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Wielding a double-edged sword:
viruses exploit host DNA repair
systems to facilitate replication
while bypassing
immune activation
Nicholas Saladino and Daniel J. Salamango*

Department of Microbiology, Immunology, and Molecular Genetics, University of Texas (UT) Health
Science Center, San Antonio, TX, United States
Viruses are obligate intracellular pathogens that hijack a myriad of host cell

processes to facilitate replication and suppress host antiviral defenses. In its

essence, a virus is a segment of foreign nucleic acid that engages host cell

machinery to drive viral genome replication, gene transcription, and protein

synthesis to generate progeny virions. Because of this, host organisms have

developed sophisticated detection systems that activate antiviral defenses

following recognition of aberrant nucleic acids. For example, recognition of

viral nucleic acids by host DNA repair proteins results in compromised viral

genome integrity, induction of antiviral inflammatory programs, cell cycle arrest,

and apoptosis. Unsurprisingly, diverse viral families have evolved multiple

strategies that fine-tune host DNA repair responses to suppress activation of

antiviral defenses while simultaneously hijacking DNA repair proteins to facilitate

virus replication. This review summarizes common molecular strategies viruses

deploy to exploit host DNA repair mechanisms.
KEYWORDS

antiviral signaling, DNA damage repair, Host-Pathogen Interactions, innate
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Introduction

The faithful transmission of genetic information from generation-to-generation is

critical for ensuring the survival of an organism. Because genetic material is constantly

bombarded by endogenous and exogenous agents, organisms have evolved overlapping

repair mechanisms to ensure the stability and accuracy of their genetic code. This process is

called the DNA damage response (DDR), which is a highly coordinated network of sensor

proteins that detect DNA lesions, kinases that propagate DNA repair signals, and

numerous proteins that physically repair damaged DNA. If left unresolved, DNA lesions
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fviro.2024.1410258/full
https://www.frontiersin.org/articles/10.3389/fviro.2024.1410258/full
https://www.frontiersin.org/articles/10.3389/fviro.2024.1410258/full
https://www.frontiersin.org/articles/10.3389/fviro.2024.1410258/full
https://www.frontiersin.org/articles/10.3389/fviro.2024.1410258/full
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fviro.2024.1410258&domain=pdf&date_stamp=2024-05-01
mailto:salamango@uthscsa.edu
https://doi.org/10.3389/fviro.2024.1410258
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/virology#editorial-board
https://www.frontiersin.org/journals/virology#editorial-board
https://doi.org/10.3389/fviro.2024.1410258
https://www.frontiersin.org/journals/virology


Saladino and Salamango 10.3389/fviro.2024.1410258
can progress to DNA strand breaks that can lead to chromosomal

aberrations, genome instability, cell death, and even carcinogenesis.

In general, the DNA lesion itself directly dictates which repair

pathway is engaged. Alterations to DNA sequence or structure (at

the nucleotide level) are repaired by three main pathways:

nucleotide excision repair (NER), base excision repair (BER), or

mismatch repair (MMR). These pathways are activated in response

to bulky DNA adducts formed due to UV radiation or chemical

carcinogens, damaged bases due to spontaneous oxidation,

alkylation, or deamination, or mismatched bases due to errors in

DNA replication, respectively (1). Interestingly, viruses seldom

hijack components of these pathways. One possible explanation is

that under normal circumstances viral genomes rarely accumulate

damage from these sources given the location of virus replication

and the kinetics of how quickly replication occurs. In addition,

individual components of these pathways don’t directly activate

antiviral programs, so their functional state is likely inconsequential

to the virus. The best characterized exception to this rule comes

from the HIV accessory protein Vpr, as it induces the depletion of

several BER and NER proteins through a proteasomal degradation

mechanism (2, 3). While the functional relevance of this is debated,

it likely serves to counteract the mutagenic potential of host

APOBEC3 antiviral enzymes that inflict C-to-U lesions in the

HIV genome. Because BER/NER proteins generate abasic sites

following the excision of deaminated nucleobases, which can lead

to DNA strand breaks, depleting these DNA repair proteins likely

preserves HIV genome integrity.

More complex lesions require more intricate processes for

repair, as is the case for DNA single-strand breaks (SSBs) and

double-strand breaks (DSBs), the latter being most deleterious to a

cell (4, 5). Interestingly, viruses most often hijack components of

SSB and DSB repair for reasons described in more detail below

(Figure 1). The repair of DNA SSBs and DSBs requires a highly

coordinated signaling network that is summarized in Figure 1A.

ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-

related), and DNA-PK (DNA-dependent protein kinase) are

essential players in this pathway and mediate the propagation of

repair signals. As is the case for BER/NER/MMR, the DNA lesion

dictates which pathway is utilized, with ATR-directed repair being

activated upon recognition of SSBs and stalled replication forks,

while ATM- and DNA-PK-directed repair pathways are activated

by DSBs (6) (Figure 1A). In the case of SSBs and stalled replication

forks, replication protein A (RPA) acts as a sensor protein that coats

single-stranded DNA and recruits ATR interacting protein

(ATRIP) and ATR to the site of damage (7) (Figure 1A). ATR

activation requires complex formation with ATRIP and TOPBP1 to

trigger catalytic activity and subsequent phosphorylation of

downstream targets including H2AX, CHK1, and p53, resulting

in cell cycle arrest, chromatin remodeling, and DNA repair (8–

11) (Figure 1A).

Canonical DSB repair is mediated by two main pathways,

homologous recombination (HR) and non-homologous end

joining (NHEJ), with the major difference being the molecular

mechanism of repair (Figure 1A). The selection of one repair

mechanism over the other is largely dictated by cell cycle phase,
Frontiers in Virology 02
with HR occurring more frequently during S/G2 whereas NHEJ can

occur at all phases (12, 13). In the context of HR, DSBs are sensed by

the MRN complex (MRE11, RAD50, and NBS1, Figure 1A). MRN

mediates the recruitment and activation of ATM, which

phosphorylates and activates key effector proteins H2AX, CHK2,

and p53 (14–16) (Figure 1A). This leads to cell cycle arrest and

recruitment of downstream repair factors BRCA2 and RAD51 (17,

18) (Figure 1A). In NHEJ, DSBs are sensed by the Ku70/80

heterodimer which recruits the catalytic subunit of DNA-PK to

form an active repair complex (19) (Figure 1A). Once NHEJ has

been initiated, the Artemis protein processes the broken DNA ends

to allow for DNA ligase IV to join the strands and repair the DNA

(20) (Figure 1A).
A

B

FIGURE 1

Host DNA break repair pathways and examples of virus-directed
antagonism. (A) Simplified schematic of canonical single-strand and
double-strand DNA break repair pathways. Key repair proteins
known to be antagonized by viral proteins are depicted for each
repair process. (B) Depiction of the cell cycle progressing from G1,
to S-phase, to G2/M along with the cellular complexes that regulate
these transitions. Top: in the absence of DNA damage, Cdc25A/C
phosphatases regulate proper progression through the cell cycle by
dephosphorylating key Cyclin/CDK complexes to activate their cell
cycle regulating functions. Bottom: following the induction of DNA
repair signaling, secondary DNA repair kinases CHK1 and CHK2
phosphorylate, and inactivate, Cdc25A/C phosphatases in addition
to the p53 regulator.
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DDR also controls the activation of cell cycle checkpoints, which

prevent cells with DNA damage from progressing into mitosis (21).

Fine-tuned cell cycle regulation is critical for maintaining proper cell

growth and division, and its dysregulation is a hallmark of

carcinogenesis (22). There are three major cell cycle checkpoints,

G1/S, S-phase, and G2/M, which are regulated by members of the

cyclin and cyclin-dependent kinase (CDK) families (Figure 1B, top).

Upon the induction of repair pathways, activated CHK1 and CHK2

kinases phosphorylate key cell cycle regulators such as the Cdc25A

and Cdc25C phosphatases (Figure 1B, bottom). Phosphorylation of

Cdc25A/C inhibits their enzymatic activity to prevent the activation

of CDK-cyclin complexes that facilitate progression into the next cell

cycle phase. This also prevents dephosphorylation of the tumor

suppressor p53, which results in its stabilization and further

inhibition of CDK-cyclin complexes (23–25) (Figure 1B, bottom).

