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Chikungunya virus (CHIKV) is a vector-born alphavirus responsible for

chikungunya fever with clinical manifestation of polyarthritis transmitted by

Aedes aegypti and Aedes albopictus. Establishing viral pathogenesis needs host

machinery modulation, and the microRNAs (miRNA) modulate host cellular

machinery to establish the infection or inhibit viral replication. miRNAs are the

small noncoding RNA that control the gene expression. They are essential in cell

differentiation, growth, development, and apoptosis. It also affects disease

progression, cancer, and viral infection. CHIKV infection causes differential

expression of miRNA, and miRNA has target genes involved in different cellular

functions. These target genes may be crucial in CHIKV replication and cell

growth. Suppression or overexpression of these miRNAs may have been linked

with CHIKV pathogenesis by regulating immune and signaling pathways.

Identification of biomarkers in disease progression through the study of

circulating miRNAs during CHIKV infection is an emerging field. Therefore,

understanding miRNAs’ differential expression and function during CHIKV

infection is essential. The detailed studies on the miRNA-mediated regulatory

network will provide new ways to develop miRNA-based therapies.
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Introduction

Chikungunya virus (CHIKV) is an arthropod-borne virus belonging to the family Togaviridae

and the genus Alphavirus (1, 2). The CHIKV genome comprises a single-stranded, positive-sense

RNAmolecule with a length of ~11.8 kb, and the genome encodes for two Open Reading Frames

(ORFs). The precursor polyproteins of the non-structural proteins (nsP1 to nsP4) are encoded in

the first ORF at the 5′ end (1). The second ORF is located at the 3′ end, encoding the structural
proteins: capsid (C), envelope proteins (E1, E2, E3), and 6K (3). The envelope glycoproteins E1

and E2 have a role in membrane fusion and viral entry (4, 5).

CHIKV is a disease primarily characterized by the onset of fever, arthralgia, nausea,

vomiting, rash, and myalgia. Although the symptoms subside within a week, certain
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patients may experience prolonged joint pain (6). Patients with

comorbidities, specific genetic disorders, and elderly individuals are

more susceptible to developing acute disease conditions with a

higher mortality rate (7).

The primary vectors of CHIKV transmission are Ae. aegypti. And

Ae. Albopictus (8, 9). According to the phylogenetic analysis, based on

geographic origin, three different genotypes emerged from the CHIKV

African lineage, i.e., East/Central/South African (ECSA), West African

(WA), and Asian. The East/Central/South African (ECSA) further

diverged into the sublineage Indian Ocean lineage (IOL) (10, 11).
Introduction to the microRNA

In the model organism Caenorhabditis elegans, Lee and colleagues

first discovered the miRNA lin-4 in 1993 (12). miRNAs are small,

noncoding RNAs essential in regulating gene expression by binding to

the specific RNA post-transcriptionally (13). The miRNA targeting

depends on the base pairing between seed regions, which is 2–7

nucleotides at the 5′ end of mature miRNA with 3′ untranslated
regions (UTRs) of target mRNAs (14, 15). RNA polymerase is involved

in the transcription of miRNA genes to produce the primary miRNA

(pri-miRNA) (16). Pri-miRNA has 80-nt hairpin structures with a

large terminal loop and 32 bp imperfect stem, recognized by Dgcr8,

RNA binding protein, and binds to GGAC and other pri-miRNA

motifs (17). Drosha cleaves the primarymiRNA, producing a precursor

miRNA (pre-miRNA) of ∼a 70-nt hairpin molecule with a 3’ overhang

(18). The exportin-5 transports pre-miRNAs produced in the nucleus

into the cytoplasm by a Ran-GTP-dependent mechanism (19). In

cytoplasm Dicer, a second RNase II enzyme with TRBP removes the

terminal loop from the pre-miRNA to produce the mature double-

stranded ~22 bp miRNA intermediates with two nucleotide overhangs

at each 3′ end (20). One strand (Guide strand) from the duplex RNA is

introduced into the RNA-induced silencing complex (RISC) complex,

having four different Argonaute proteins (AgoI- VI), of which Ago II

protein has endonuclease activity and the ability to break bound target

mRNA. Further, depending onmiRNA andmRNA base pairing, it will

either lead to translation inhibition or mRNA degradation. Meanwhile,

another strand (passenger strand) is released and further degraded (21).

