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The past decade has seen the global reemergence and rapid spread of

enterovirus D68 (EV-D68), a respiratory pathogen that causes severe

respiratory illness and paralysis in children. EV-D68 was first isolated in 1962

from children with pneumonia. Sporadic cases and small outbreaks have been

reported since then with a major respiratory disease outbreak in 2014 associated

with an increased number of children diagnosed with polio-like paralysis. From

2014-2018, major outbreaks were reported every other year in a biennial pattern

with > 90% of the cases occurring in children under the age of 16. With the

outbreak of SARS-CoV-2 and the subsequent COVID-19 pandemic, there was a

significant decrease in the prevalence EV-D68 cases along with other respiratory

diseases. However, since the relaxation of pandemic social distancing protocols

and masking mandates the number of EV-D68 cases have begun to rise again-

culminating in another outbreak in 2022. Here we review the virology,

pathogenesis, and the immune response to EV-D68, and discuss the

epidemiology of EV-D68 infections and the divergence of contemporary

strains from historical strains. Finally, we highlight some of the key challenges

in the field that remain to be addressed.
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Introduction

Enterovirus D68 (EV-D68) has re-emerged as a major public health concern in the last

decade. Children <16 years of age account for >90% of infections worldwide. EV-D68

infection leads to severe acute respiratory distress in children below 5 years of age with

clinical symptoms of hypoxia and wheezing associated with a significant increase in
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pediatric hospitalizations (1). A subset of children infected with EV-

D68 develop polio-like acute flaccid myelitis (AFM) that affects

lower motor neurons in the spinal cord gray matter, and is

characterized by sudden onset of muscle weakness, particularly in

the arms or legs, with decreased muscle tone and compromised

reflexes, sometimes associated with difficulty in swallowing,

drooping of eyelids, and in serious cases respiratory failure (2).

The genus Enterovirus of the family Picornaviridae consists of

some of the most common viral pathogens. Enteroviruses are

classified into 4 groups namely, polioviruses, Coxsackie A viruses,

Coxsackie B viruses, and echoviruses and 15 species comprising 4

human enteroviruses, 8 animal enteroviruses, and 3 rhinoviruses.

Most enterovirus infections are asymptomatic, but they can cause a

wide range of illnesses from febrile illness to severe neurological

diseases in humans. The most well-studied neuropathogenic

enteroviruses are the polioviruses which are known to cause

poliomyelitis (3). However, poliomyelitis has been largely

eliminated throughout the world due to decades of mass

vaccination efforts. While reported cases of poliomyelitis have

waned, the recognition of neurologic complications associated

with non-polio enteroviruses, including EV-A71, coxsackievirus

A16, EV-D70, and EV-D68, has globally increased in recent years

(4). Among these enteroviruses, a surge in the number of reported

EV-D68 infections in children has raised significant public health

concern as they have tended to coincide with the large outbreaks of

respiratory disease in children.

EV-D68 was first isolated from children with pneumonia and

bronchiolitis in 1962 and since then 26 cases were reported from

1970 – 2005, and 699 cases from 2005 – 2012. Large outbreaks of

EV-D68 infections were reported worldwide in 2014 with about

1,395 confirmed cases in the United States (US) from Aug 2014 –
Frontiers in Virology 02
Jan 2015. Based on syndromic surveillance, however, the number of

cases worldwide may be a gross underestimate of the actual number

of infections due to limited availability of clinical testing for EV-

D68 (5).

In temperate climates, EV-D68 circulation predominantly

occurs in the summer-fall season between Aug – Oct, which has

temporally and geographically correlated with spikes in AFM cases

since 2014 (6). A recent study (7) for the first time demonstrated the

presence of EV-D68 nucleic acid and antigen in motor neurons in

the spinal cord grey matter of a child who died following an AFM-

like illness. Interestingly, EV-D68 outbreaks have displayed a

biennial pattern with a significant increase in the number of

reported cases in 2014, 2016, and 2018. Recent studies have

reported the re-emergence and rapid increase in EV-D68

infections in Europe and the US (8).
Virus structure, receptors,
and replication

Enterovirus D68 is an RNA virus with a positive-sense, single-

stranded RNA genome (9–11). The genome is ~7.2 kb and consists

of a 5’ untranslated region (UTR) with an internal ribosome entry

site (IRES), an open reading frame (ORF) that encodes for a single

precursor polypeptide, and a 3’ UTR with a poly-A tail (12). The

precursor polypeptide is post-translationally processed, yielding 4

structural proteins namely, VP 1 - 4 that form the non-enveloped

icosahedral capsid and 7 non-structural proteins that include 2A

protease, 2B and 2C ATPase and 3A, 3B, 3C protease, and 3D

polymerase. The VP 1, 2, and 3 create the outer shell of the capsid,

whereas VP4 lines the interior (Figure 1). The vertices of VP 1-3
B

C

A

FIGURE 1

Enterovirus-D68 Genome and capsid. (A, B) EV-D68 has an icosahedral, non-enveloped capsid consisting of 4 structural proteins, VP1, VP2, and VP3
on the external side of the capsid and VP4 on the internal side. This capsid surrounds the +ssRNA naked genome attached to VPg. (C) The EV-D68
genome encodes for 4 structural proteins (VP1 - 4) and 7 non-structural proteins (2A - C and 3A - D). The internal ribosome entry site (IRES) is at the
5’ end and a poly-A tail terminates the 3’ end. The genome is ~7.2 kb in size and is composed of a single open reading frame (ORF). Initially, the
polyprotein is processed into 3 precursor proteins, P1-P3. P1 is later proteolytically cleaved into the 4 structural proteins (VP1 - 4) while P2 and P3
are processed into replicase, VPg, proteases (2A and 3C), a polymerase (3D), and other non-structural proteins.
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come together and alternate between threefold and fivefold

symmetry. A “canyon,” considered important for binding,

surrounds the fivefold vertex (13–15). A hydrophobic pocket in

the VP1 subunit at the base of each canyon contains a host-derived

lipid-like “pocket factor.” This structure is mostly conserved in all

picornaviruses and confirmed to be present in EV-D68 by

crystallography (16, 17).

