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In sub-Saharan Africa (SSA) the burden of non-nucleoside reverse transcriptase

inhibitor (NNRTI) HIV drug resistance (HIVDR) has been high over the years.

Therefore, in 2018 the World Health Organization (WHO) recommended a

regimen based on a integrase strand transfer inhibitor (INSTI), dolutegravir, as

the default first-line antiretroviral therapy (ART) in countries in SSA. The scale-up

of DTG-based regimens in SSA has gained significant momentum since 2018 and

has continued to expand across multiple countries in recent years. However,

whether or not the DTG robustness experienced in the developed world will also

be achieved in SSA settings is still an important question. Evidence generated

from in vitro and in vivo studies suggests that the emergence of DTG HIVDR is

HIV-1 subtype dependent. These findings demonstrate that the extensive HIV-1

diversity in SSA can influence DTG effectiveness and the emergence of drug

resistance. In addition, the programmatic approach to the transition to DTG

adopted by many countries in the SSA region potentially exposes individuals to

DTG functional monotherapy, which is associated with the emergence of DTG

resistance. In this mini review, we describe the current trends of the effectiveness

of DTG as reflected by viral suppression and DTG resistance. Furthermore, we

explore how HIV-1 diversity and the programmatic approach in SSA could shape

DTG effectiveness and DTG HIVDR in the region.
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1 Introduction

Sub-Saharan Africa (SSA) contains almost two-thirds of the people living with HIV

(PLHIV) worldwide (1, 2). Several global efforts have been made to combat HIV infection,

such as the scale up of antiretroviral therapy (ART) (3, 4). However, despite these efforts,

HIV-1 drug resistance (HIVDR) has had a significant impact on HIV control in SSA, as

demonstrated by the prevalence of non-nucleoside reverse transcriptase inhibitor (NNRTI)
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resistance (5, 6). In 2018 the World Health Organization (WHO)

recommended the use of dolutegravir (DTG), an integrase strand

transfer inhibitor (INSTI) as the preferred drug in place of NNRTIs

as the first-line ART regimen in the management of HIV in

resource-limited settings (7). DTG is reported to have high

potency, tolerability, and effectiveness in HIV-1 viral suppression;

exhibits fewer drug interactions; and possesses a high genetic barrier

to resistance (8–10).

Several groups have investigated the potential of the natural

variability of the integrase gene in HIV-1 strains circulating in SSA

for primary INSTI resistance prior to the introduction of DTG.

Most of the studies reported a lack of major INSTI resistance

mutations against DTG and a low frequency of accessory INSTI

resistance mutations. For example, a study in Kenya reported a

number of accessory DTG drug resistance mutations in

polymorphic sites at a frequency of 20% among DTG pre-

treatment PLHIV, and similar studies found frequencies of 5% in

Tanzania and 4.3% in Ethiopia (11–13). Similarly, only accessory

INSTI resistance mutations were reported at a low frequency in

studies from Mozambique (14) and South Africa (15). However,

one multicenter study involving PLHIV in Kenya, Nigeria, Uganda,

Zambia, and South Africa reported a 2.4% prevalence of major DTG

resistance mutations among INSTI- naive PLHIV (16). In addition,

major resistance mutations were also detected in three

Cameroonian studies at frequencies of 0.8%, 5.4%, and 1.4% in

INSTI- naive populations (17–19). The low frequency of primary

INSTI resistance mutations suggests that transitioning to DTG is

likely to be effective in SSA.