(Supplementary Figure).

miRNAs have a role in various cellular processes such as cell

differentiation, cell proliferation, signal transduction pathway, lipid

metabolism, and apoptosis (22–24). miRNAs also play a crucial role

in viral infection and pathogenesis (25). However, viruses can

modify host miRNAs to escape the immune response. This review

mainly focuses on the role of miRNAs in CHIKV life cycle.
Role of miRNA during the CHIKV
life cycle

Roles of miRNA in insect host

Mosquito’s innate immune system can recognize various

microorganisms and mount a strong immune response against
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them (26). They recognize foreign particles and then initiate

phagocytosis, produce antimicrobial peptides, produce melanin to

trap pathogens, form nodules, and promote wound healing (27).

RNA interference is a defense strategy used by mosquitoes against

viruses (28). miRNAs are involved in the posttranscriptional level

gene regulation and might also be involved in the regulation of

insect immune response (29). Previous studies have suggested that

miRNAs may play an important role in regulating and establishing

infection of arboviruses andWolbachia (an endosymbiotic bacteria)

in mosquitoes (30). However, there is limited knowledge regarding

the specific targets of these miRNAs.

In a study by Shrinet et al., 2014, it was observed that following

the infection of CHIKV, there were significant changes in signaling

and metabolic pathways, including protein synthesis in the

endoplasmic reticulum and the immunity pathways. KEGG and

KOBAS analysis also indicated that altered miRNA expression may

regulate the cellular pathways. The authors further evaluated the

role of vector miRNA in CHIKV pathogenesis. Different miRNAs,

namely aae-miR-1000, aae-miR-190–5p, aae-miR-2b, and aae-miR-

2c were downregulated in CHIKV-infected Ae. albopictus Singh’s

cell line. Among these miRNAs, aae-miR-1000, aae-miR-2b, and

aae-miR-2c have been suggested to be involved in ribosome

biogenesis. Similarly, aae-miR-927–5p, aae-miR-305–3p, aae-miR-

283, and aae-miR-100 were upregulated in Ae. albopictus Singh’s

cell line upon CHIKV infection. The miRNA target prediction

analysis revealed that aae-miR-305–3p, aae-miR-100, and aae-miR-

283 target protein processing pathways and cell-mediated

cytotoxicity. The aae-miR-305–3p and aae-miR-927 play a role in

the vesicular transport of the SNARE (Soluble N-ethylmaleimide-

sensitive factor activating protein receptor) protein interaction.

(Supplementary Table 1) Also, the aae-miR-305–3p plays a role

in virus ECM (extracellular matrix) receptor-mediated interaction

and endocytosis pathways (31). Similar to CHIKV, differential

expression of aae-miR-927 was observed in Dengue viruses

(DENV) -infected C6/36 cells (32). Azlan et al., 2022, showed

that aae-miR-927 acts as a proviral factor in DENV1-infected C6/

36. Further, it was found that the aae-miR-927 targets filamin

(FLN), which is part of the Toll signaling pathway (33).

(Supplementary Table 1) Certain miRNAs, such as aae-miR-927,

may be involved in the pathogenesis of multiple arboviruses.

In contrast, Dubey et al., 2017 reported that in CHIKV-infected

Aag-2 (Ae. aegypti cell line), the expression of aae-miR-2b was

upregulated. aae-miR-2b has two target genes: URMs (ubiquitin-

like modifier) and ubiquitine. (Supplementary Table 1) The

expression of these URM was significantly controlled by aae-miR-

2b in Aag 2 (Ae. aegypti cell line), affecting CHIKV replication (34).

Studies have demonstrated URM’s role in the thiolation of some

transfer RNA (tRNA), and some viruses have developed diverse

strategies to optimize tRNA utilization by using host tRNA for

translation of viral proteins, packaging of virions, and priming

reverse transcription reaction of their genome or some viruses

encode their own tRNA (35). CHIKV infected Ae. aegypti showed

enhanced levels of aae-miR-2b, leading to the downregulation of the

URM, which controls the CHIKV replication in the vector

(34) (Figure 1).
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In a study by Dubey et al., 2019, the authors studied the

interactions of aae-miR-2944b-5p with CHIKV 3’ UTR. In

addition, this miRNA targets cellular factor vacuolar protein

sorting-13 (vps-13). (Supplementary Table 1) Additionally, the

cellular factor vps-13 contributes to balancing mitochondrial

membrane potential in Ae. aegypti during CHIKV infection (36).

