AUTHOR=De Chandrav , Pickles Raymond J. , Yao Wenbo , Liao Baolin , Boone Allison , Cleary Rachel A. , Garcia J. Victor , Wahl Angela TITLE=RSV infection of humanized lung-only mice induces pathological changes resembling severe bronchiolitis and bronchopneumonia JOURNAL=Frontiers in Virology VOLUME=4 YEAR=2024 URL=https://www.frontiersin.org/journals/virology/articles/10.3389/fviro.2024.1380030 DOI=10.3389/fviro.2024.1380030 ISSN=2673-818X ABSTRACT=
Respiratory syncytial virus (RSV) is a substantial cause of severe lower respiratory tract infections in infants, young children, older adults, and immunocompromised individuals. There is a vital need for effective therapeutics to prevent and/or treat severe RSV infection in these high-risk individuals. The development and pre-clinical testing of candidate RSV therapeutics could be accelerated by their evaluation in animal models that recapitulate bronchiolitis and bronchopneumonia, both hallmark features of severe RSV infection in humans. Previously, we demonstrated that implanted human lung tissue in humanized lung-only mice (LoM) can be infected with RSV, resulting in sustained virus replication. Here we analyzed RSV-associated human lung pathology in the human lung implants of RSV-infected LoM. RSV-infected epithelial cells lining the airway and the alveolar regions of human lung implants result in hallmark histological features of RSV bronchiolitis and bronchopneumonia, including distal airway and alveolar lumens clogged with (1) sloughed and necrotic RSV-infected epithelial cells, (2) neutrophil-containing inflammatory infiltrates, and (3) MUC5B-dominated mucus secretions. We also show that treatment of LoM with a small molecule antiviral (ribavirin) or a neutralizing antibody (palivizumab) significantly suppressed and/or prevented RSV infection