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Introduction: Formore than 40 years, outbreaks of ebolavirus disease have been

documented, but the natural reservoir(s) of ebolaviruses remain unknown.

However, recent studies provide evidence that the Angolan free-tailed bat

(Mops condylurus), an insectivorous bat belonging to the family Molossidae, is

a likely ebolavirus reservoir. Being a heterothermic species, M. condylurus bats

are highly tolerant to variations in ambient temperatures, and therefore are

capable of living under a broad range of climatic and environmental conditions

by using adaptive thermoregulation. Body core temperatures as low as 12.0°C

have been measured during winter, while increased body temperatures were

observed in their hot roosts or during flight, reaching temperatures typical of

fever in most other mammalian species.

Methods: Here, we investigated the impact of temperature fluctuations between

27°C and 42°C on Ebola virus (EBOV) survival and replication kinetics in cells from

M. condylurus using qRT-PCR.

Results: We found that primary cells derived from M. condylurus, similar to the

bats in their natural environment, were highly tolerant to temperature variations.

EBOV replication was temperature-dependent, showing a strong reduction of

replication efficiency at low temperature.

Discussion: We therefore conclude, that heterothermy might be involved in

balancing the level of EBOV replication and thereby be a key factor for tolerating

EBOV infections in vivo.
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Introduction

Over the past 50 million years and within the very diverse order

“Chiroptera”, bats have evolved various mechanisms of temperature

tolerance, such as dropping their body temperature during torpor

or adaptation to high ambient temperatures. Bats of one Africa-

based species, M. condylurus (Angolan free-tailed bat) are capable

of enduring a broad range of climatic and environmental (semi-arid

to mesic) conditions using adaptive thermoregulation (1). Torpor,

historically viewed as an energy-saving technique of bats in

temperate and subarctic climates, is also common in several

tropical bat families (2). M. condylurus bats were shown to be

thermolabile with daily bouts of torpor during winter and summer,

with body temperatures closely conforming to ambient

temperatures, and core temperature measured to be as low as

12.0°C during winter (3). At night, these bats generally remain

euthermic with mean body temperatures between 30-37°C at

ambient temperatures between 15-35°C (4). During the day,

torpor is commonly employed at lower ambient temperatures

with body temperatures being as low as 20°C at 15°C ambient

temperature (4). At this temperature (15°C), energy expenditure of

torpid bats during the day was shown to be only 17% of nontorpid

M. condylurus bats at night (4). Reduced body temperatures and

metabolic rates may suppress immune responses and reduce virus

replication rates, thereby delaying virus clearance from bat

populations (5, 6).

Mean temperatures in roosts ofM. condylurus bats were shown

to exceed 40°C for over six hours with maximal temperatures above

60°C for up to two hours (7). This bat species uses hot roosts with

ambient temperatures that are lethal to many other bats (4),

allowing their body temperature to rise in order to save energy,

that would otherwise be spent on cooling mechanisms (8). High

ambient temperatures were shown to result in increased body

temperatures up to 43°C (4).

The minimum flight temperature of M. condylurus bats was

determined to be approximately 35°C (7). All individuals raise their

body temperature endogenously in the late afternoon in preparation

for nocturnal foraging activity with mean body temperatures of bats

emerging from the roost of 40.5 ± 1.1°C (7). These body

temperatures during bat flight reach the temperature typical of

fever in most non-bat mammals (38°C-41°C), resulting in increased

metabolic rates, estimated to be 15–16-fold higher than the resting

metabolic rate, and possibly stronger immune responses (9). In M.

condylurus bats, viruses are exposed to low temperatures during

torpor as well as high temperatures during the day in hot roosts and

during flight at night. Viruses and their biochemical processes must

withstand these temperature extremes without resultant destruction

or elimination.

So far, few studies have provided data about the impact of

varying temperatures on viruses and their replication, such as

adenovirus type 5 (Ad5) (10), highly pathogenic avian influenza

virus (HPAIV) (11) and EBOV, which was shown to replicate at

41°C in different bat cells (12). Low virus replication rates were

reported for Japanese encephalitis virus (JEV) and rabies virus

(RABV) at low incubation temperatures (13–15), while the impact
Frontiers in Virology 02
of low incubation temperatures on bat cells and EBOV replication

kinetics have not been described.