EV-D68 replication is initiated when the viral capsid binds to its

receptor on the host cells. The exact receptor that EV-D68 uses to

infect its target cells is still under investigation. Treatment of cells

with neuraminidase, an enzyme that removes sialic acid, was

associated with a marked decrease in EV-D68 binding suggesting

that sialic acid could be the entry receptor (18). Others have shown

that EV-D68 Fermon strain along with other historical strains bind

to a2, 6- and a2, 3-linked sialic acids, displacing the pocket factor

(16, 19). More contemporary strains of EV-D68 have been shown to

bind to cells independently of sialic acid (20) unlike the historical

Fermon strain that requires sialic acid (21). Recent studies have

suggested that EV-D68 could use sulfated glycosaminoglycans or

other receptors in the absence of sialic acid (22). The role of

intercellular adhesion molecule-5 (ICAM-5) as a possible EV-D68

receptor has been studied, given that ICAM-5 is expressed on

neurons (23). In cell culture, enhanced viral replication was

observed with both sialic acid - independent and -dependent

strains in the presence of ICAM-5 (24). However, little or no

expression of ICAM-5 has been found in the human respiratory

tract or spinal cord, hence the relevance of these receptors is less

clear (21). Uncapher et al., and others have suggested that EV-D68

likely uses sialic acid, ICAM-5, or sulfated glycosaminoglycans as

either co-receptors or attachment factors (18). In picornaviruses

such as poliovirus, after internalization and uncoating, the viral

capsid undergoes a structural reorganization step within the

endosomes to become an enlarged intermediate structure known

as the “A particle” (25, 26). Studies have shown that the

transformation of mature EV-D68 to A particle occurs after

binding to ICAM-5 (24, 27). To exit the endosome, the capsid

reorganizes its structure to form a pore in the lipid bilayer and

releases the viral genome into the cytoplasm (28–30). For

enteroviruses in general, this uncoating is thought to be acid

sensitive; EV-D68 requires a pH of 6.0 to reorganize from the A

particle to the pore-containing particle in vitro (31, 32). Some

picornaviruses such as CV-B1, CV-A7, and EV-A71 including EV-

D68 also require the pan-enterovirus host factor, Adipose-specific

phospholipase A2 (PLA2G16), for uncoating (22, 33, 34).

In most enteroviruses, translation is initiated immediately

following the release of the enteroviral genome into the cytosol.

Translation overcomes a 5’ cap requirement by directly utilizing the

IRES found within the 5’ UTR (35). Host poly-A binding protein 1

(PABP-1) interacts with the genome’s poly-A tail and the

eukaryotic initiation factor 4G (eIF4G), which is also bound to

the IRES; this forms a circular structure of the mRNA that mirrors

host cell RNA (36). Translation requires many other host factors

including eIF1A, eIF2, eIF3, eIF4A and B, and IRES transactivation

factors. Together, these factors recruit the translation initiation

complex to the IRES (37, 38). Translation of the enteroviral genome

results in a single polypeptide that is then proteolytically processed
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to yield 4 structural (VP 1 - 4) and 7 non-structural (2 A - C and 3 A

- D) proteins. The first cleavage is performed by the viral protease

2Apro which cleaves the structural proteins from the non-structural

proteins. The viral proteases 3Cpro and 3CDpro then cleave the

structural proteins into VP0, VP1, and VP3, along with other

intermediate and mature non-structural peptides. Lastly, during

maturation of the viral capsid, a self-cleavage event occurs, whereas

VP2 and VP4 are generated from VP0 (39). When 3Cpro reaches a

sufficiently high concentration, a “switch” ends the predominant

translation phase. This switch occurs when 3Cpro cleaves

polypyrimidine tract-binding protein 1 (PTBP-1), poly(rC)

binding protein 2 (PCBP-2), and PABP-1, which are all required

for translation (40–43). After the switch, the viral RNA

is synthesized.

The enteroviral RNA-dependent RNA polymerase, 3Dpol, is

responsible for generating the viral RNA. Negative sense RNA

(-ssRNA) is first synthesized and acts as a template to generate

copies of genomic RNA (+ssRNA). The -ssRNA is circularized by

the binding of the host factor heterogeneous ribonucleoprotein

(hnRNP) C1/C2 (44). Translation and synthesis of antisense RNA

cannot occur simultaneously, possibly due to ribosomes and

polymerase being unable to travel along viral RNA in opposite

directions at the same time (45). Synthesis of the viral genome

occurs on replication organelles, which are single and double

membrane-bound vesicles. These vesicles are thought to be

derived from autophagosomes and fatty acid droplets or the

endoplasmic reticulum/Golgi apparatus (46–48). Replication

organelles are thought to promote colocalization of RNA-binding

proteins and likely allow the viral RNA to evade host RNases

(49–51).

Once the viral genome is synthesized, the virus is assembled in

the cytoplasm. The structural proteins VP0, VP1, and VP3 form a

trimeric structure and then self-assemble into a pentameric unit.

Twelve pentameric units self-assemble to form the icosahedral

enterovirus capsid (14). The newly synthesized viral RNA

(+ssRNA) is covalently linked to VPg (viral protein genome-

linked), a protein derived from the non-structural protein 3B, at

the 5’ end before being packed into the viral capsid (52). The capsid

is then enclosed in an autophagosome-derived vesicle. Maturation

of the viral particle containing autophagosomes is prevented by

3Cpro, which cleaves host snap receptor (SNARE) protein, blocking

the fusion of the endosome/lysosome to the autophagosome (53).

Capsid maturation is triggered in the vesicle and leads to cleavage of

VP0 into VP2 and VP4. Viral particles are then released by either

lysis or exocytosis of the autophagosome-derived vesicles

containing multiple viral particles (Figure 2). Studies using

poliovirus have shown that similar vesicles contain mature

virions, negative- and positive-sense nonencapsulated viral RNA,

several host proteins, and non-structural viral proteins. This

mechanism may allow for increased cell-to-cell spread efficiency

as these particles initiate viral replication faster than non-

membrane-enclosed viruses. Vesicles may also help with immune

evasion by shielding the antigenic viral capsid (54).