However, studies emerging from SSA since the rollout of DTG

are reporting the rapid selection of DTG resistance mutations at

rates that were not observed in the INSTI -naive population

previously. A study conducted a year after the DTG rollout in

Malawi reported major DTG resistance mutations in 8 out of 27

(30%) samples of PLHIV in Malawi (20). Our group’s recent

national survey in Tanzania found a rapid selection of DTG drug

resistance mutations within 18 months of transitioning to DTG

(21). These emerging data suggest an impending danger to the

success of the rollout of DTG in SSA. Evaluation of the pitfalls in the

current approach is necessary to prevent the further spread of DTG

drug resistance and ensure the long-term effectiveness of HIV

treatment in SSA.
2 Treatment outcomes following
dolutegravir based-regimens in SSA

Early evidence from SSA countries that have so far transitioned

to DTG-based ART regimens indicates significant successes in early-

time-point HIV viral suppression compared with NNRTI-based

regimens among PLHIV (22–26). This is consistent with the fact

that DTG-based ART has a better tolerability profile and can induce

a rapid suppression of HIV viral load among PLHIV (8–10). Two

large, randomized, landmark clinical trials, the ADVANCE and

NAMSAL studies, assessed the effectiveness of DTG-based first-

line ART among PLHIV in SSA and reported increased viral
Frontiers in Virology 02
suppression in the DTG-based arms compared with the NNRTI-

based arms (25, 26). Another study, conducted through the African

Cohort Study (AFRICOS) in four countries (Kenya, Uganda,

Tanzania, and Nigeria), that assessed the suppression rates

following the use of tenofovir-lamivudine-dolutegravir (TLD)

reported a viral suppression rate of 94.3% (22). A prospective

cohort study in Lesotho (the DO-REAL study) reported that

thethe country has achieved the third 95 of the 95-95-95 UNAIDS

targets for the HIV cascade of care, with a viral suppression rate of

>95% among PLHIV on DTG-based ART regimens (23). In a recent

South African retrospective study that aimed to assess the outcomes

of DTG-based ART involving two distinct cohorts of PLHIV from

2019 and 2022, it was reported that DTG was associated with

improved clinical outcomes in terms of viral suppression (24). In

Uganda, both clients initiating treatment and those switching from

NNRTI- based to DTG-based regimens showed a high acceptability

and a high viral suppression rate (94%) at 6 months following DTG

use (27). These findings are promising and further validate the

decision to transition to DTG-based ART in SSA.

Nonetheless, early selection of DTG resistance is increasingly

being reported in virologic failures among PLHIV on DTG-based

regimens in SSA. A study conducted in Uganda among PLHIV

infected with non-B HIV-1 subtypes detected several major DTG

resistance mutations— E138A/K, G140A/Q, S147G, Q148R/K, and

G163R—in clients experiencing virological failure on a DTG-based

regimen (28). Another study conducted in Malawi detected at least

one major DTG resistance mutation (R263K, E138K, or S147G) in 8

of the 27 (30%) samples from clients on TLD experiencing

virological failure (20). Similarly, a national representative survey

conducted by our group in Tanzania in 2020 found instances of

acquired DTG HIVDR where the major DTG resistance mutations

Q148K, E138K, G118R, G140A, T66A, and R263K were detected in

PLHIV on DTG-based ART and experiencing high viremia (21).

Preliminary findings from a study of the EMEDT cohort that

evaluated the prevalence of acquired DTG resistance and failure

of viral suppression have shown a very low prevalence of DTG

resistance in virally suppressed populations during the transition,

but a high prevalence among those not suppressed, whereby DTG

resistance was detected in 15% of the population (29). These recent

findings suggest that in SSA settings, emergence of DTG resistance

could be a threat to the effectiveness of the ART program in the

region. Table 1 summarizes the relevant recent studies that have

reported on acquired major and accessory DTG resistance

mutations in SSA.
3 Role of HIV-1 natural diversity on
DTG resistance in SSA

3.1 Major DTG drug resistance mutations
and HIV-1 diversity

A number of studies have shown the role of viral HIV-1 subtype

diversity on INSTI resistance (28, 35–38). SSA is characterized

by the co-circulation of multiple group M HIV-1 subtypes
frontiersin.org

https://doi.org/10.3389/fviro.2023.1253661
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org