Outbreak investigations and several epidemiological studies

provide evidence that bats are most likely the natural reservoir

hosts for ebolaviruses (16, 17). For several outbreaks, there is

anecdotal evidence of index patients coming into contact with

bats prior to disease (16, 18, 19). Various species of wild-caught

bats have been tested for EBOV seroreactivity, with positive results

in 307 individual bats from at least 17 species in Africa and Asia (16,

20–28). In contrast to fruit bats, insectivorous bats have received

sparse attention in ebolavirus research (29). The discovery of a new

ebolavirus, Bombali virus (BOMV), in M. condylurus bats in Sierra

Leone (30) and repeated detection of BOMV RNA inM. condylurus

bats in Kenia (31) and Guinea (32) indicate, that further

investigation into the role of this microbat in the ecology of

ebolaviruses is needed. Over the years, there has been a limited

number of studies providing evidence that bats of the species M.

condylurus might not only be a natural reservoir for BOMV, but

might also be a reservoir host for EBOV (18, 22, 33).M. condylurus

bats inoculated with EBOV show high and disseminated viral

replication and infectious virus shedding, without any clinical

disease, while other filoviruses fail to establish productive

infections (34). Additionally, a placental-specific tissue tropism in

M. condylurus bats and a unique ability of EBOV to traverse the

placenta, infect and persist in fetal tissues, which results in distinct

genetic signatures of adaptive evolution, was evidenced. Persistent

EBOV infection for 150 days in lung primary cells derived from M.

condylurus, without resultant selective pressure leading to virus

mutation, indicated the intrinsic ability of EBOV to persist in this

bat species (35). These findings together demonstrate plausible

routes of horizontal and vertical transmission and potential viral

persistence in M. condylurus bats, which are expectant of

reservoir hosts.

Depending on the cell type, several different factors e.g. C-type

lectins, heparan sulfate, TIM-1 or Axl are involved in filovirus

attachment to their host cells (36). A key component of the filovirus

entry process is the integral membrane protein Niemann-Pick C1

(NPC1), found in late endosomes/lysosomes (36) and utilized in the

viral entry process by the glycoproteins (GP) of EBOV (37–39),

Marburg virus (MARV) (40) and Měnglà virus (MLAV) (41). M.

condylurus-derived cell cultures typically display low NPC1

expression levels compared to cells from a highly symptomatic

host, such as humans (42), and infection with EBOV revealed a

correlation between NPC1 receptor expression levels and virus

titers (35, 42).

In this study we investigated the impact of temperature

fluctuations at these extreme limits in cells from M. condylurus

bats on NPC1 receptor expression levels and EBOV survival and

replication. We found that primary cells from M. condylurus bats

tolerated low and high temperatures in contrast to other

mammalian cell cultures. NPC1 receptor expression levels were

notably higher at low temperatures and EBOV replication rates

were temperature-dependent, showing a strong reduction of EBOV

replication efficiency at low temperature. Thus, heterothermy of

M. condylurus bats might be involved in balancing the level of virus
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replication, and thereby may be a potential key factor in this

conceivable reservoir species for tolerating EBOV infections in vivo.
Materials and methods

Ethics statement

Animal work was performed with the permission of the

Laboratoire Central Vétérinair, Laboratoire National d’Appui au

Développement Agricole (LANADA), Bingerville, Ivory Coast (No.

05/virology/2016). The animal care and use protocol adhered with

the Ethics Committee of LANADA and National Ethics Committee

for the Research (CNER). Consent existed to measure the

temperature in the bat roost from the owners of the residence in

Koffikro Village.
Measuring ambient temperature in
bat roost

Ambient temperature variations inside and outside a roost of

M. condylurus bats were determined measuring the temperature

every 30 min. An iButton logger (Maxim Integrated) was placed for

five days in a bat roost under the roof of a house in Koffikro village,

Ivory Coast (geographic coordinates: N 05° 19.340´; W 003°

49.431´) in November 2016.
Cell culture

All used cell cultures were summarized in Table 1. The

establishment of microbat cell cultures, media and culture

conditions were previously described in detail in Bokelmann et al.