Enterovirus replication is both temperature and pH sensitive.

Classic enteroviruses, species A to C, are known to replicate best at

temperatures near mammalian body temperature, 37°C, and can
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replicate in acidic conditions, both of which allow these viruses to

replicate in the gastrointestinal tract. This is in contrast to

rhinoviruses that typically replicate in the nasopharynx and

replicate more efficiently at lower temperatures. Rhinoviruses are

also sensitive to acid (55). EV-D68 is unique; it is genetically and

antigenically similar to other enteroviruses but is known to replicate

most efficiently at 33°C and is also acid labile, making EV-D68

phenotypically similar to rhinoviruses, including transmission in

respiratory droplets and primarily causing respiratory disease. Some

contemporary strains of EV-D68 from the 2014 outbreak are

known to efficiently replicate at both 33°C and 37°C; this may

contribute to the increased ability of more contemporary EV-D68

strains to cause systemic infection and neuroinvasion (56, 57).
Epidemiology

Children are at the greatest risk of severe EV-D68 infection. Most

cases occur in children under the age of 16, with the greatest proportion

of cases in children under the age of 5. Children with a history of

asthma are more likely to have severe respiratory disease, including

requiring intensive care support (58–60). Healthy adults may be

infected with EV-D68 but are more likely to have mild or

asymptomatic cases (61, 62). The elderly or adults with co-

morbidities have been shown to experience severe respiratory

disease, similar to children. EV-D68 infections are widespread, with a

high rate of mild cases found in prospective surveillance studies. In

temperate regions of the United States, enterovirus infections peak in

the late summer and early fall unlike other respiratory viruses that peak

during winter months (63–65). In addition to seasonality, EV-D68
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outbreaks appear to follow a biennial cycle with reported outbreaks

occurring every two years from 2014 to 2018 (Figure 3). This biennial

cycle was broken in 2020, likely due to control measures initiated by the

COVID-19 pandemic. Since the relaxation of control measures, EV-

D68 has started to reemerge, with increased circulation in Europe in

2021, and a large outbreak of respiratory illness in children occurring in

the fall of 2022 in the US (66, 67). Currently, very little is known about

reinfection with EV-D68, though the current serological data suggests
FIGURE 2

Enterovirus-D68 Life Cycle. EV-D68 attaches to the host cell membrane and is internalized through receptor-mediated endocytosis. The viral capsid
undergoes uncoating and creates a pore through the endosomal membrane and the +ssRNA viral genome is released into the cytoplasm. The
+ssRNA is translated into a polyprotein that is cleaved by host and viral proteases to generate structural (VP1 - 4) and non-structural (2A - C and 3A
- D) proteins. During viral replication, -ssRNA is created and used as a template for new viral genome copies, which occurs on vesicular structures
known as replication organelles. Progeny virions are assembled with structural proteins and VPg-linked RNA. The immature viral particles are then
mostly taken up by autophagosomes where the acidic environment triggers viral capsid maturation. Virus is then released by either exocytosis of the
autophagic vesicles (53) or by cell lysis. The figure was made using BioRender.com under license to CG.
FIGURE 3

Number of EV-D68 reported by year. Data reported by the National
Enterovirus Surveillance System was used.
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reinfection of older, previously exposed individuals could potentially

drive antigenic evolution of EV-D68 (61).

There are 15 species in the Enterovirus genus (Figures 4, 5).

These include four human enteroviruses, A to D, three human

rhinoviruses, A to C, and enteroviruses, E to L, which infect

nonhuman hosts. Enterovirus genus members have recently been

reclassified based on genomic taxonomy, but initially, they were

classified based on clinical manifestations and subtyped using

serology. This led to the traditional names in the Enterovirus

genus, including poliovirus and coxsackievirus. After genetic

reclassification, all three poliovirus subtypes are placed in

Enterovirus C , while coxsackieviruses are spread across

Enterovirus A, B, and C. The remaining viruses in this genus

maintain the enterovirus name. In 1970, newly discovered

enterovirus subtypes were numbered in order of discovery,

starting with enterovirus 68. After genetic reclassification, the

numbers were attached to the species letter name (e.g.,

enterovirus 68 was renamed as EV-D68) (73).

In 1962, EV-D68 was first isolated from the pharyngeal swabs of

children with acute lower respiratory tract illness. These isolated

strains were named the Fermon, Franklin, Rhyne, and Robinson

strains, with Fermon being considered, to this day, the prototypic

EV-D68 strain (56). In 1963, a similar strain was classified as

rhinovirus 87 due to its strong phenotypic resemblance to other

rhinoviruses, but genomic data revealed that it was an EV-D68

strain (74, 75). There are currently four identified clades of EV-D68,

A-D (Figure 6). These clades are separated primarily based on their
Frontiers in Virology 05
VP1 sequence, the gene that encodes a significant component of the

viral capsid (Figure 7). Two clades, A and B, are pervasive globally

in Europe, Asia, and the United States. Clade D split from clade A

and shares a common ancestor. Clades C and D are also prevalent

globally but in much lower frequencies. Clade B has been split

further into newly emergent subclades, B1-B3 (77–81).

The contemporary strains have diverged from the prototypic

strains and have accumulated significant genetic changes. The

region with the most variation appears to be the VP1 capsid

protein, which plays a major role in antigenicity, determines

serotype, and is the site of receptor binding (14, 15, 82), and may

be a contributing factor to the shifting epidemiology of EV-D68

(57). A high level of variation was first seen in Netherlands

surveillance data from 1994 - 2010, which showed that an

increase in EV-D68 circulation coincided with an increase in VP1

diversity (83). Samples taken in Colorado from 2012 - 2014

contained multiple polymorphisms within the ORF; some were

similar to other neurotropic enteroviruses, poliovirus, and EV-D70

sequences. The strains with these polymorphisms belonged to the

B1 subclade (84). In Missouri, 2014 strains were identified to be

multiple independent lineages, all belonging to the B1 clade that

were co-circulating at the same time (85). Others have shown that

most patients diagnosed with AFM in 2014 carried EV-D68 strains

of the B1 clade (86–88). Since 2014, many other clades of EV-D68

have been linked to AFM (81, 89).