The authors demonstrated that replication of CHIKV decreased in

Aag2 cells (Ae. Aegypti cell line) and Ae. aegypti mosquitoes when

vps-13 was silenced. Conversely, CHIKV replication increased in

Aag2 cells when aae-miR-2944b-5b was silenced with anti-miR-

2944–5p (36). In summary, research indicates that both aae-miR-

2944b-5b and vsp-13 play crucial roles in the CHIKV lifecycle in

insect hosts. Earlier studies have demonstrated that viruses like

herpes simplex virus 1 (HSV-1) deplete the host’s mitochondrial

DNA, while others, such as the human immunodeficiency virus

(HIV), manipulate the host’s mitochondrial proteins to function

entirely inside the host cell (37). The aae-miR-2944b-5p is restricted

to insects and absent in mammals. The study shows that, by binding

to the 3’UTR of CHIKV, aae-miR-2944b-5p downregulates CHIKV

replication in mosquitoes. Also, it could maintain mitochondrial

membrane potential during CHIKV infection by targeting cellular

factor vps-13 (36). (Figure 1) This study indicates that the mosquito

cells may possess defense mechanisms that regulate viral

proliferation, or the virus may exert control over the mosquito

cells to ensure its survival within the cells. Thus, further studies are

warranted to understand the detailed function and interactions of

aae-miR-2b and aae-miR-2944b-5p. In summary, the findings

suggest that manipulating the activity of specific miRNAs can be

an effective method to restrict the transmission of arboviruses.

The saliva of mosquitoes consists of various proteins and

enzymes that play roles in the modulation of blood coagulation,
Frontiers in Virology 03
inflammation, platelet aggregation, and vascular constriction (38).

It creates a favorable microenvironment for virus establishment and

disease progression. Exosomes are the extracellular vesicles that are

responsible for the transportation of miRNA in saliva and serum

(39). A study by Fiorillo et al., 2022, demonstrated that certain

miRNAs are enriched in the saliva and midgut of Ae. Aegypti (38).

In another study by Maharaj et al., 2014, the authors identified 103

miRNAs in mosquito saliva using the next-generation sequencing

platform. Several of these miRNAs were specifically expressed in the

context of CHIKV infection. Authors used synthetic miRNA

inhibitors to study the effect of inhibition of specific miRNA.

They chose five distinct miRNAs (aae-miR-12, aae-miR-125, aae-

miR-184, aae-miR-375, and aae-miR-2492) based on their relative

abundance levels in CHIKV-infected saliva and prior studies. Aag-2

cells were treated with miRNA inhibitors, and the replication of

CHIKV was assessed in these cells. Suppression of all five miRNAs

exhibited declined CHIKV titer in Aag-2 cells. Notably, the

suppression of aae-miR-184, aae-miR-375, and aae-miR-2492

resulted in a reduction in CHIKV titer in both Aag-2 (insect

cells) and BHK-21 cells (Mammalian cells) (40). It is suggested

that mosquito salivary miRNAs may potentially influence CHIKV

pathogenesis across different species.
Role of miRNA in mammalian host

CHIKV mainly infects peripheral tissue but also affects the

central nervous system in newborns and adults (41). The peripheral

tissues are the first site of the virus encounter and the location of

different immune cells (42). CHIKV initially replicates in the skin

and fibroblast cells and then circulates via blood to the liver and
FIGURE 1

Proposed model for miR-2b and miR-2944–5b during CHIKV infection in Aag 2 cells. The scheme illustrates that miR-2b and miR-2944–5b control
the CHIKV replication in the Aag-2 cell line by binding at the 3’UTR of CHIKV RNA. The miR-2b and miR-2944b-5p have target URM and vps mRNA,
respectively. URM has a role in tRNA thiolation, and vps maintains the membrane potential in mitochondria (34, 36).
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joints (43). CHIKV infection leads to the activation of various

signaling pathways in host cells (44–46). miRNAs are known to be

involved in the regulation of viral infection, inflammation, and

immune response (47). To date, the function of miRNA in CHIKV

infection remains unclear.