(42). Control cells (HEK293, HeLa and Vero E6) were cultured in

DMEM (Sigma-Aldrich, D6546) containing 5% (for infection

experiments) or 15% FBS (Biochrom, 1318D), 2 mM L-glutamine

(Gibco™, 25030-081), 50 U/ml penicillin and 50 µg/ml

streptomycin (Pen-Strep, Gibco™, 15140122).
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Cell growth and viability at
different temperatures

All cells were grown in six-well plates and incubated for 96 h at

27°C, 37°C or 42°C with 5% CO2, whereby 37°C served as a control

temperature generally used for mammalian cell lines. For

incubation at 17°C we operated an incubator (Small incubator,

Hartmann) inside a cooling chamber (4°C). Morphological changes

and adherence of cells were monitored using phase contrast

microscopy (EVOS™ XL Core, Life Technologies or Eclipse

TS100, Nikon/DS-Fi2 Microscope Camera, Nikon). Cell growth

and viability were investigated for 96 h at 27°C, 37°C or 42°C for the

same microbat cell cultures and HEK293 cells as control. For this,

the cell number and viability were determined by counting triplicate

wells for each cell isolate for each condition after 48 and 96 h, using

0.4% trypan blue stain and an automated cell counter (EVE™,

NanoEnTek), and presented as geometric means with geometric

standard deviations.
Infection and viral RNA quantitation

Infectious work with Ebola virus (EBOV; strain Makona, C05;

adaptation: 2 passages on MoKi cells) and Marburg virus (MARV;

strain Musoke) was performed in the biosafety level 4 (BSL4) facility

at the Robert Koch Institute, according to standard operating

protocols (SOPs). HEK293, MoKi, MoBra Prim and MoLu Prim

cells were seeded in six-well plates in triplicates and one plate per

cell culture and per temperature (12 plates in total) was incubated

over night at 27°C, 37°C or 42°C with 5% CO2. Cells were infected

with EBOV with 0.6 TCID50/cell or with MARV with 0.02 TCID50/

cell for 1 h at 27°C, 37°C or 42°C. Cells were washed twice with PBS,

before 3 ml cell culture medium was added. For EBOV and MARV

quantitation at different constant temperatures, 140 µl of

supernatant per well was collected in AVL Buffer (19073, Qiagen)

after 96 h incubation at 27°C, 37°C or 42°C. For temperature change

experiments with MoLu Prim and MoBra Prim cells, incubation

temperature was changed to 37°C after seven days of incubation at

27°C, while control cells were incubated continually at 27°C or

37°C, respectively. Supernatants were collected in AVL Buffer on

day 0, 4, 7, 9, 11, 14, 16, 18 and 21. For cells with changing

incubation temperature, sampling started on day 7. In an

independent temperature change experiment with MoLu Prim

cells over 21 days, temperature was changed from 27°C to 37°C

(day 4), 37°C to 27°C (day 7), 27°C to 42°C (day 11), 42°C to 27°C

(day 14) and 27°C to 37°C (day 18), including three washes with

PBS on day 7 and 14, and the same sampling regimen as described

above for temperature change experiments. In further infection

experiments, we compared EBOV replication kinetics in MoLu

Prim and MoBra Prim cells at 42°C with sampling on day 4 and 21,

and MoKi_LT cells (MoKi Low Temperature, MoKi cells after 147

days at 27°C) and MoKi cells at 27°C, with sampling 1 h and 96 h

after inoculation. Samples in AVL buffer were mixed with an equal

volume of 100% ethanol before removing from BSL4 according to

SOPs. Viral RNA was extracted using the QIAamp Kit (Qiagen)

according to the manufacturer’s instructions. Viral RNAs were
TABLE 1 List of cell isolates used and origins.

Cell Culture Origin Details

Vero C Kidney immortalized

HeLa H Cervix immortalized

HEK293 H Kidney immortalized

MoKi MC Kidney immortalized; cloned

MoKi_LT
MC Kidney

immortalized; cloned;
147 days at 27°C

MoBra Prim MC Brain primary

MoLu Prim MC Lung primary

MoTra Prim MC Trachea primary
MC, Mops condylurus; H, Human; C, Chlorocebus sp.
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quantified by qRT-PCR (Applied Biosystems™ 7500) using the

AgPath-ID™ One-Step RT-PCR Kit (4387391, Thermo Fisher).

EBOV primers/probe and cycling conditions were described

previously (42).

