. When assessing the corresponding structure
Frontiers in Virology 07
of JN.1, the Phenylalanine is proximal to Histidine34 of ACE2. This

proximity may increase pi-pi bonding. However, given the

constraints of the Alpha Helix that Histidine34 is part of, there is

limited flexibility, and steric hindrance between the two bulky side

chains could cause detrimental effects on binding. When assessing

Figures 5C, D, one can notice a minimal difference in binding pose

between BA.2.86 and JN.1. The only difference between the

sequence of BA.2.86 and JN.1 is the residue at position 455. In
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FIGURE 3

Boxplots illustrating the comparative docking scores of ACE2 and RBD structures generated by HADDOCK and PRODIGY. Each boxplot highlights
the distribution of docking scores for different variants. Pairwise comparisons were performed using the Wilcoxon-Mann-Whitney signed-rank test,
indicated by the horizontal lines. The Kruskal-Wallis test was used to compare the independent samples’ medians, indicated in the bottom left.
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JN.1, the residue at position 455 is a Leucine. This Leucine is close in

proximity to Isoleucine100 and Phenylalanine72 in ACE2. This

proximity could add to nonpolar interactions, increasing binding

affinity. Future mutation of this residue to a Phenylalanine may
Frontiers in Virology 08
provide pi-pi and further van der Waals interaction to enhance

ACE2 affinity. When assessing the Serine in position 455 in JN.1, it

is positioned far away from the ACE2-RBD interface, leaving it

unlikely to interact with any ACE2 residue to strengthen interaction
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(A, B) display the output PDB files from HADDOCK of the docking jobs of antibody P2D9 to BA.2.86 and JN.1, respectively. (C, D) display the output
PDB files from HADDOCK of the docking jobs of antibody 10-5B to BA.2.86 and JN.1, respectively. The antibody structure in each is shown on the
right in green, and the RBD is shown on the left in magenta for BA.2.86 or greencyan for JN.1. Interacting RBD residues are labeled in yellow. The
yellow dashed lines represent the polar contacts formed between residues within 3.0Å. Residues discussed in the results section on the antibody are
labeled in blue. Important mutations referenced in the results section are highlighted in yellow and labeled in red.
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(A, B) display the output PDB files from HADDOCK of the docking jobs of the ACE2 structure from PDB 7XO9 and XBB.1.5 and JN.1, respectively. (C,
D) display the output PDB files from HADDOCK of the docking jobs between the ACE2 structure from PDB 7WPB and BA.2.86 and JN.1, respectively.
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contacts formed between residues within 3.0Å. Important mutations referenced in the results section are labeled in red and highlighted in red.
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significantly. There is a Lysine at position 68 in ACE2, which may

form an interaction with the electronegative oxygen within Serine.

However, Lysine68 is part of an alpha-helix of ACE2 and is angled

away from Serine455 of the RBD, making the interaction less likely.
Broadly neutralizing antibody performance

P2D9
The antibody P2D9, identified in Luo et al. (26), was obtained

from the memory B cells of individuals vaccinated with the

BNT162b2-vaccine (26). These individuals also had breakthrough

BA.1 infection (26). P2D9 was found to neutralize all tested variants

of concern and omicron sublineages (26). Luo et al. tested

neutralization capabilities against variants such as the WT, Alpha,

Delta, BA.1, and BA.2 variants (26). Pseudovirus neutralization

profiles were determined for P2D9. Luo et al. found on the BA.1,

BA.2. and the WT variant that P2D9 had IC50 values of 0.0117,

0.1381, and 0.0075 μg/mL, respectively (26). When assessing the

values in Supplementary Table S5, one can notice similar values for

Van der Waals energy and HADDOCK score between the three

variants. However, the WT variant has a significantly lower Prodigy

DG value, correlating with the empirical values. It is noted that BA.2

records a lower Prodigy DG value than the BA.1 Prodigy DG value.

However, BA.1 Electrostatic Energy value is substantially lower

than that of BA.2 potentially explaining the discrepancy between

their IC50 values despite their Prodigy DG values. The WT variant

has an Electrostatic Energy value between BA.1 and BA.2. The

metrics in Supplementary Table S5 indicate P2D9 will perform

similarly to previous Omicron variants on BA.2.86 and JN.1,

maintaining its broadly neutralizing characteristic.