The B3 subclade was first identified in Taiwan and China in

2014 and shares a common ancestor with B1. The B3 subclade had
FIGURE 4

Phylogenetic Tree based on Picornavirus VP1 sequence. The NCBI Virus database was used to download all available Picornavirus VP1 capsid protein
reference sequences (68). The sequences were then aligned using the online Clustal Omega Multiple Sequence Alignment Tool (69). The output
from Clustal Omega was then transferred to Simple Phylogeny to create the phylogenetic tree (70). The results were then uploaded to iTOL for
annotation (71). The genus enterovirus (shown in red) is genetically similar and descended from a common ancestor based on their VP1
capsid sequence.
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multiple polymorphisms in the ORF, but these did not match the

sequences on neurotropic viruses, whereas this sequence in the B1

subclade is conserved (90). The B3 subclade was still the

predominant subclade in the 2016 and 2018 outbreaks worldwide,

in both respiratory cases and cases associated with AFM. In the US,

all isolates from the 2018 outbreak belonged to the B3 subclade (8,

91–94). The predominant mechanism driving these polymorphisms

in the circulating clades appear to be single nucleotide mutations,

most likely occurring randomly during viral replication. However,

more extensive rearrangements have occurred, and even one

incidence of recombination between subclades, though it is

unknown if these changes have led to changes in pathogenicity

between the clades (85, 95).

Since its discovery in 1962, sporadic cases of EV-D68 infections

were reported with infections remaining largely benign. Only

26 cases were identified in the US National Surveillance System

from 1970 to 2005 (only 0.1% of total reported enterovirus cases)

(65). Between 2008 and 2010, sporadic outbreaks of EV-D68 were

reported worldwide. These outbreaks occurred in the US (Georgia,

Pennsylvania, Arizona, and New York), Asia (The Philippines,

Japan, and Cambodia), and Europe (The Netherlands, Italy, and
Frontiers in Virology 06
France) (96–102). The frequency of outbreaks increased between

2010 and 2014, with reports of outbreaks in Africa (Gambia, Kenya,

Senegal, and South Africa), Asia (China, Japan, the Philippines

and Thailand), Europe (England, Finland, France, Italy, and

The Netherlands), and Oceania (Australia and New Zealand) (83,

99, 103–110).

The largest documented outbreak of EV-D68 to date occurred

in August - October 2014. Pediatricians at Children’s Mercy

Hospital in Kansas City, MO, reported an unexpected increase in

severe respiratory disease in children along with a surge of positive

PCR tests for enterovirus/rhinovirus in respiratory specimens (111,

112). The Centers for Disease Control and Prevention (CDC)

identified EV-D68 as the primary virus by sequencing these

specimens. Likewise, University of Chicago Comer Children’s

Hospital and Children’s Hospital in Colorado reported a

significant increase in severe respiratory disease in children

around the same time with the CDC identifying EV-D68 in a

majority of respiratory specimens from these hospitals (58, 113).

Shortly thereafter, a number of other hospitals across the US

reported an increase in pediatric patient volumes with respiratory

disease suggesting a rapid spread of infections (114, 115).

Between August 2014 and January 2015, the CDC reported

1,395 confirmed EV-D68 cases across the US (49 states and the

District of Columbia) (116). This number is most likely a gross

underestimate of the true number of cases, as the CDC report only

included cases that were confirmed by genome sequencing, as

clinical testing for EV-D68 was not widely available. Compared to

the previous two years before 2014, hospitals saw a major increase

in emergency department visits, hospitalizations, and pediatric

intensive care admissions though only some of those cases were

tested for EV-D68. The CDC estimated that millions of milder EV-

D68 cases likely occurred during the summer and fall of 2014 in the

US (113, 116, 117). The United States was not the only country with

an outbreak of EV-D68 in 2014; outbreaks also occurred in other

North American countries (Canada), South America (Brazil and

Chile), and Europe (Denmark, France, Germany, Italy, Spain,

Sweden, and The Netherlands) (106, 118–129).

Unlike the earlier EV-D68 outbreaks, there was a significant

increase in the number of children with AFM during the 2014

outbreak; 120 cases of AFM were reported that year (1) with

respiratory specimens from about 43% of these cases testing

positive for enterovirus/rhinovirus (130). EV-D68 was found in

cerebrospinal fluid (CSF) from a young adult patient and from a

child who died of paralysis and respiratory failure in 2005 and 2008,

respectively (65, 131). Localized clusters of AFM were reported in

California in 2012 (132). As in 2014, significant numbers of AFM

cases coincided with EV-D68 outbreaks again in 2016 (160 cases)

and 2018 (238 cases). However, EV-D68 was isolated only from

20% to 40% of these cases (133) likely due to limitations in sample

collection, given that respiratory sampling is necessary to detect

viral shedding, and samples taken closer to the onset of respiratory

illness are more likely to test positive (134). Unlike some of the

earlier outbreaks, the 2022 outbreak of EV-D68 respiratory disease

after the relaxation of lockdown measures did not show a high

association with AFM. The decoupling of EV-D68 circulation and

AFM cases merits further investigation to determine the virologic,
FIGURE 5

Enterovirus Phylogenetic Tree based on VP1 sequence. The NCBI
Virus database was used to download all available enterovirus VP1
capsid protein reference sequences (68). The sequences were then
aligned using the Clustal Omega Multiple Sequence Alignment Tool
(69). The resulting output from Clustal Omega was then transferred
to the online tool, ATGCPhyl, to create the phylogenetic tree with
bootstrap values. One thousand Bootstrap replicates were
computed to estimate the accuracy of the phylogenetic tree (72).
The results were then annotated in PowerPoint. EV-D68 (shown in
red) is more genetically similar to rhinoviruses (Rhinovirus B and C)
than other enterovirus species (Enterovirus C and D).
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immunologic, and/or epidemiologic factors that may have played a

role (135). EV-D68 mouse models have been shown to replicate key

symptoms of AFM, with one mouse model fulfilling Koch’s

postulates for causation (136–142). Koch’s postulates are a list of

four criteria that needs to be met to establish a causal relationship

between the microbe and the disease namely, a microbe should be

found in all organisms with the disease and not found in healthy

organisms, it should be isolated from an infected organism and

grown in pure culture, the cultured organism should cause disease

when introduced to a healthy organism, lastly the microbe should

be isolated from the inoculated host and identified as the original

microbe (143). Using a neonatal mouse model, Hixon et al.

demonstrated that mice infected with EV-D68 exhibited

significant signs of paralysis, with lysates from the spinal cords of

paralyzed mice showing significant CPE in cell culture. Koch’s

postulates were fulfilled when the mice newly infected with the

cultured EV-D68 went on to develop paralytic disease themselves,

with the same EV-D68 strain isolated from their spinal cords

(136–142).