Kamori and Barabona 10.3389/fviro.2023.1253661
including A, C, D, G, H, J, K, CFR02_AG, and other inter-subtype

recombinants (39, 40). In addition, HIV-1 groups O and N circulate

in Central and Western Africa (41, 42). Following the WHO

recommendation to introduce DTG in this relatively naive region

with respect to INSTI drugs, a crucial question arises regarding the

potential impact of HIV diversity on the susceptibility and selection

of DTG resistance mutations. While in vitro studies suggest that

DTG can be effective across HIV-1 subtypes, emerging evidence

shows that natural HIV-1 variation can influence the genetic

barrier to resistance and level of resistance conferred by mutations

selected by DTG (43). Therefore, HIV-1 subtype diversity in SSA

could play a crucial role in determining DTG effectiveness in

the region.

Mutations across eight positions in the integrase region have

been identified as being associated with DTG resistance, including
Frontiers in Virology 03
T66K, E92Q, G118R, E138/K/A/T, G140S/A/C, Q148H/R/K, S153

F/Y, N155H, and R263K (44). However, only some, either

individually or combined, are frequently reported in cases of

DTG resistance in SSA (Table 1).

Selection of R263K was first observed in vivo in the SAILING

clinical trial among individuals on a DTG-based regimen

experiencing virologic failure (6). Since then, this mutation has

been frequently selected among individuals on DTG (45). Viruses

harboring R263K show moderate resistance to DTG but have

significantly impaired integrase enzymatic function and viral

replication (46). The deleterious effect of the mutation tends to

differ between subtypes, and has been shown to be higher in subtype

C than in subtype B (47, 48). Nevertheless, in vivo selection of

R263K has been observed in subtypes C, D, CRF02_AG, and B (21,

49–53). Furthermore, some studies suggest that R263K mutations
TABLE 1 Relevant studies reporting the acquired major and accessory INSTI resistance mutations in SSA.

Region Country Year Participants
Prevalence
of INSTI
resistance

Major
INSTI
DRMs

Accessory
INSTI
DRMs

Predicted DTG
susceptibility in
individuals with
INSTI resistance
mutations

References

Eastern
Africa

Tanzania 2020 Treatment
experienced
adults and
children PLHIV

5.8% Q148K, E138K,
G118R, G140A,
T66A, R263K

T97A, Q95K,
E157K

High- level resistance (2/8)
Intermediate resistance (2/
8)
Susceptible (4/8)

Kamori et al.
(21)

Eastern
Africa

Uganda 2019 Treatment
experienced
PLHIV
(raltegravir
experienced but
DTG naive)

47.0% E138A/K,
G140A/Q,
S147G, Q148R/
K, G163R

T97A/T, L74I,
G163R, E157Q,
M50L, V151I

High- level resistance (2/
11)
Potential low- level
resistance (8/11)
Susceptible (1/11)

Ndashimye
et al. (28)

South-
Eastern
Africa

Malawi 2020 Treatment
experienced
PLHIV

30.0% R263K, E138K
S147G

High- level resistance (1/8)
Intermediate resistance (6/
8)
Low- level resistance (1/8)

Van Oosterhout
et al. (20)

South-
Eastern
Africa

Malawi 2019 Treatment
experienced
PLHIV

14.3% R263K, G118R Intermediate resistance (2/
2)

Schramm et al.
(30)

Western
Africa

Nigeria 2014–
2018

Treatment
experienced
PLHIV but DTG
naive

27.3% Q148R, T66A,
S147G, Y143C/
H

L74M, T97A,
F121Y,

Not detected Oluniyi et al.
(31)

Western
Africa

Cameroon 1994–
2010

Treatment
experienced
PLHIV but DTG
naive

12.8% T66A, Q148H,
R263K, N155H

Q95K, T97A,
G149A, E157Q,
D232N

Intermediate resistance (1/
37)
Potential low- level
resistance (1/37)
Susceptible (35/37)