6-2C
The antibody 6-2C, identified in Liu et al. (25), was obtained

from the memory B-cells of individuals vaccinated with the BBIBP-

CorV inactivated vaccine (25). Specifically, Liu et al. obtained

samples from patients who had robust humoral immune

responses after the second dose of the BBIBP-CorV vaccine (25).

When assessing Supplementary Table S6, one can notice that the

WT variant has lower values for Van der Waals energy,

HADDOCK score, and Prodigy DG relative to the BA.1 and BA.2

variant. Electrostatic energy is slightly higher between 6-2C and the

WT variant. Overall, these metrics indicate that 6-2C has a higher

binding affinity to the WT variant relative to BA.1 and BA.2

variants. When assessing empirical data reported in Liu et al.

(25), the minimum amount of antibody quantity to achieve 50%

reduction in viral infectivity for the WT, BA.1, and BA.2 variants is

37, 1149, and 948 ng/mL respectively (25). One can note that 62-C

is far more potent on the WT variant than BA.1 and BA.2 variants.

The empirical values correlate with the obtained docking metrics

and post-docking metrics. When assessing the data for BA.2.86 and

JN.1 in Supplementary Table S6, the metrics indicate that 6-2C will

maintain neutralization capabilities for BA.2.86 and JN.1.
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CV2.1169
The antibody CV2.1169, identified in Planchais et al. (31), was

obtained from the memory B-cells of individuals infected with the

WT strain. Planchais et al. specifically filtered for serum samples from

individuals with high seroneutralization for single B-cell antibody

cloning. Planchais et al. found that the antibody CV2.1169 potently

neutralized SARS-CoV-2 variants of concern. Planchais et al.

concluded that CV2.1169 was a prime candidate for the prevention

and treatment of COVID-19. When analyzing the Planchais et al.

(31) study, IC50 values for BA.1 and BA.2 are 850 and 756 pM,

respectively, corresponding with the Prodigy DG values displayed in

Supplementary Table S7, with BA.2 demonstrating a lower Prodigy

DG, lower electrostatic energy score, and lower HADDOCK score.

The data in Supplementary Table S7 indicates CV2.1169 will

maintain its neutralizing capabilities as the various docking and

affinity metrics for BA.2.86 and JN.1 are similar to BA.1 and BA.2.
Discussion

The docking metrics we obtained tell a complex story when

assessing them as a single component to form conclusions regarding

the binding affinity of BA.2.86 and JN.1 to neutralizing antibodies

and ACE2. Statistically significant Desolvation Energy differences are

noted in the results. Desolvation Energy measures the energy change

of protein atoms moving from interactions with a solvent to a non-

solvent (58). Desolvation Energy can significantly impact binding

affinity and is a component in the calculation of binding affinity (59).

Taken alone, desolvation energy metrics may indicate lower or higher

binding between two separate molecules within a solvent. However,

we have the binding affinity metrics provided by PRODIGY, which

do not indicate a statistically significant difference in binding affinity

for neutralizing antibodies and ACE2 between JN.1 and BA.2.86

relative to previous Omicron variants. It is an interesting question for

further research whether a small decrease in binding affinity to

neutralizing antibodies for JN.1 may lead to significant evasion of

antibodies for JN.1. In the context of our current docking metrics that

compare JN.1 to XBB.1.5 and BA.1/B.1.1.529, we conclude that there

is not significant immune evasion by JN.1 relative to those variants.

Significant changes are not observed between JN.1 and BA.2.86 to

neutralizing antibodies and ACE2. BA.2.86 appears to have no

significant evasion to RBD targeting antibodies and does not

appear to bind with a significantly higher affinity to ACE2 than

previous variants. Relative to BA.2.86, JN.1 does demonstrate a 3.9%

increase in the median DG value to the RBD-targeting antibody

arsenal in our study, indicating slightly increased antibody evasion.