Though no direct causal link had been established between EV-

D68 infection and AFM, studies have reported that CSF from AFM

patients showed a strong enrichment of enterovirus-associated

antibodies compared to controls (144, 145). Furthermore, in

2022, a study by Vogt et al. reported the presence of EV-D68

RNA and protein in a preserved spinal cord specimen from a young

child who died from AFM in 2008 (7). Other enteroviruses and

rhinoviruses, mainly EV-A71 and coxsackievirus A16, have been

associated with AFM, though at lower rates (134). EV-D68 is not

commonly found in CSF at the time of clinical presentation of

AFM, and the brain and spinal cord tissue has rarely been available

for testing. Delay between prodromal symptom onset of respiratory

disease to the development of neurologic disease (median 5-7 days),
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delayed recognition and diagnosis, and incomplete or late biologic

specimen collection has likely impeded the ability to detect virus in

AFM cases. Virus has been more readily identified from nonsterile

sites, particularly respiratory specimens, though these specimens

still need to be collected in a timely manner to be detected while still

within the shedding period (median 12 days from symptom

onset) (62).
Respiratory tract and EV-
D68 pathogenesis

Children below the age of 5 years are at the highest risk for EV-

D68 infection. Most infections are mild with respiratory symptoms

such as runny nose, coughing, sneezing, and body and muscle

aches. A subset of children experience severe symptoms such as

respiratory distress, coryza, wheezing and shortness of breath

requiring supplemental oxygen and hospitalization especially in

those who are prone to asthma (146).

Pathogenic changes in the respiratory tract of patients who are

infected with EV-D68 have been difficult to study largely due to the

transient nature of infection. EV-D68 RNA has been readily

detected by RT-PCR in samples from both the upper and lower

respiratory tract, suggesting that EV-D68 can infect cells

throughout the respiratory tract (147, 148). More detailed

understanding of the pathogenic events following EV-D68

infection has come from experimental infection of animal models.

EV-D68 RNA was detected in nasal washes and lungs of ferrets

following intranasal infection that was accompanied by an acute

inflammatory response with histological evidence of mild

interstitial pneumonia in the lungs. EV-D68 VP1 was detected in

the connective tissue surrounding the alveoli with detectable EV-
FIGURE 6

NextStrain based EV-D68 Phylogenetic Tree. A time-scaled phylogenetic tree was visualized using NextStrain based on the VP1 capsid protein
sequence from 1992 to 2022 (76). The year that the EV-D68 isolate was detected is represented on the x-axis. The clade for each isolate is denoted
by color per the legend (Clade A in blue, Clade B in green, yellow, and orange, and Clade C in red. Clade D is not represented). Major clade
branches are labeled at the branch points. EV-D68 clade B1 was the major clade for strains identified in the 2014 outbreak, but a shift has been seen
with clades A2 and B3 currently circulating.
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D68 in cells that expressed a2,6-linked sialic acids in ferrets by

confocal microscopy (149, 150). Studies using in vitro nasal airway

cultures have reported that EV-D68 infects ciliated epithelial cells

that was associated with lysis and induction of numerous pro-

inflammatory cytokines such as IL-8, IP-10, IL-1b, IL-6, and GM-

CSF (151). In IFN- a/b/ɣ receptor deficient mice, EV-D68 infection

was associated with histopathological changes characterized by

moderate interstitial pneumonia and mononuclear cell infiltration

with detectable VP2 in alveolar epithelial cells. Others have

reported an increase of neutrophils suggesting that EV-D68

infection induced neutrophilic airway inflammation that is

likely mediated by IL-17A suggesting a potential role for this

pathway in the aggravation of asthma in patients infected with
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EV-D68 (152, 153). The mechanism by which children and

immunocompromised adults infected with EV-D68 develop

severe disease is not clear though some have suggested that the

subdued or the lack of effective immune responses likely plays a role

in this process (148, 154–156).

Though the primary route of EV-D68 infection is the

respiratory tract, EV-D68 RNA has less commonly been detected

in blood, sera, and stool samples, as well as in CSF of EV-D68-

associated AFM patients suggesting that the virus has the potential

to disseminate systemically following respiratory infection (84, 89,

131, 157–159). The exact mechanism of extra-respiratory spread is

currently unknown. Viral RNA has been detected in EV-D68

patient blood and sera of children (158) suggesting that EV-D68
FIGURE 7

Enterovirus VP1 Protein Alignment. The NCBI Virus database was used to download all available enterovirus VP1 capsid protein reference sequences
(68). The sequences were then aligned using the Clustal Omega Multiple Sequence Alignment Tool (69). The resulting output was then transferred
to the online tool, NCBI Multiple Alignment. EV-D68 was selected as the anchor sequence, the top row, and BLOSUM62 was used for analysis and
coloring (68). Amino acids identical to the anchor sequence (EV-D68) are represented by a dot and shown in blue, while amino acids not identical to
the anchor sequence are shown in green a, with blue/green coloring indicating that the substitution is conservative.
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could disseminate systemically to other tissues in the body as some

animal studies have shown; EV-D68 has been isolated from blood,

liver, lungs, kidneys, muscle, spinal cord, and spleen of mice

infected with EV-D68 (137, 141, 152).