The nucleotide sequence of the L gene of MARV, strain

Musoke, has been determined (43). The L gene has a single long

open reading frame encoding a polypeptide of 2330 amino acids

that represents the viral RNA-dependent RNA polymerase. For

MARV qRT-PCR, primers/probe targeted the L gene

(forward: AAGCATTCCCTAGCAACATGATGGT; reverse:

GTGAGGAGGGCTATAAAAGTCACTGACATG; probe: FAM-

CCTATGCTTGCTGAATTGTGGTGCCA-BHQ1). For each

PCR, 3 µl of RNA was added to 22 µl of master mix containing:

160 nMMARV-FW, 252 nMMARV-RV and 68 nMMARV-probe,

1 µl detection enhancer, 1 x RT-PCR buffer and 1 x RT-PCR

enzyme mix. Samples were incubated for 15 min at 45°C, 10 min at

95°C followed by 45 cycles of 20 sec at 94°C and 30 sec at 59°C.

Viral copy numbers for each sample were calculated from a

standard curve, which was produced using EBOV/MARV in vitro

transcripts (concentrations ranging from 101-107 copies).
Statistics

For statistical analyses we used the software R (version 4.1.2)

and GraphPad Prism (version 9.1.0). The latter was used for figure

visualization. Differences in replication rates were calculated as

geometric mean with geometric standard deviations of triplicates

in log10(x). Data normality was evaluated by visual inspection (e.g.

qqplots) and the Shapiro-Wilk test. Data was log10(x) transformed

and either Welch t-tests or Welch’s ANOVA were used to compare

sample distribution of two or more independent groups

(respectively). Games-Howell test was used as post-hoc analysis

using Bonferroni for multiple comparison adjustment and reported

as p-adjusted symbols. For paired samples, repeated-measures t-

tests were used.
Confocal microscopy

NPC1 receptor expression levels inMoKi andMoKi_LT cells were

characterized using confocal microscopy as described before (42).
Results

Wide fluctuations of ambient temperature
in M. condylurus roost

To determine which temperatures are relevant to investigate the

influence on cell growth and EBOV replication, temperatures inside

the bat roosts were measured. In November 2016, ambient

temperatures in south-eastern Ivory Coast fluctuated between

32°C during the day and 23°C during the night. Measured

ambient temperatures were confirmed using weather history data

(44). The temperatures in the roost of the bats, that the original cell
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cultures were derived from, varied between 42°C during the day and

25°C during the night, at 57-77% relative humidity (Figure 1). The

corrugated metal roof likely contributed to a strong temperature

increase in the bat roost during the day.

Based on the local temperature in Ivory Coast, the measured

temperatures in the bat roost and the special thermoregulation of

M. condylurus bats, 27°C and 42°C were selected as relevant

temperatures for our studies.
M. condylurus cells tolerate a broad range
of temperatures

For cell growth and infection experiments with EBOV and

MARV, we selected kidney, trachea, lung and brain cell cultures

(MoKi, MoTra Prim, MoLu Prim and MoBra Prim) from M.

condylurus, as well as HEK293, HeLa and Vero E6 cells as

controls (Table 1).

All M. condylurus cells (Figure 2, red box) tolerated

temperatures ranging from 27°C to 42°C without detachment. At

42°C, cells were enlarged in comparison to cells grown at 37°C. At

27°C only MoKi cells showed an altered morphology, with rounded

cells. Temperature tolerance of MoTra Prim cells was tested at 17°C:

After 96 h at this temperature, accumulations of cytoplasmic

vesicles appeared (Supplementary Figure S1), while cell viability

was determined to 91%. After passaging and incubation at 37°C for

another 24 h, these intracellular vesicles disappeared.

None of the other mammalian cells (HEK293, HeLa and Vero)

tolerated 27°C or 42°C unaltered: the majority of non-bat cells

detached from the cell culture surface, and only few areas with

adherent cells could be examined (Figure 2). In HeLa and Vero cell

cultures, no adherent cells were observed after 96 h at 42°C. Vero

cells did not detach at 27°C, but formed multinucleated syncytia.

Cell growth and viability of microbat and human cells at 27°C,

37°C and 42°C were observed for 96 h (Supplementary Figure S2).

Most HEK293 cells were detached after 72 h at 27°C and 42°C.

Therefore, also the HEK293 cells in suspension were sampled for

determination of cell number and viability. Within 96 h, all cell

cultures showed cell division at 27°C, 37°C and 42°C, with viability

values between 80-97%. MoLu Prim and MoBra Prim cells showed

the highest viability of all cell cultures at all temperatures. Although

HEK293 cells lost adherence, they were viable within the tested

period of time, and proliferated in suspension.