In the context of virus infection, DDR proteins can also direct

the activation of multiple proinflammatory programs. This is

reviewed extensively here (26). During circumstances of abnormal

or prolonged DDR signaling, ATM forms a heterodimer with the

NF-kB regulator NEMO to trigger NF-kB cytoplasm-to-nucleus

translocation and upregulation of proinflammatory cytokines,

chemokines, and interferons (27–29). As discussed in more detail

below, several viral families induce constitutive DDR signaling to

exploit active repair proteins for promoting different phases of virus

replication. This prolonged activation of DDR would normally

trigger the pro-inflammatory ATM-NEMO-NF-kB nexus;

however, many viruses deploy countermeasures to ensure this

pathway is disrupted (discussed below). ATM can further mediate

the activation of NF-kB signaling by complexing with ELKS, a

protein necessary for the activation of the IKK-induced TAK1

kinase (28, 30). Moreover, the cGAS sensor can directly bind

cytoplasmic double-stranded DNA to trigger IRF3-mediated

transcription of proinflammatory genes through STING

activation, in addition to serving as a central control point for

integrating inflammatory signals from DNA-PK and MRE11 (31).

The cGAS-STING sensor serves as a mechanism to recognize

double-stranded DNA viruses that replicated in the cytoplasm,

such as poxviruses. Lastly, ATM and ATR can directly bind

aberrant DNA structures, such as viral replication intermediates,

to trigger DDR responses and proinflammatory signaling (32–34).
Virus-mediated inhibition of host
DNA repair

Manipulation of host DDR responses is a broadly conserved

activity among diverse RNA and DNA viruses, including

adenoviruses (multiple serotypes), herpesviruses [herpes simplex

virus-1 (HSV-1), Epstein-Barr virus (EBV), Kaposi’s sarcoma

herpesvirus (KSHV)], human papilloma viruses (HPV, multiple

serotypes), hepatitis viruses [hepatitis B virus (HBV), hepatitis C

virus (HCV)], retroviruses [human T-lymphotropic virus-1

(HTLV-1), human immunodeficiency virus-1 (HIV-1)], and

rotaviruses (select examples of DDR modulation detailed in

Table 1). In general, these viruses deploy one or more proteins

that inhibit the initiation or propagation of DDR signaling
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responses by regulating the activity of primary (ATM, ATR,

DNA-PK) or secondary (CHK1 and CHK2) DDR kinases. This

establishes an environment favorable for virus replication by

inhibiting antiviral programs, maintaining viral genome integrity,

inducing cell cycle arrest at phases that permit enhanced viral

genome replication and/or gene transcription, and blocking

apoptotic responses. In this section, we provide an overview of

the molecular mechanisms’ viruses use to subvert DDR responses.

Viruses antagonize DDR responses through direct and indirect

mechanisms that culminate in the inactivation, depletion, or

relocalization/sequestration of key DDR proteins. In many

instances, repair factors that initially sense DNA damage or that

directly activate DDR signaling pathways, such as the MRN

complex, ATM, or DNA-PK, are downregulated transcriptionally

or post-translationally. For example, herpesviruses and retroviruses

deploy multiple accessory proteins that abrogate DNA-PK or ATM

activity to block the initiation of DSB repair signaling, which

prevents the activation of innate immune defenses and preserves

genome integrity (Table 1). The ICP0 protein of HSV-1 inhibits

DSB repair by inducing proteasomal degradation of the DNA-PK

catalytic subunit shortly after infection (40, 63) (Table 1). While the

mechanistic details are still unclear, DNA-PK restricts HSV-1

replication by affecting genome integrity and activating innate

immune defenses such as cGAS-STING (64). Similarly, EBV

LMP-1 inhibits DSB repair by downregulating ATM expression

in vitro and in patient biopsies, which leads to DNA strand breaks,

genome instability, and likely contributes to EBV-associated

cancers (35, 65, 66). EBV further attenuates ATM-directed

signaling by deploying the EBNA3C protein to downregulate

H2AX and CHK2 transcripts and proteins, an activity that has

been documented in multiple different cell types (36, 37) (Table 1).

Collectively, these activities likely serve to disable cell cycle

checkpoints and preserve EBV genome integrity.