Mikasi et al.
(32)

Western
Africa

Nigeria 2021 Treatment
experienced
PLHIV

3.0% T66A, G118R,
E138K, R263K

High- level resistance (1/1) Abdullahi et al.
(33)

Southern
Africa

Botswana 2015–
2019

Treatment
experienced
PLHIV

32.0% G138E/A/K/T,
G140A, Q148R/
K, G118R,
S147G, N155H,
T66A

D232N,
E157Q, A128T

High- level resistance (6/
12)
Intermediate resistance (3/
12)
Potential low-l evel
resistance (2/12)
Susceptible (1/12)

Seatla et al. (34)
DRMs, drug resistance mutations; INSTI, integrase strand transfer inhibitor; PLHIV, people living with HIV; DTG, dolutegravir.
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may protect against further selection of resistance mutations within

the integrase region (46, 54, 55) and in the reverse transcriptase

region (48). However, studies from Malawi and Nigeria have

demonstrated that this may not be the case. In the Nigeria study,

one individual harbored a combination of T66A, G118R, and

E138K, in addition to an R263K mutation (33). In the Malawi

study, the R263K mutation co-occurred with two other major

INSTI resistance mutations (E138K and S147G) and the accessory

mutation E157Q in one individual. Overall, out of eight participants

with major INSTI resistance mutations (all infected with subtype

C), seven had selected the R263K mutation. Three of these

participants also harbored the accessory mutation E157Q, while

the remaining participants had no additional mutations in

integrase, except for M50I in one individual (20). Importantly, all

individuals in the Malawi study exhibited significantly high levels of

viremia. In another study from Tanzania by our group, we

identified four viremic individuals who were on TLD and

harbored major INSTI resistance mutations; in one individual

infected with subtype C, R263K was detected as a single INSTI

resistance-associated mutation (21). Recently, R263K was reported

in one drug-naive individual infected with subtype C in Ethiopia

(52). However, exposure to DTG in this case was not ruled out.

These emerging data suggest that although the R263K mutation was

thought to be deleterious to the subtype C virus, it may still play an

important role in DTG resistance in the SSA region.

G118R is another important resistance mutation selected by

DTG and rarely by other INSTIs (56). It is associated with a 5–10

-fold reduced susceptibility to DTG. The mutation is associated

with a significant reduction in both strand transfer and 3′
processing activities. Notably, strand transfer activity is relatively

spared in subtype C compared to subtype B. The selection of a

secondary mutation such as H51Y and/or E138K in addition to

G118R was shown to affect the integrase enzymatic activity and

DTG resistance profile in an HIV- 1 subtype-dependent manner

(37). In one study, G118R substitution was selected alone and in

combination with H51Y in tissue culture selection experiments in

CRF02_AG and subtype C viruses but never in subtype B viruses

(37). This further demonstrates the influence of polymorphisms on

the integrase backbone between HIV subtypes in the selection of

DTG resistance mutations. The study by our group identified two

out of four individuals with major INSTI resistance mutations,

harboring the G118R substitution as a single mutation in one case

(infected with subtype A1) and in combination with T66I and

E138K in another case (subtype A1C) (21). Interestingly, the latter

combination of mutations was also observed in a South African

individual failing DTG-based triple therapy (57). Rapid selection of

G118R has also been reported in another recent study in SSA (30).

These findings suggest that G118R could be an important DTG

resistance pathway across non-B subtypes circulating in the

SSA region.