At the same time, JN.1 exhibits a lower ACE2 binding affinity than

BA.2.86, with a 4.9% increase for the median DG value for JN.1

relative to BA.2.86. JN.1’s observed increase in predominance over

BA.2.86 does not appear to be dependent on enhancement in ACE2

affinity. Cell entry capability due to ACE2 affinity is predicted to be

lower than that observed in our predictions for BA.2.86, likely due to

the substitution of the Leucine at position 455 for Serine in JN.1.
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The docking experiment metadata includes the number of

clusters calculated by HADDOCK. The number of clusters is

inversely correlated with the certainty and stability of docked

complexes. Our HADDOCK docking process most often results

in a low number of clusters. This indicates stability in the docking

location and conformation. As shown in Supplementary Figure S5

below, 72% of the antibody docking experiments resulted in 2 or

fewer clusters (73/102) and 80% of the ACE2 docking experiments

resulted in 2 or fewer clusters (48/60). Within a given cluster, there

were often a large proportion of the docked complexes (out of the

200 possible) that clustered together. For example, many of the

experiments had clusters of 100+ complexes (out of the 200 possible

from the water refinement step in HADDOCK) that clustered

together in the first cluster, indicating a high stability and

confidence in the docking.
BA.2.86 empirical evidence corresponds
with predictions

Studies have been published regarding BA.2.86 and JN.1. In one

study titled, “Sensitivity of BA.2.86 to prevailing neutralizing

antibody responses,” patients had blood sera collected before and

after XBB.1.5 predominance (60). Sheward et al. found that blood

samples collected before and after XBB.1.5 prevalence had

moderately lower geometric mean neutralizing titers for BA.2.86

relative to XBB.1.5. Sheward et al. concluded that BA.2.86 did not

appear to have the same level of relative immune escape as when the

Omicron variant initially emerged in the shadow of the Delta

variant in late 2021. The in silico results for BA.2.86 correspond

with Sheward et al. (60).

In an article published titled ‘SARS-CoV-2 Omicron subvariant

BA.2.86: limited potential for global spread’, Wang et al. review

numerous studies regarding BA.2.86 including Sheward et al. (60).

Wang et al. analyze multiple studies that show that recent infection or

vaccination increases neutralization of BA.2.86. Wang et al. generally

conclude that BA.2.86 may not possess the transmissibility that

previous Omicron strains possessed. Wang et al.’s analysis

corresponds with the in silico results for BA.2.86. Wang et al. do

note that their conclusion does not apply to the JN.1 variant as they

did not examine it (61).
Empirical evidence concerning immune
evasion of JN.1 is mixed

In an article titled ‘Humoral immune escape by current SARS-

CoV-2 variants BA.2.86 and JN.1, December 2023’, Jeworowski

et al. collected sera from a group of individuals who had received

three to four vaccine doses in September 2023, a majority having

prior breakthrough infection (22). These individuals were initially

vaccinated using mRNA or vector-based vaccinations (22).

Jeworowski et al. found that JN.1 did not exhibit a significant

reduction in serum neutralization titers relative to BA.2.86 (22). It is

to be noted that all of the individuals in the study reported a

SARS-CoV-2 infection during the period of Omicron prevalence
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(22). Jeworowski et al. concluded that antibody evasion did not

appear to cause the increased prevalence of JN.1. Jeworowski et al.

(22)’s results correspond with the results of our study.

In another study on JN.1 titled “Fast evolution of SARS-CoV-2

BA.2.86 to JN.1 under heavy immune pressure’, Yang et al. studied

the humoral immune evasion and ACE2 binding affinity of JN.1

(17). Yang et al. collected blood samples from patients who were

reinfected with XBB post BA.5 or BA.7 breakthrough infection (17).

Yang et al. also collected samples from individuals who had received

three doses of inactivated vaccines and subsequently contracted

XBB (17). Yang et al. used a blood serum neutralization titer

method to assess antibody neutralization. Yang et al. found that

JN.1 had significantly higher antibody evasion than BA.2.86 but had

a notably lower ACE2 binding affinity than BA.2.86 (17). Yang

et al.’s trends generally correspond with our results. However, the

magnitude to which we observe antibody evasion is distinct (17).

We do not note a significant increase, which Yang et al. note, in

antibody evasion relative to previous strains, there is a noted

decrease in ACE2 binding, as there is a reduction in binding

affinity for JN.1 relative to BA.2.86.
Evolution outside of the RBD

We have correctly analyzed relative immune evasion for RBD

targeting antibodies for the BA.1/B.1.1.529, XBB.1.5, and BA.2.86

variants with the in silico approach in the past (7, 23, 62, 63). When

assessing the CDC Data Tracker, at the time of writing, JN.1

accounts for approximately 96.4% of current variants detected

(15). Our approach, in which we focus on RBD-antibody and

RBD-ACE2 interaction, does not explain the relative

predominance of JN.1 to BA.2.86.