Studies have reported the presence of EV-D68 in patient stool

samples, though acute gastroenteritis is less commonly reported

with EV-D68 infection (132, 157, 160, 161). Human intestinal

epithelial cell lines can be infected by EV-D68 in vitro though not

very efficiently (162). EV-D68 RNA has been detected in stool

samples of both infected ferrets and macaques (150, 163). Other

extra-respiratory symptoms have been associated with EV-D68

infection, including cardiac problems (e.g., myocarditis,

pericarditis, and acute cardiac failure) and skin rashes (93, 164–

166) though the exact mechanism for these sequelae are not clear. In

mice, infection with EV-D68 has led to muscle disease and infection

of muscle tissue, though its relevance to human infections is not

clear (138, 152).
Central nervous system and EV-
D68 pathogenesis

EV-D68 infection has been associated with various neurological

complications that include AFM, cranial nerve dysfunction,

encephalitis, and meningoencephalitis. These complications

usually arise after febrile illness and respiratory (coughing,

rhinorrhea, and pharyngitis) and gastrointestinal (vomiting and

diarrhea) symptoms. Direct detection of EV-D8 in the CSF to

document infection of the CNS has been rarely demonstrated, likely

due to the delay in the onset of CNS related symptoms following

infection and presentation in the clinic. EV-D68 can, however, be

detected in nasopharyngeal samples, usually within the first week of

CNS disease onset (1, 13, 62, 130, 132). Given a median duration of

RNA shedding of 12 days, prompt recognition and early respiratory

sampling is key to EV-D68 detection in suspected AFM cases.

Acute flaccid myelitis associated with EV-D68 can progress

quickly, within days or even hours after the onset of symptoms (132,

167). Early symptoms include pain or stiffness in the affected limb

or back and neck, headache, followed by absent or reduced reflexes

(1, 132). Upper limbs are more likely to be affected by AFM, and

anywhere from one to all limbs can be affected, usually with

asymmetric distribution (1, 2, 130, 132). In severe cases,

intubation and ventilator support may be necessary due to bulbar

paralysis and inability to protect the airway or paralysis of the

diaphragmatic muscles controlling breathing (132, 167). Lesions in

the anterior horn of the spinal cord usually occur in the cervical and

upper thoracic regions that can be detected by Magnetic Resonance

Imaging (MRI) (2). The majority of patients with persistent

weakness will develop noticeable muscle atrophy in the affected

limb and many report muscle aches and pain that have lasted

months after onset (1, 132).

Cranial nerve dysfunction has been reported in patients with

and without AFM (1, 2, 130, 132, 167, 168), including facial

weakness, double vision, soft speech, difficulty speaking, and

difficulty swallowing (2, 130). Sensory deficits in paralyzed limbs

and autonomic deficits associated with bowel and bladder
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dysfunction have also been less commonly reported (132, 167).

Cases of brainstem encephalitis (that led to cardiopulmonary

failure), fatal meningoencephalitis, and non-fatal aseptic

meningitis have all been reported to be associated with EV-D68

infection, but appear rare compared to AFM (84, 89, 125, 131, 169–

171). The lesions in the anterior horn of the spinal cord and lesions

in the cranial motor nuclei of the medulla, midbrain, and pons

suggest that the motor neuron function and cranial nerves are

significantly compromised during EV-D68 associated AFM (1, 2,

168, 172). It is not clear if these lesions are a direct result of

infection, even though EV-D68 viral RNA has been detected in CSF

samples, or due to bystander damage caused by immune responses

(84, 131, 169, 170, 172, 173).

Though the exact mechanisms of how EV-D68 gains entry to

the spinal cord and, spreads within the CNS in vivo is not clear, one

theory is that EV-D68 infects peripheral nerves in the respiratory

tract and transmits by retrograde axonal transport to reach the

spinal cord. EV-D68 was shown to use axonal microtubules for

retrograde transport across the neurons in vitro in hiPSCs derived

motor neurons (20). In mice, after intramuscular infection, EV-D68

was detected in the spinal cord, which may have entered the motor

neurons either via the neuromuscular junctions or through

hematogenous spread (136, 138, 140, 141).

Cranial nerve dysfunction has been observed in patients

without limb paralysis. Cranial nerve motor nuclei innervate the

muscles of the face, oral cavity, respiratory tract, and tongue. It is

possible that EV-D68 uses these neurons to enter the CNS or it is

possible that these motor neurons are infected similarly to those in

the anterior horn of the spinal cord due to viral tropism (1). On the

other hand, the presence of EV-D68 in the CSF suggests that EV-

D68 may enter via breaching the blood-brain barrier (BBB).

Whether crossing the BBB into the CSF can lead to direct

infection of the spinal cord gray matter remains to be

determined. EV-D68 may also invade the CNS by infecting

lymphocytes and other immune cells that enter the CNS (174,

175) though there is little or no evidence to support this hypothesis.

In mice that were infected with EV-D68 either intracranially

or intraperitoneally, viral antigens and RNA have been detected in

the spinal cord (136, 140, 141). Infection led to efficient replication

in the motor neurons in the anterior horn of the spinal cord, but

viral replication was low to absent in the cerebellum and cerebrum

(136). In vitro, human and mouse neuroblastoma cell lines and

neurons derived from hiPSCs (astrocytes, cortical neurons,

and motor neurons) are all permissive to EV-D68 infection. In

hiPSCs, viral replication was sustained for 72 hours without

cytopathic effect, contrasting in vivo data. In mouse models,

viral replication in the CNS is restricted to the spinal cord

motor neurons, while hiPSCs show the permissiveness of

astrocytes and human cortical neurons (21, 77, 136, 139, 176).