In addition to antagonizing BER and NER, the HIV Vpr protein

induces the depletion of roughly two-dozen cellular proteins

involved in DNA repair or DNA modification (67, 68). Vpr

achieves this by hijacking a host CUL4-DDB1-containing E3-

ubiquitin ligase complex, which normally functions to regulate

DNA repair, DNA replication, and chromatin remodeling (69–

71) (Table 1). Interestingly, the HBx protein of HBV hijacks the

same E3-ubiquitin ligase complex to inhibit DSB repair through

degradation of the SMC5/6 repair complex, which enhances HBV

transcription (60). Recent evidence indicates that HIV-1 accessory

proteins Vpu and Vif can also antagonize DDR through

mechanisms distinct, and independent from, Vpr. Vpu utilizes a

SUMO E3-ubiquitin ligase complex to inhibit RAD52-mediated

non-canonical DSB repair to preserve HIV-1 genome integrity (46)

(Table 1). The ends of the double-stranded HIV genome can be

recognized as broken DNA and are targeted by either NHEJ or HR

for “repair”, which generates dead-end circular DNA products. Vpu

prevents this while simultaneously suppressing innate immune

sensing of the HIV-1 cDNA. Recent work by our group

demonstrated that Vif antagonizes cellular phosphatase

complexes to inhibit ATM-directed antiviral programs (45)

(Table 1). We speculate that this counteracts the constitutive

activation of DDR signaling induced by Vpr. For both Vif and
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Vpr, DDR antagonism has been linked to inducing G2/M cell cycle

arrest, which has been correlated with increased HIV-1 promoter

activity and virus production (43, 44, 72). Another retrovirus,

HTLV-1, also targets DSB repair by deploying the Tax accessory

protein to diminish DNA-PK activity through downregulation of

the Ku80 DNA damage sensor, which is required for recruitment of

DNA-PK to DNA strand breaks (49, 73) (Table 1). While the

proviral function of this activity has yet to be elucidated, it is likely
Frontiers in Virology 04
that this preserves viral genome integrity by preventing NHEJ-

mediated circularization of the double-stranded DNA.

Adenoviruses also block DSB repair by inducing the

degradation of multiple factors involved in HR or NHEJ.

Accessory proteins E4orf3, E4orf6, and E1B55k coordinate to

induce E3-ubiquitin ligase-mediated degradation of MRE11,

LigIV, and TOPBP1, and can inhibit DNA-PK activity through a

direct-binding mechanism (56–59) (Table 1). When functional,
TABLE 1 Summary of virus-DDR antagonism mechanisms and associated functions.

Virus Protein Target Mechanism Function

EBV

LMP1 ATM Unknown Promotes oncogenesis, virus production (35)

EBNA3C
H2AX Downregulation of transcription/protein Blocks anti-proliferative H2AX activities (36)

CHK2 Destabilizes through direct interaction Ablates cell cycle checkpoint/progression (37)

BGLF5 Host DNA 5’ to 3’ DNA degradation Activates DDR for viral replication (38)

EBNA1 Host DNA Induces ROS production/genome instability Promotes EBV persistence (39)

HSV ICP0 DNA-PKcs Unknown Delay activation of innate immunity (40)

KSHV

LANA RAD50, MRE11
Direct or indirect interactions in
the cytoplasm

Prevent NFkB activation/antiviral signaling (41)

ORF57 hTREX
Sequester hTREX leading to R-
loop formation

Essential for nuclear export of viral mRNA (42)

HIV

Vpr
UNG, HLTF,
SMUG, et al.

Unknown: degradation of repair factors,
direct binding to DNA?

Induction of G2/M cell cycle arrest, increased
HIV promoter activity and virus production (2,
3, 43, 44)

Vif PP2A
Direct binding and
proteasomal degradation

Inhibits ATM-directed antiviral programs (45)

Vpu RAD52, RanBP Modulate SUMOylation Block detection of viral DNA (46)

IN Ku70/Ku80 Direct binding to recruit to integration sites Facilitate viral genome integration (47, 48)

HTLV Tax Ku80, DNA-PK
Inhibition of transcription and
protein expression

Preserve viral genome integrity (49)

HPV

E6/E7 p53, pRb Ubiquitination and degradation Block cell cycle/increase viral replication (50, 51)

E1 Host DNA
Induction of aberrant replication
intermediates and stalled replication forks

Recruitment of DDR proteins to viral replication
centers and enhanced viral replication (52)

IAV M2 PKC, ENaC
M2-mediated ROS production stimulates
PKC, decreases ENaC activity

Enhance virus replication (53–55)

AdV

E4orf3 MRE11 Sequester in cytoplasmic aggregates Prevent recognition of viral genome (56–59)

E4orf6
TOPBP1, MRE11,
DNA ligase IV

Degradation of proteins via viral E3
ubiquitin ligase complex

Prevents viral genome recognition (56–59)

E1B55K
MRE11,
DNA ligase IV

Degradation of proteins via viral E3
ubiquitin ligase complex

Prevents viral genome recognition (56–59)

HBV HBx SMC5/6 Degradation through host proteasome Enhance HBV transcription (60)

HCV Core NBS1 Direct binding/inhibition of MRN complex Prevents viral genome recognition (61)

SARS-
CoV-2

ORF6 CHK1
Prevents CHK1 nuclear import,
induces deg.