In summary, primary and immortalized cells fromM. condylurus

showed higher tolerance to lower and higher incubation temperatures

than HEK293, HeLa and Vero cells. Cells remained adherent and

showed high viability at 27°C, 37°C and 42°C.
Long-term adaptation and NPC1 receptor
expression level changes at 27°C

Cloned MoKi cells were chosen to investigate possible

temperature adaptations, because these cells show consistent and

reproducible characteristics (42) without changes of NPC1 receptor

expression levels through passaging. The cells were incubated at
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27°C for 147 days, reached 100% confluence every 10-14 days and

were passaged eleven times in total. The temperature-adapted cells

were designated MoKi_LT (MoKi Low Temperature) shown in

Supplementary Figure S3.

NPC1 receptor expression levels of MoKi and MoKi_LT cells

were compared using confocal microscopy (Figure 3). MoKi_LT

cells showed notably higher NPC1 receptor expression levels than

MoKi cells, with highest amounts of NPC1 receptor in the regions

of the nuclei (Figures 3C, D).
EBOV replication rates at constant
temperatures of 27°C, 37°C or 42°C

HEK293, MoKi, MoBra Prim and MoLu Prim cells were

incubated at 27°C, 37°C or 42°C after infection with EBOV for 96

h. To investigate, whether potential temperature effects on virus

replication are also observed for other filoviruses, MoKi cells were

infected with MARV.

The impact of temperature on filovirus replication is shown in

Figure 4. Virus replication of EBOV and MARV was notably lower

at 27°C compared to 37°C in all tested cell cultures. EBOV

replication in HEK293 cells was significantly lower at 27°C and

42°C compared to 37°C. The replication at 42°C in MoKi cells was

significantly higher than in HEK293 cells. Incubation temperatures

of 42°C only led to a small reduction of EBOV replication efficiency

in MoKi and MoBra Prim cells compared to HEK293 cells. EBOV

replication in MoLu Prim cells at 42°C was on a similar low level as
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at 27°C or 37°C. Interestingly, the virus replication of MARV in

MoKi cells at 42°C was significantly lower than for EBOV.

To investigate, whether temperature adaptations in MoKi_LT

cells have an effect on EBOV replication, virus replication in these

cells was compared to replication in MoKi cells (Supplementary

Figure S4). EBOV replication rates in MoKi_LT cells at 27°C were

slightly higher than in MoKi cells.
High impact of temperature changes on
EBOV replication kinetics

We further investigated in MoLu Prim and MoBra Prim cells,

whether a temperature change to 37°C after seven days incubation at

27°C results in increased EBOV replication. Temperature changes

had a strong impact on EBOV replication (Figure 5). Virus

replication in MoLu Prim cells incubated at 27°C was markedly

lower than at 37°C, with 2.9 x 106 compared to 1.7 x 108 EBOV RNA

copies/ml, respectively, at day 21 post-infection. Virus replication in

MoBra Prim cells was generally higher than in MoLu Prim cells,

reaching a similar level of 5.7 x 108 EBOV RNA copies/ml for both

temperatures between day 16 and 18. A change of incubation

temperature from 27°C to 37°C on day 7 resulted in increases of

virus replication in MoLu Prim and MoBra Prim cells, compared to

control cells, incubated continuously at 27°C (Figure 5, dashed line).

For comparison of virus replication rates the fold-amplification

of viral RNAs between day 7 and 11 (96 h) post-infection was

determined (Table 2).
FIGURE 1

Ambient temperature and humidity in bat roost. Temperature (orange curve) and humidity (blue curve) were measured every 30 min for 5 days in a
bat roost in Koffikro village, Ivory Coast. Grey boxes: Night phases (8 pm to 8 am).
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At a constant incubation temperature of 27°C, the fold-

amplification of EBOV RNA copies was log10(x)=0.22 in MoLu

Prim cells and log10(x)=0.68 in MoBra Prim cells. The increase of

incubation temperature to 37°C resulted in a fold-amplification to

log10(x)=1.46 for MoLu Prim and log10(x)=1.95 for MoBra

Prim cells.