In a patient with fatal meningomyeloencephalitis, widespread

lymphocytic meningomyelitis, and encephalitis were associated

with neuronal destruction in motor nuclei in the cerebellum,

cervical cord, medulla, midbrain, and pons. Infiltrating CD3+ T

cells were observed in the spinal cord around motor nuclei, and

CD20+ infiltrating B cells were observed in perivascular

areas (131).
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The exact receptor that EV-D68 uses for viral entry and

infecting the CNS is still under investigation. Although both sialic

acid and ICAM-5 are expressed in the CNS, ICAM-5 is not

expressed on motor neuronal cells (21, 24). Likewise, heparan

sulfate is abundantly expressed in the CNS cells and used by EV-

A71 for entry though it is not known if EV-D68 uses heparan sulfate

as an entry receptor to infect the CNS (177).
Immune response to EV-D68 infection

EV-D68 infects and replicates in the respiratory tract. In most

cases, infection is rapidly cleared from the upper respiratory tract

suggesting that EV-D68 infection induces a robust innate immune

response (137). In others who experience symptomatic disease or

remain asymptomatic, infection is associated with the induction of

EV-D68 specific adaptive B and T cell responses (7). Evidence of

EV-D68 specific B cell responses has largely come from serological

studies. Though T cell responses have been examined in some cases,

a detailed characterization of T cell responses remains an

understudied area of research.

Innate immune responses have been shown to play an

important role in early protection from viral infections. Type 1

interferon (IFNa and b) produced in response to infection induces

over 100 interferon stimulated genes (ISGs) that contribute to an

antiviral state among the neighboring cells thereby limiting and

containing the spread of infection. How exactly EV-D68 drives

innate immune responses is still under investigation though the

interplay between the innate immune system and other

enteroviruses have been extensively examined. During

Coxsackievirus B3 (CV-B3) infection, TLR7 and TLR8 have been

reported to recognize ssRNA, leading to the recruitment of MyD88

and a downstream innate immune response (178). Studies using

TLR3 deficient mice have implicated TLR3 signaling in

macrophages as a driver of host innate responses to CV-B4 (179),

CV-B3 (180, 181), and poliovirus (PV) (182) with significantly

higher levels of enterovirus viral replication in TLR3 deficient mice.

On the other hand, Hsiao et al. demonstrated that TLR9 plays an

important role in the induction of the innate immune response

against EV-A71 (183). Overexpression of MDA5 and RIG-I during

EV-A71 infection was shown to enhance the production of type I

IFNs (184) and dsRNA from CV-B3, PV, and EV-A71 induced

IFNb through activation of MDA5 (185). Lastly, the activation of

the STING pathway has been shown to inhibit viral replication for

multiple viruses including EV-D68 (186) and EV-A71 (187).

Why innate immune responses fail to control infection in some

children who go on to experience severe disease is not clear.

Numerous studies suggest that EV-D68 like other enteroviruses

interferes with the induction of Type I IFN responses. Multiple viral

proteins, both structural and non-structural, have been implicated

in inhibiting the innate immune response by suppressing Type I

IFN signaling. Kang et al. showed that the capsid protein VP3

suppresses the phosphorylation and nuclear translocation of IRF7

as well as ubiquitination of IRF7 by TRAF6 by competitive

inhibition, leading to the repression of interferon transcription

(154). The nonstructural protein, 3D polymerase, is an important
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viral protein during viral replication that has also been implicated in

mitochondrial dynamics and suppressing expression of type I

interferons. Yang et al. showed that the 3D polymerase interacted

with PGAM5 and upregulated the mitofusin 2 protein, leading to a

change in mitochondrial morphology and impairing activation of

the RIG-I receptor pathway that leads to IFNb production (188).

EV-D68 was shown to upregulate suppressor of cytokine signaling 3

(SOCS3) that inhibits the phosphorylation of STAT3 thereby

suppressing the expression of downstream ISGs (189).

Two major EV-D68 proteases namely, the 2A and 3C proteases

have been implicated in the evasion of innate immune responses.

Kang et al. demonstrated that 2A protease cleaves TRAF3, a key

protein in the induction of Type I IFN, during EV-D68 infection

leading to a suppression of interferon production (154). Others

have shown that 2A protease inhibits stress granule formation that

contributes to IFN signaling (190). Xiao et al. demonstrated that 3C

protease cleaves both the RIG-I and TRIM25, which ubiquitinates

RIG-I, essential for the activation of the receptor (191). EV-D68 3C

protease has been shown to bind MDA5 and inhibit its interaction

between MDA5 and MAVS (155). Lastly, 3C protease has been

shown to cleave IRF7 and TRIF, as well as prevent the activation of

IRF3 to inhibit IFN production and to cleave the proteins TAK1

and TRIF, preventing NF-kB signaling (156, 192). Taken together,

these studies suggest that innate IFN responses are induced early in

infection, but evasion of these innate responses likely enables EV-

D68 to establish productive infection in some patients leading to

disease progression.

Evidence of adaptive immune responses induced by EV-D68

comes from serological analysis of patient samples. A screen for

antibodies in CSF of AFM patients showed an enrichment of

Picornaviridae specific antibody responses, compared to control

patients, which was dominated by the Enterovirus genus; EV-D68

specific VP1 capsid protein specific antibodies were confirmed by

ELISA in 85% of AFM patients. Schubert et al. reported detectable

levels of EV-D68 specific binding antibodies in the CSF of AFM

patients by ELISA (145). Harrison et al. demonstrated a high

prevalence of EV-D68 seropositivity in the US using serum

samples that were collected between 2012 - 2013 before the first

major EV-D68 outbreak suggesting that EV-D68 infection may

have been prevalent in the US prior to the outbreak of 2014 (193).