Sharma et al., 2015, showed significant upregulation of hsa-

miR-409–3p in CHIKV-infected fibroblast cells, and it was

predicted to target topoisomerase IIb (48) (Supplementary

Table 2). Topoisomerase IIb is a DNA gyrase that has an

essential role in the transcription and replication of DNA (49, 50).

Saxena et al., 2013, revealed that the cluster of hsa-miR-15b/16,

hsa-miR-17–92, hsa-miR-23a/24, and hsa-miR-106b/miR25 were

found to be upregulated in CHIKV-infected Human Embryonic

Kidney 293 (HEK293T) cells (51). The miRNA clusters hsa-miR-

17–92, hsa-miR-23a, and hsa-miR-106b regulate the TGF-b (JUN,

SMAD6) signaling pathway (52, 53). TGF-b, endocytosis, and

adherens junction pathways were upregulated during CHIKV

infection, while the cell cycle, proteasome, and lysosome

pathways were significantly downregulated (51). The hsa-miR-15/

16 cluster targets BCL2 and triggers apoptosis (54). (Supplementary

Table 2) hsa-miR-15 and hsa-miR-16 act as regulators in Rheumatic

arthritis (RA). The hsa-miR-15 was shown to be downregulated in

arthritic synovial tissue, whereas hsa-miR-16 was upregulated in

synovial fluid of RA patients (55, 56). Study showed that the

apoptosis pathway and CHIKV-engulfed macrophages are the

main contributors to prolonged arthritis (46). Studying the role of

these miRNAs in CHIKV infection can aid in developing

biomarkers to predict arthritis or treatments for CHIKV infection.

Agrawal et al., 2020 studied the differential regulation of

miRNA in CHIKV-infected primary human synovial fibroblast

cells and observed that upregulation of hsa‐miR‐1264, hsa‐miR‐

4717‐3p, hsa‐miR‐ 4299, and hsa‐miR‐21. The miRNA target

prediction analysis indicates that hsa‐miR‐4717‐3p targets the

AKT3 (57). (Supplementary Table 2) Many viruses exploit PI3K/

Akt/mTOR for survival in host cells (58). Reports indicate that

CHIKV infection relies on the PI3K/Akt/mTOR pathway for its

replication and survival in the Vero cells. (Origin: African green

monkey kidney epithelial cells) (44). The PI3K/Akt/mTOR pathway

plays a vital role in protein translation, metabolism, survival, and

cell growth. AKT is a crucial signaling molecule for these pathways

(59). It has a role in developing T cells and regulates transcription

factors NF-kB and FOXO3, which are responsible for T cell

activation (60, 61). During CHIKV infection, AKT activation

leads to the mTOR’s phosphorylation, which activates S6K and

4EBP1, which is responsible for the translation of the viral and host

mRNAs (44). The hsa-miR-21 also targets the AKT, PTEN, and

PELI1 (62). PELI is an E3 ubiquitin ligase that regulates innate

immunity by ubiquitylation of IRAK1 (63). Also, the TRIM and

SOCS 7 are potential targets of hsa-miR-1264 and hsa-miR-4299,

respectively (57). (Supplementary Table 2) TRIM is an E3 ubiquitin

ligase that targets the transcription factor IRF3, which is mainly

involved in IFN- b production (64). The SOCS family of proteins

inhibits cytokine-induced signaling through the JAK/STAT

pathway (65). SOCS 7 is a less-studied member of this family,

and it inhibits the growth hormone and prolactin signaling pathway
Frontiers in Virology 04
via STAT3 and STAT5 proteins (66). Hence, this miRNA may

suppress the inflammatory response in CHIKV infection by

targeting host signaling pathways.

Selvamani et al., 2014 demonstrated the role of hsa-miR-146a in

the CHIKV life cycle. The levels of hsa-miR-146a were increased in

CHIKV-infected primary human synovial fibroblasts. Upregulation

of hsa-miR-146a led to decreased expression of IRAK1, TRAF6, and

IRAK2, ultimately inhibiting the function of nuclear transcription

factor kB (NF-kB). The inhibition of nuclear transcription factor kB

(NF-kB) may reduce proinflammatory cytokine production.