The increase in incubation temperature from 27°C to 37°C also

resulted in increased virus replication rates in EBOV- as well as

MARV-infected MoKi cells (data not shown). However, MARV-
Frontiers in Virology 06
infected MoKi cells did not tolerate the temperature switch as well

as EBOV-infected cells, and detached completely from the cell

culture surface. HEK293 cells did not tolerate incubation at 27°C,

and most cells detached by day 4 post-infection with EBOV. After

the temperature switch from 27°C to 37°C, all HEK293 cells

detached and an increase of virus replication could not be observed.

In contrast, MoLu Prim and MoBra Prim cells cultured for 21

days post-infection with EBOV at 27°C, 37°C (Figure 5) or 42°C

(Supplementary Figure S5), remained adherent and virus
FIGURE 2

Cell growth of different cells at 27°C, 37°C and 42°C. All selected M. condylurus cells (red box) tolerated temperatures ranging from 27°C to 42°C
without detachment. None of the selected control cells from other mammalians (HEK293, HeLa, Vero) tolerated 27°C or 42°C unaltered. Phase
contrast microscopy: 400 x; 96 h incubation at tested temperature. Green bar: Viability of cell cultures (geometric means calculated from
three wells).
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replication could be measured at all temperatures. Even after

changing incubation temperatures five times (Supplementary

Figure S6), cells remained adherent and divided even after day 21

in culture.
Discussion

M. condylurus bats are highly tolerant to variations in ambient

temperatures and are therefore capable of utilizing a broad range of

climatic and environmental conditions using adaptive

thermoregulation (1, 3, 4). This temperature tolerance in vivo

translated to cell cultures derived from M. condylurus in vitro. In

contrast to other mammalian cells, M. condylurus cells tolerated

temperatures from 27°C to 42°C for up to 21 days, without

morphological changes in primary cells at 27°C, and a slight

change towards enlarged cells at 42°C. The cells remained

adherent and showed uniformly high viabilities. Cell enumeration

and viability testing of HEK293 cells revealed, that cells were still

viable and proliferated until the end of the experiment. However,

detachment of cells and disruption of cell-matrix interactions

induces apoptosis (anoikis) (45–47), so that cell death of HEK293

cells in suspension can be assumed. Vero cells remained adherent at

27°C, but formed multinucleated syncytia, and detached at 42°C,

showing that these cells were not tolerant to the same temperature

range as M. condylurus cells.

Few studies have reported experimental data with bat cells

incubated at temperatures above 37°C. In the HypNi/1.1 cell line

derived from Hypsignathus monstrosus, the mean percentage of
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viable cells declined to below 20% after 72 h at 41°C, while the

REO5 cell line from Rousettus aegyptiacus tolerated this incubation

temperature (12).

While HEK293 cells showed significantly lower EBOV

replication rates at 42°C as compared to 37°C, little or no

reduction of EBOV replication was observed for all tested cell

cultures from M. condylurus. Upon infection with EBOV and

incubation at 37°C or 41°C respectively, only small differences in

virus replication rates had also been observed in HypNi/1.1 and RE06

cells (12). Another study showed, that incubating several human cell

types at a febrile temperature of 39.5°C markedly reduced viral

replication of adenovirus type 5 (Ad5) (10). The tolerance of bat

cells, but not human cells, to high temperatures might explain these

observations. At 96 h post-infection of HEK293 cells, most cells were

detached and possibly several cellular components and processes that

are essential for virus replication were lacking.

Also, EBOV replicated constantly at higher temperatures for

periods of up to 21 days. For HPAIV, heat inactivation of the viral

RNA polymerase was observed at temperatures above 38°C, although

avian viruses are adapted to higher temperatures (11). Compared to

this, the viral RNA polymerase and other viral components required

for EBOV replication were highly tolerant to high temperatures. In

contrast, the MARV replication rate at 42°C in MoKi cells was

significantly lower than the EBOV replication rate, so that a lower

temperature tolerance of MARV (at least in MoKi cells) may be

assumed. In M. condylurus as a potential natural reservoir, EBOV

would frequently be exposed to high body temperatures in vivo: in the

hot roosts during the day and during flight at night. Although not

observed in vitro, the fever-like temperatures for humans during
B

C D

A

FIGURE 3

NPC1 receptor expression levels of MoKi and MoKi_LT cells. NPC1 receptor expression in MoKi cells (A, B) and MoKi cells after 147 days at 27°C
(MoKi_LT, C, D). Stained NPC1 receptor (red) using primary mouse monoclonal antibodies against NPC1 (ab55706, abcam). Stained cell nuclei (blue)
using ROTI Mount FluorCare DAPI (HP20.1, Carl Roth). B and D: without stained nuclei.
frontiersin.org