In a cohort in Taiwan, EV-D68 specific neutralizing antibody

responses were found to increase with age suggesting that

exposure over time; ~18% of children between 1 and 2 years of

age were seropositive where 100% 16-49-year-olds were

seropositive (194). Whether these responses were specific to EV-

D68 is not clear as numerous studies have reported significant

cross-reactivity between related enteroviruses. Rosenfeld et al.

demonstrated that antibodies induced against recent isolates of

EV-D68 (2009, 2014, and 2018) in mice and guinea pigs show

significant cross reactivity with the poliovirus type 1/Mahoney

strain (195). Interestingly, healthy human sera from adults were

found to have neutralization activity against EV-D68, EV-A71, and

Poliovirus P1/Mahoney suggesting potential cross-neutralization

across different enterovirus species. This was confirmed in the

mouse model, where antibodies specifically raised against

poliovirus were found to neutralize EV-D68 and vice versa (195).
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Most neutralizing antibodies appear to target EV-D68 VP1 (17, 61,

196, 197) though some of these antibodies have been shown to

cross- neutralize across different clades (197). Vogt et al. (197)

isolated and characterized a number of monoclonal antibodies

(mAb) against EV-D68 VP1. Sixty mAb were isolated from 12

subjects previously infected with EV-D68 during the 2014 outbreak

(11 subjects were infected with EV-D68 from clade B1 and 1 subject

was infected with EV-D68 from clade A1) and tested them for

neutralizing and binding capabilities. Seven of the sixty mAb were

shown, by Western blot, to bind to EV-D68 VP1 and three of those

seven mAb (EV-48, EV-46, and EV-40) were demonstrated to have

cross clade neutralization. mAb EV-48 and EV-46 protected cells

from infection with an isolate from Clade D (US/KY/14-18953),

and EV-40 neutralized the prototypic Fermon strain, exhibiting

cross-clade neutralization. Thirteen other monoclonal antibodies

tested, not confirmed as anti-VP1 antibodies, were also able to

cross-neutralize the clade D (4 mAbs) and Fermon (9 mAbs) strains

(197). Anti-EV-D68 neutralizing antibodies have been shown to

neutralize poliovirus infection in cell culture suggesting that

heterotypic neutralization does occur, but likely at a lower efficacy

than type-specific neutralizing antibodies (195).

There is a paucity of information regarding the nature and type of

EV-D68 specific T cell responses induced during infection. Grifoni

et al. using in silico approaches demonstrated that CD4+ T cell

epitopes appear to be primarily focused within VP1 and other

structural proteins (198). Rajput et al. reported that EV-D68 infected

mice produced IL-17 at levels higher than mice similarly infected with

RV-A, suggesting that infection induces EV-D68 specific Th17 and

gdT cells (153). Kreuter et al. found abundant T cells in the spinal cord

and brain of a child who died from meningomyeloencephalitis caused

by EV-D68. Others have reported that perforin, a marker of CD8 T cell

activity, was detectable in the tissues suggesting that infection likely

induces EV-D68 specific CD8 T cell responses (131). Additional

studies are needed to understand the kinetics and nature of EV-D68

specific CD4 and CD8 T cells induced during infection and the role

these responses play in protection.
EV-D68 treatments and vaccines

Currently, there are no approved antiviral therapies, monoclonal

antibodies, or vaccines for EV-D68. The current guidelines for EV-D68

treatment are supportive care with asthma management and treatment

of bronchoreactivity with bronchodilators and steroids, if necessary.

Commercial intravenous immunoglobulin (IVIG) has also been used in

EV-D68-associated AFM cases as it has been found to have high levels

of anti-EV-D68 antibodies that may confer passive immunity, and also

has immunomodulatory properties. IVIG has been shown to be

protective against paralysis when given early after EV-D68 infection

in a neonatal mouse model (199). Vogt et al. generated twomonoclonal

antibody candidates that have been shown to neutralize EV-D68 with

high potency (197). Wide screening of compounds for activity against

EV-D68 has identified several potential antiviral candidates (200).

Fluoxetine, an FDA approved selective serotonin reuptake inhibitor,

was found to have in vitro antiviral activity against circulating strains of

EV-D68, however a retrospective analysis of non-randomized use in
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human AFM cases in 2018 failed to demonstrate any signal of efficacy

(201). The small molecule guanidine has shown promise in mouse

models, but the mechanism is currently unknown. Telaprevir, an FDA

approved protease inhibitor has been shown to prevent EV-D68

replication by irreversibly binding to EV-D68 2A protease. In a

mouse model, telaprevir improved paralysis outcomes. While several

antivirals designed against enteroviruses, including pocapavir and

pleconaril, failed to demonstrate activity against EV-D68, other

candidates such as the protease inhibitors, rupintrivir and V7404,

that were shown to have EC50s as low as 0.0015 to 0.0051 mM,

warrant further study as potential antiviral candidates with in vitro

EV-D68 activity (202). Lastly, EV-D68 vaccine candidates are being

developed as a preventive strategy against future waves of EV-D68

respiratory disease and AFM if cases continue to rise. Zhang et al. used

an EV-D68 VLP vaccine with Pichia pastoris co-expressing the

precursor P1 protein and 3CD protease that protected both neonatal

mice born from vaccinated dams from lethal EV-D68 infection and

mice who passively received anti-VLP sera (203, 204). Lin et al.

developed a bivalent EV-D68/EV-A71 mucosal vaccine that was

shown to induce high neutralizing antibody titers of EV-D68 and

EV-A71 specific IgG and IgA that cross neutralized multiple EV-D868

and EV-A71 subtypes, and protected neonatal mice against lethal EV-

A71 and EV-D68 infection (203, 204). Krug et al. (205) demonstrated

that an EV-D68 VLP candidate vaccine elicited high levels of

neutralizing antibodies against multiple EV-D68 clades in both

mouse and non-human primate models. Additional trials and studies

will be required to fully elucidate antivirals and vaccines that will

prevent EV-D68 infection and severe symptoms.
Conclusions

EV-D68 causes severe respiratory disease in young children and

has been temporally associated with spinal cord pathology and

paralysis. There has been a significant increase in EV-D68

infections worldwide since the major outbreak of 2014. Infections

appear to follow a biennial pattern until 2018. Epidemiological data

suggests that the likelihood of future EV-D68 outbreaks remain quite

high. The exact reason for this increase in the incidence of infections

is not clear and remains an active area of research. Though progress

continue to be made in developing better surveillance and diagnostic

tools, a number of challenges remain to be addressed. Why children

below the age of 16 are more susceptible to EV-D68 infection is not

clear. Likewise, the exact mechanism of how respiratory infection

with EV-D68 leads to the destruction of spinal cord gray matter is

not known. Better understanding of the nature and kinetics of

immune responses that contribute to protection is key to the

development of better vaccines and therapeutic approaches to

control future outbreaks.
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