Immune evasion and transmissibility are not exclusively

dictated by mutations in the RBD region. In the case of JN.1,

several mutations of interest are present in nonstructural proteins

that may play a role in immune evasion (13, 14, 64). For instance,

mutations in nsp6 have been identified as capable of inhibiting the

interferon type I (IFN-I) pathway of the host cell (64). This

inhibition leads to the absence of IFNA and IFNB production,

crucial components in the defense against viral infections (65, 66).

In our tabulation of mutations S8, JN.1 contains mutations,

lacking in BA.2.86, in the proteins nsp3 and nsp6. JN.1 also contains

a mutation, lacking in BA.2.86, within ORF7b, a gene whose

function is not well studied. Nsp3 is associated with binding to

host proteins and plays a role in viral replication (20, 21, 67).

This study, alongside our previous study involving XBB.1.5,

demonstrates a decline in structural and electrostatic change within

the RBD to evade vaccine, infection, and therapeutically derived

antibodies (7). The predominant variants of the last two years

maintain similar antibody evasion potential, marking a stark

contrast to the structural and electrostatic divergence in the RBD

that was introduced with the B.1.1.529 variant, which was highly

evasive of existing antibodies, causing significant increases in

hospitalizations and deaths (7, 15, 23). The results of our in silico

analysis alongside traditional empirical analysis demonstrate that

antibody evasion may not be the source of the relative increase in
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transmissibility demonstrated by JN.1 over BA.2.86 (22). Increased

affinity to the ACE2 receptor is the direction of evolutionary pressure

for the RBD of the Spike Protein. Antibody defenses derived from

memory B-cells, via breakthrough infection and vaccination, have

been studied to be increasingly more capable of binding the RBD of a

broad amount of SARS-CoV-2 variants, which make their aggregate

electrostatic and steric interactions increasingly similar to that of

ACE2 (68). Therefore, since SARS-CoV-2 faces evolutionary pressure

to evolve towards a highly conserved target, as ACE2 maintains

conservation and a slow evolutionary rate, it is improbable that the

RBD will evolve around increasingly strong antibody defenses

without reducing ACE2 affinity, which would inherently reduce its

transmissibility (69). We noted this very phenomenon with JN.1

relative to BA.2.86, as JN.1 has slightly increased antibody evasion,

but it also has decreased ACE2 affinity. This substantial increase in

predominance for JN.1 over BA.2.86, alongside our results and

existing empirical results, implies that evolution outside of the RBD

is enhancing relative SARS-CoV-2 variant transmissibility (22).

Unfortunately, precise quantification of the impact of mutations

outside the Spike protein contributing to JN.1’s increased immune

escape compared to other variants remains challenging (17). An

avenue for future study will be to assess disparities in transmissibility

of point mutated non-RBD genes to quantify how mutations outside

of the RBD can influence transmissibility. Future vaccine

development would be wise to consider epitopes outside of the

RBD. It will be important to assess areas of high homology between

variants and build on previous work to develop multi-epitope

vaccines that can be effective at neutralizing variants of the future

(70). In addition to vaccine development, future work can build upon

existing computational work to assess drug inhibition potential

against conserved targets such as the main protease and how drug

resistance may occur through point mutations outside of the RBD

(71, 72).
Limitations and advantages

We acknowledge that our in silico methodology obtains docking

and binding affinity metrics from a single complex, and that may

limit individual assessment of antibodies and slightly bias individual

docking data. We exclude explicit molecular dynamics simulations,

potentially biasing our data. This potential bias, however, may be

limited as we do not derive our conclusions from the docking and

binding metrics of one complex but the metrics of dozens of

complexes to the studied variants. We acknowledge that we cannot,

as of yet, assess the interaction of multiple antibodies with the spike

protein in neutralization interactions. However, a significant benefit

to this approach is the ability to study the neutralization capabilities

of individual antibodies, not the aggregate capabilities of antibodies

prevalent in the blood. The antibody selection significantly differs

from the antibodies studied in existing serological studies, which may

be biased by quantities of prevalent antibodies, not the quality of such

antibodies. The studied antibody array primarily consists of memory

B-cell derived antibodies that are studied to be broadly neutralizing

against different variants (25, 26, 31, 34, 48, 49). Memory B-cell-

derived antibodies created in response to an antigen are not as easily
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observable when using blood serum neutralization titers. The in silico