Unknown (62)

NSP13 CHK1
Prevents CHK1 nuclear import,
induces deg.

Unknown (62)

N 53BP1
Impairs 53BP1 accumulation at
DSBs through

Unknown (62)
Representative examples of diverse viral families and their impact on host DNA repair pathways. These examples include viruses that have both single- and double-stranded RNA and
DNA genomes.
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these pathways can recognize and fuse the free adenoviral DNA

ends, creating a concatenated byproduct that is defective for

replication. Interestingly, antagonizing DNA repair proteins is not

constrained to viruses with DNA-based genomes. HCV, which has

a positive-stranded RNA genome, utilizes its core protein to directly

bind NBS1 and inhibit the formation of the MRN complex (61)

(Table 1). In addition, a recent study demonstrated that SARS-CoV-

2 (severe acute respiratory syndrome coronavirus 2), which also has

a positive-stranded RNA genome, deploys several viral proteins to

inhibit DSB repair by directing the proteasomal degradation of

CHK1 and blocking 53BP1 recruitment to sites of DNA damage

(62) (Table 1). In these latter two examples, it has yet to be

established how viruses with RNA genomes benefit from

antagonizing DNA repair pathways.

Another common strategy to modulate DDR responses is the

relocalization or sequestration of DNA repair proteins. KSHV utilizes

viral factors to recruit RPA and MRE11 to sites of viral DNA synthesis

while deploying the LANA protein to relocalize other MRN

components to the cytoplasm, thus blocking their ability to activate

antiviral inflammatory programs (41, 74) (Table 1). Recruiting DDR

proteins to viral replication centers is also a conserved function of

HSV-1 and EBV. HSV-1 recruits the ATR/ATRIP complex as well as

several MMR proteins to viral replication centers, while EBV recruits

ATM and components of the MRN complex (75–78) (Table 1).

Recruiting DDR proteins to viral replications centers is also prevalent

among adenoviruses, rotaviruses, and HPV. Adenoviruses recruit

several proteins involved in ATR-directed repair processes including

ATR/ATRIP, RPA, TOPBP1, and multiple RAD proteins to viral

replication centers (79, 80). In addition, adenovirus E4orf3 relocalizes

MRE11 to nuclear tracts and cytoplasmic aggregates to maintain viral

genome integrity during replication (81) (Table 1). In a similar fashion,

several HPV serotypes recruit multiple proteins involved in ATM-

directed responses, such as H2AX, 53BP1, CHK2, RAD51, and BRCA1

to replication centers (82–84) (Table 1). As was the case above,

relocalization of repair factors is not exclusively used by DNA

viruses, as rotaviruses, which have a double-stranded RNA genome,

utilize viral proteins NSP2 and NSP5 to recruit ATM, CHK2, and the

MRN complex to replication centers (85) (Table 1).
Virus-mediated activation of
DDR proteins

Viruses have also evolved multiple strategies to activate DDR

signaling, which is counterintuitive given the interplay between

DDR, antiviral responses, and viral genome integrity discussed

above. In some instances, viruses directly damage host DNA to

trigger the enzymatic activity of repair proteins, which are then

leveraged to facilitate viral genome integration into host chromatin

or to promote virus replication. In other cases, viral proteins

indirectly antagonize cellular processes that regulate chromatin

states or DNA integrity, which inevitably activates DDR proteins.

As a bystander effect, these activities often have deleterious

consequences for the host cell and can exacerbate pathogenesis.

This section highlights the mechanisms deployed by diverse viruses

to activate and hijack host DDR responses.
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One of best-characterized examples of virus-directed DNA

damage is the process of viral genome integration into host

chromatin. While this process is traditionally associated with

retroviruses, several other viral families including hepadnaviruses,

papillomaviruses, and adeno-associated viruses undergo genome

integration (86–88). However, it is worth noting that contrary to

retroviruses, these latter viruses do not require genome integration

for replication. Retroviral genome integration is mediated by the

integrase (IN) enzyme, which directly fuses one 5’-end of a viral

DNA strand to a corresponding 3’-end of a host DNA strand (89,

90). This results in a SSB for the opposing DNA strand, which is

repaired through NHEJ. For many years researchers were puzzled

as to why DSB repair proteins would be required for resolving a

SSB. This mechanism was clarified following the recent discovery

that HIV-1 IN directly binds to the Ku70/80 complex to redirect

proteins involved in NHEJ to the site of integration (47,

48) (Table 1).