https://doi.org/10.3389/fviro.2024.1392583
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Bokelmann et al. 10.3389/fviro.2024.1392583
flight and in the hot roosts of M. condylurus bats in vivo (7) might

contribute to controlled virus replication by increased metabolic rates

and immune responses (9). Because reservoir hosts and their viruses

coevolve, tolerance to high temperatures of all cell cultures from M.

condylurus and temperature tolerance of EBOV, but not MARV,

provides additional evidence, that EBOV and M. condylurus bats

coevolved and that this bat species is likely to be a natural reservoir

for ebolaviruses.

The role of torpor in infection dynamics of pathogens is largely

unstudied (48). At low body temperatures during torpor or

hibernation in bats, low virus replication rates of Japanese

encephalitis virus (JEV) and rabies virus (RABV) were observed

(13–15). For HPAIV, a significant inhibition of virus replication was

detected for temperatures below 34°C in chicken fibroblast cells (11).

The impact of low temperatures on virus replication kinetics of

filoviruses has not been described previously. Virus replication rates

of EBOV andMARV in all cell cultures at 27°C were noticeably lower

than at 37°C.M. condylurus bats are thermolabile, with daily bouts of

torpor during winter and summer, with body temperatures closely

conforming to ambient temperatures (3). An incubation temperature

of 27°C can be assumed as bat body temperature for ambient
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temperatures between 20-25°C (4). At a 27°C body temperature or

lower, we expect reduced virus replication rates in these bats. Most

biological reactions proceed with a temperature coefficient (Q10) ∼ 2

or 3, so that with every 10°C increase in temperature, the reaction rate

approximately doubles or triples (49). The reduction of body

temperature from 37°C to 27°C presumably results in significant

reductions of metabolic rates in M. condylurus, which can also have

broad effects on the immune functions of the bats (50). Reduced body

temperatures and metabolic rates may suppress immune responses

and delay viral clearance from bats (5, 6).

The significance of NPC1 in the endolysosomal membrane of

MoKi cells for EBOV infection was recently confirmed (51). In

MoKi cells adapted to 27°C for 21 weeks (MoKi_LT) we observed

higher NPC1 receptor expression levels compared to MoKi cells at

37°C. At low temperatures, many animals reduce the cholesterol

content of the plasma membrane (52), to ensure fluidity for cellular

functions (53, 54). The intracellular cholesterol transport between

plasma membranes, the endoplasmic reticulum (ER), Golgi

apparatus and other organelles is complex and mediated by

carrier-mediated diffusion, transport vesicles or membrane

contacts (55). Cholesterol can be internalized from the plasma
FIGURE 4

EBOV and MARV replication at different constant temperatures. Log-transformed viral RNA copy numbers/ml in supernatants of infected cell
cultures after 96 h of incubation at 27°C (blue), 37°C (light red) or 42°C (dark red) determined by qRT-PCR. Infection with EBOV: HEK293, MoKi,
MoBra Prim and MoLu Prim. Infection with MARV: MoKi. Horizontal lines indicate the geometric mean calculated from three replicates. Statistical
analysis: Welch’s ANOVA followed by Games-Howell posthoc tests were used to compare EBOV replication in different temperature conditions per
cell line. Welch two sample t-tests were used to compare replication at 42°C of EBOV (HEK293- and MoKi cells) and MARV (MoKi cells). Significant
differences shown (**** = p ≤ 0.0001, *** = p ≤ 0.001, ** = p ≤ 0.01).
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membrane, reach endosomes by endocytosis, transported to the ER

or back to the plasma membrane (56). With the current data we can

only speculate about the accumulation of NPC1 in the nuclear

region. One hypothesis is that higher NPC1 receptor expression

levels in MoKi_LT cells, especially in the nuclear regions, might

indicate an enhanced cholesterol transport to the ER via the endo-

lysosomal pathway at lower temperatures. Pharmacologically

induced endolysosomal cholesterol imbalance was recently shown

to impair EBOV infection in MoKi cells (51). Another hypothesis is,

that increased NPC1 receptor expression levels at 27°C and

potentially changing cholesterol levels in the endolysosomal

system might also be evolved mechanisms in M. condylurus cells

to facilitate a sufficient level of EBOV replication when bat’s body
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temperatures are low. Although NPC1 receptor expression levels in

MoKi_LT cells were noticeably increased, only a small increase in

EBOV replication compared to MoKi cells was detected, which

might be reasoned with generally low EBOV replication at 27°C.