(Figure 2) Hence, CHIKV may be using hsa-miR-146a to

modulate the antiviral response (45). Similarly, hsa-miR-146a has

been reported to disrupt the type I interferon and RIG signaling

pathways in the case of vesicular stomatitis virus (VSV) (68).

Primary hsa-miR-146a and mature hsa-miR-146a have been

detected in RA synovial tissue (69). This study indicates that hsa-

miR-146a may modulate the host antiviral response to establish

CHIKV pathogenesis in primary human synovial fibroblasts.

Kansakar et al., 2022 have demonstrated that hsa-miR-142

targets TIM-1 in Human Endothelial cells (70). TIM-1 serves as

the receptor for several viruses, including CHIKV (71). Authors

suggested that hsa-miR-142 may play an important role in the life

cycle of viruses such as CHIKV (70). Overall, it is suggested that

hsa-miR-142 may be exploited further as a biomarker as well as a

therapeutic candidate.

López et al., 2020, studied the role of hsa-miR-124–3p in

CHIKV-infected Huh7.5.1 cell line. The hsa-miR-124–3p binding

site was identified on both CHIKV and SINV genomes. When hsa-

miR-124–3p was overexpressed in Huh7.5.1 cells, a significantly

increased CHIKV replication was observed. While inhibition of

hsa-miR-124–3p led to a drop in CHIKV titer (67). (Figure 2)

However, the hsa-miR-124–3p is a nervous system-specific miRNA

(72). Thus, it would be interesting to examine whether hsa-miR-

124–3p is associated with neuropathology during CHIKV infection.

Scheel et al. (2017) analyzed the interaction of miRNAs with

fifteen infectious RNA viruses, including CHIKV, using the AGO-

CLIP (Argonaute-crosslinking immunoprecipitation) method and

miRNA target chimera analyses. Their study suggests many miRNA

can potentially interact with CHIKV genome such as miR-21, miR-

122, let -7 and miR-181 (73). Patil et al. (2020) further predicted the

presence of a hsa-miR-214–3p binding site on the CHIKV genome

(74). However, the role of these miRNAs in the CHIKV life cycle is

still unknown. In summary, these miRNAs could be exploited for

the development of broad-spectrum therapeutics. Therefore, it is

essential to study the role of miRNAs in both host signaling

pathways and virus infection.
Discussion

Identifying novel biomarkers and developing miRNA-based

therapies to treat viral infection is an emerging field of research.

Thus, it is interesting to study the role of miRNA during CHIKV

infection. Computational studies have shown that the CHIKV

genome has miRNA binding sites for various miRNAs, suggesting
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the key role of miRNA in CHIKV replication and pathogenesis (34,

36, 67, 74). The miRNA–based therapeutics for CHIKV infection

can be developed by targeting virus replication or modulating host

factors to mitigate CHIKV symptoms (75). Nevertheless, our

current knowledge of the function of miRNAs in the host cellular

system and viral life cycle remains limited.

Bioinformatics tools and high-throughput screening methods are

available to predict miRNA during pre-clinical studies. Researchers

are currently working on designing more scientific and precise

methods for predicting miRNA targets (76). Furthermore, various

in vitro cell cultures and in vivo mouse models are present to study

the toxicity, efficacy, and safety of miRNA therapeutics.

Several miRNAs have been suggested as biomarkers and are

linked to certain disease stages or diseases. For example, to detect

the H1N1 influenza virus, hsa-miR-1254 and hsa-miR-181c-5p

were suggested as biomarkers. Still, further research is necessary

to fully establish the use of miRNAs as a biomarker to diagnose viral

infection and predict outcomes.

Miravirsen, an antimiR developed by Santaris Pharma, USA,

was the first miRNA-targeting drug to enter clinical trials (77).

Miravirsen targets hsa-miR-122, which is abundant in the liver cells

and helps HCV replication (78, 79). Further, RG-101, which is also

an inhibitor of hsa-miR-122, was used in a clinical trial but showed

adverse effects, so the trial was discontinued (80). Therefore,

understanding the functions of miRNAs in CHIKV infection and

pathogenesis will provide a way to design and develop

targeted therapies.
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