The natural formation of DSBs during host DNA replication

and maintenance can also promote viral genome integration. HBV

genomes spontaneously integrate into host chromatin during both

chronic and acute infection, which can be enhanced ~10-fold by

inducing DSBs in infected liver cells (91) (Table 1). Integrated HBV

DNA is often observed in liver tumors and has been correlated with

the onset and severity of liver disease and carcinogenesis. Similarly,

integration of HPV genomes into host DNA has been correlated

with invasive cervical carcinomas. The E6/E7 accessory proteins

from high-risk HPV isolates induce host genome instability and

spontaneous integration of HPV DNA; however, E6/E7 proteins

from low-risk isolates don’t exhibit this activity, which potentially

rationalizes why high-risk isolates correlate with oncogenesis (50,

51, 92) (Table 1). The HPV E1 helicase further compromises host

DNA integrity by inducing aberrant replication intermediates and

stalled replication forks (93). This triggers the activation of DDR

proteins that are recruited into viral replication centers to facilitate

genome amplification (52). Another example of this functional

dichotomy is the EBV BGLF5 protein, which is essential for virus

replication but also exacerbates carcinogenesis. BGLF5 is a DNase

that induces DNA strand breaks to activate DNA repair proteins

that are leveraged to facilitate virus replication; however, a

consequence of this activity is the induction of genome instability

and cellular transformation (38, 94, 95) (Table 1).

Viruses can activate DDR through indirect mechanisms as well.

The KSHV ORF57 protein sequesters a host complex required for

mRNA processing and stability, which drives a global loss of mRNA

stability and the formation of R-loops, DSBs, and the activation of

DDR signaling (42). Not only is this interaction essential for efficient

export of viral mRNA from the nucleus, but it also contributes to

KSHV-associated tumorigenesis (96). In the case of BK

polyomaviruses, the process of virus replication itself indirectly

activates ATM, ATR, and downstream signaling responses, which

are required for optimal virus replication (97) (Table 1). Interestingly,

the adenoviral E1A protein is required for facilitating viral genome

replication, but as a consequence of its virus-associated activity also

induces massive cellular DNA synthesis during S-phase, which

triggers significant replication stress and the activation of DDR

signaling (98). An additional consequence of these virus-directed
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activities is the production of ROS. EBV-encoded EBNA-1 is known

to induce host genome instability, DNA damage, and DDR signaling

by inducing significant amounts of ROS production (39). EBNA-1-

mediated ROS production is thought to promote cellular

transformation and the establishment of EBV persistence (39). This

is further supported by observations that EBV-mediated B cell

immortalization is promoted by oxidative stress and hindered by

antioxidants (99, 100) (Table 1). Similarly, influenza A virus (IAV)

infection is associated with generating high levels of ROS that

contribute to severe pathogenesis (101). ROS are generated as a

byproduct of the interaction between the IAV M2 ion channel and

mitochondrial membranes (53, 54). Given that M2 modulates

epithelial ion channel functions, which are known to influence IAV

replication (55), it is likely that M2-generated ROS confers a

replication advantage.
Concluding remarks and
emerging trends

Future studies investigating the interplay between viruses and

host DDR will continue to uncover novel mechanisms used to

hijack these pathways and the functional outcomes for virus

replication. Importantly, these studies will inevitably yield

valuable insights into how host repair pathways function in

general and how dysregulation of these pathways leads to human

disease. In the last decade alone, research into virus-DDR

interactions has led to major discoveries regarding the

interconnectedness of DDR and innate immune responses, how

virus-mediated subversion of DDR leads to carcinogenesis, and

novel facets of DDR and cell cycle regulation. Furthermore, a more

comprehensive understanding of virus-DDR interactions can

inform the development of therapeutics that exacerbate defects in

DNA repair to promote “synthetic lethality” and induce apoptosis
Frontiers in Virology 06
of virus-infected or carcinogenic cells (102, 103). Thus, therapeutic

interventions that target the virus-DDR nexus could not only

suppress virus replication but alleviate the onset and severity of

several associated diseases.
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