How quick NPC1 receptor expression levels might adapt to

changing temperatures and potentially influence EBOV

replication kinetics, should be addressed in future studies.

Upon experimental inoculation of RABV in insectivorous bats

of the species Tadarida brasiliensis andMyotis lucifugus, little or no

virus replication was detected at low body temperatures (at 5°C or

10°C ambient temperature) (15). When inoculated animals were

transferred to 29°C, virus replicated and reached detectable levels in

several tissues (15). To investigate, if EBOV can persist for longer

periods at low temperatures and if temperature-dependent

reactivations with high virus replication rates can be observed, we

performed experiments with changing incubation temperatures. At

27°C, the EBOV replication was detectable, but low. Increasing the

temperature from 27°C to 37°C resulted in temperature-dependent

increases of EBOV replication in all cell cultures from M.

condylurus. Heterothermy of M. condylurus with varying body

temperatures might result in temporarily limited virus replication

capacities in these bats. Torpor typically reduces virus replication

rates, lengthens incubation periods and provides an efficient

mechanism for overwintering of some infections (48). With

recorded body temperatures in M. condylurus bats as low as 12°C
FIGURE 5

Impact of temperature changes on EBOV replication kinetics. Log-transformed viral RNA copy numbers/ml in supernatants of infected cells
determined by qRT-PCR (geometric means with geometric standard deviations calculated from three wells). Incubation of MoLu Prim (orange) and
MoBra Prim cells (violet): continuously at 27°C (triangle), continuously at 37°C (rhombus), temperature change from 27°C to 37°C on day 7. (asterisk,
dashed line).
TABLE 2 Fold-amplification of EBOV RNA copy numbers at
different temperatures.

Cell
Culture

Incubation
temperature

[°C]

Fold-amplification of EBOV
RNA copy numbers

[log10(x)]

MoLu Prim 27 0.22

MoLu Prim 27/37 1.46

MoBra Prim 27 0.68

MoBra Prim 27/37 1.95
For calculation, the viral copy numbers between day 7 and 11 post-infection were considered.
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in winter (3), presumably no, or only very little, virus replication

can occur in some seasons of the year. At 17°C, we observed the

formation of large amounts of intracellular vesicles in primary

trachea cells from M. condylurus, which disappeared after

passaging and incubation at 37°C. Further investigations have to

unravel the nature and function of these vesicles. The presence of

many vesicles can result in a reduced volume of cytoplasm and

thereby increase the cell-surface-to-volume ratio, which might help

cells to survive under stress conditions (57). If EBOV inclusion

bodies, which are the cytoplasmic sites of nucleocapsid formation

and RNA replication in the virus life cycle (58–60), can form under

these conditions or if the high quantity of intracellular vesicles

prevents EBOV replication completely at 17°C has to be

investigated in future studies.

In summary,M. condylurus cells were highly tolerant to a range

of incubation temperatures, while other mammalian cells did not

tolerate such a broad temperature range beyond 37°C, and

predominantly detached from the cell culture surface. We

observed a high impact of temperature on filovirus replication

kinetics with a strong reduction of EBOV replication efficiency in

all cells at 27°C. We further observed higher NPC1 receptor

expression levels in cells from M. condylurus incubated long-term

at lower temperatures, which was shown to correlate with higher

EBOV replication rates. Temperature tolerance and relatively high

replication rates for EBOV, but not MARV, provides additional

evidence, that EBOV and M. condylurus bats coevolved and that

this bat species is a reservoir host for ebolaviruses, but not MARV.

Fluctuations in the body temperature ofM. condylurus bats could be

a potential key factor for tolerance to EBOV infection in vivo and

might be involved in balancing the level of virus replication and

establishing viral persistence in these bats. To investigate the

significance of these temperature effects in vivo and to determine

the general role of these bats for the ecology of ebolaviruses,

experimental infections of M. condylurus bats are required.
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Laboratoire National d’Appui au Développement Agricole
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