results support the empirical results that the selected antibody array,

primarily consisting of broadly neutralizing antibodies, maintains its

efficacy across different variants (25, 26, 31, 34, 48, 49). The presence

of such broadly neutralizing antibodies also may indicate a level of

prevalence of memory B-cells within vaccinated or infected

individuals that differentiate to produce such antibodies (25, 31, 34,

48, 49, 73, 74). Serum antibody neutralization titers may be accurate

in predicting the prevention of initial infection but are not as accurate

in regards to the prediction of the prevention of serious disease. This

is because serum antibody neutralization titers only account for

antibodies prevalent in the blood at the time of collection. The

secondary immune response, via the production of antibodies

derived from memory B-cells, cannot easily be measured using this

method. Neutralization titers, using blood samples, is a biased

measurement method as the proportions of antibodies within the

bloodstream will reflect specific neutralizing capabilities against

recently introduced antigens from infection or vaccination. For

example, in Yang et al., 2023, the authors specifically assess sera

collected after XBB infection, biasing the proportions of antibodies

within the blood that have neutralizing capabilities towards epitopes

of XBB and structurally similar variants. When an immune response

occurs to an introduced SARS-CoV-2 antigen in an individual with

memory B-cells that can respond to that antigen, the proportions of

neutralizing antibodies can and will change as the memory B-cells

will differentiate to produce plasma cells to create neutralizing

antibodies (73). In contrast to the limitation of a bias in the

proportion of neutralizing antibodies provided in serum

neutralization studies, this in silico method primarily uses

antibodies that have been studied to be produced upon memory B-

cell stimulation and neutralize SARS-CoV-2 variants, which may be

more indicative of protection induced by prior infection or

vaccination. A larger and broader study analyzing the presence of

memory B-cells that differentiate to eventually produce broadly

neutralizing antibodies is needed to support the notion that the

general population can produce such broadly neutralizing and

effective antibodies against current and future variants. In addition

to the study of the natural production of broadly neutralizing

antibodies, future work into developing therapeutic antibodies

based upon the highly capable antibodies produced by the memory

B-cells used in the study could lead to improved treatment outcomes.
Conclusion

Our study indicates that ACE2 and antibody binding of the

BA.2.86 and JN.1 variants is not significantly different from previous

variants. Moreover, our study shows the ongoing efficacy of

antibodies induced by various means in the global population to

fight BA.2.86 and JN.1. Finally, the in silico results suggest that

variation within the RBD has not led to the increased fitness JN.1 has

demonstrated relative to BA.2.86. Mutations outside the RBD that

may enhance the fitness of JN.1 must be studied to enhance our

ability to respond to the ongoing SARS-CoV-2 pandemic. As we have

shown that mutation counts in the RBD do not necessarily imply

immune evasion, we conclude that the field of genomic epidemiology
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must open a new chapter with a functional perspective above and

beyond the mission of sequencing novel variants.
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SUPPLEMENTARY TABLE 3

A tabular representation of the median binding prediction metrics for the

studied SARS-CoV-2 variants against the studied neutral iz ing
antibody arsenal.

SUPPLEMENTARY TABLE 4

A tabular representation of the median binding prediction metrics for the
studied SARS-CoV-2 variants against the ACE2 receptor.

SUPPLEMENTARY TABLE 5

Individual docking metrics for the antibody P2D9 against the different variants

used in the study.

SUPPLEMENTARY TABLE 6

Individual docking metrics for the antibody 6-2C against the different variants

used in the study.

SUPPLEMENTARY TABLE 7

Individual docking metrics for the antibody CV2.1169 against the different
variants used in the study.

SUPPLEMENTARY TABLE 8

The table above displays the mutations for JN.1 and BA.2.86 relative to the

B.1.1.529 variant. It shows the mutation location, the mutated amino acid
present, the gene that the mutation is within, and the function of the gene.

The mutation data is derived from theOutbreak.info lineage comparison tool
and the UCSC Genome Browser (20, 21).

SUPPLEMENTARY FIGURE 5

Barcharts representing the distribution of the quantities of HADDOCK

clusters from the experiments in this study. Scatterplots show the number
of protein complexes (out of 200 possible) that clustered in each quantity of

clusters. Experiments with a large proportion of complexes that clustered into
clusters 1 or 2 indicate stability in the docking predictions.
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