The combination of E138K, G140A/S, and Q148K is another

important pathway to DTG resistance usually observed in INSTI-

exposed individuals. This combination results in a high level of

resistance to DTG. Interestingly, in our study one individual

(infected with subtype A1D) with no known prior exposure to
Frontiers in Virology 04
INSTIs had selected this combination of mutations (21). This

evidence supports the idea that the viral diversity in SSA may

influence the patterns and possibly the frequency of DTG resistance

in SSA. Phenotypic resistance information in the context of

combinations of mutations in non-B backbones is needed to

better understand DTG resistance in the SSA context.
3.2 Naturally arising INSTI resistance-
associated mutations and HIV-1 diversity
in SSA

Given that the genetic backbone can significantly influence the

genetic barrier to a specific mutation, natural integrase variations

have implications for the susceptibility or selection of resistance

mutations to DTG. Integrase is a relatively conserved protein (58);

however, significant variations among HIV subtypes exist. Five

polymorphic integrase positions (M50, L74, T97, V151, and E157)

have been associated with low-level resistance to first- and/or

second-generation INSTIs or an increase in the level of resistance

when they occur alongside other INSTI drug resistance mutations

(59, 60). Specifically, mutations M50, L74, and T97, in combination

with other mutations, have been associated with reduced

susceptibility to DTG (59, 61). The frequency of naturally

occurring variations in these polymorphic positions depends on

the subtypes (Figure 1). Interestingly, there is wide sub-regional

variation in the intra- and inter-subtype prevalence of these

polymorphic mutations in SSA (Figure 1).

The M50I polymorphism can increase DTG resistance

conferred by the R263K substitution in HIV subtype B (59).

M50I has also been selected by DTG in in vitro passage

experiments (59). The polymorphism is highly prevalent in non-B

subtypes circulating in SSA. In HIV subtype A, M50I present in

>50% of the sequences obtained from central Africa while occurring

in about 10% of Subtype A sequences from Eastern Africa. Nearly

one- third of subtype C sequences from Eastern and Southern

Africa harbor this polymorphism. Much lower frequencies are

observed in HIV subtypes D and CRF02-AG (Figure 1). Although

selected by DTG, the M50I substitution does not seem to

compensate for the viral fitness cost of R263K, at least in HIV

subtype B (59). This could indicate that the selection is driven by the

advantage in the resistance profile against DTG. Amid the rollout of

the DTG, whether or not the high background prevalence of the

M50I polymorphism in HIV subtypes circulating in SSA regions

could influence the R263K resistance pathway against DTG needs

to be investigated.

L74 residue is located in the catalytic core domain and is a part

of the hydrophobic cluster near the active site of integrase (62). The

role of L74 substitutions in DTG resistance remains inconclusive.

The L74M substitution can be selected by DTG and increase

resistance conferred by G118R or E138K mutations (26). On the

other hand, L74F in combination with V75I has been reported to

increase resistance levels of N155H or G140S together with levels of

Q148H against DTG by several orders of magnitude (63). In

contrast, L74I is weakly associated with selection by INSTI.
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Analysis of sequences obtained in the SSA region indicate diversity

in the prevalence of L74 polymorphisms. Subtype A and CRF02_

AG from the Central African region tended to have a high

prevalence of L74I and L74M polymorphisms, with CRF02_AG

showing a combined prevalence of >20%. In contrast, a lower

prevalence of L74M/I polymorphisms was observed in subtypes

A, C, and D from the Eastern and Southern African

region (Figure 1).

T97A is a relative common polymorphism enriched in non-B

subtypes. In particular, sequences from Eastern African subtype A

show a frequency of 10.4% compared to 3.7% in those obtained

from Central Africa. A relatively high prevalence of 6.9% is also seen

in CRF02_AG from Central Africa, while subtype C from Eastern

and Southern Africa shows a prevalence of less than 1% (Figure 1).

The polymorphism T97A has been shown to have no impact on the

outcome of DTG treatment in INSTI- naive individuals (64).

However, selection of this mutation has been associated with

increased resistance to DTG in INSTI- experienced individuals

with major INSTI resistance mutations at positions 140 and 148

(61, 65). On the other hand, co-occurrence of the T97A mutation

with DTG- selected N155H and R263K resistance mutations

improves neither the level of resistance nor replicative capacity

(55). This suggest that T97A mutation may be important in

conferring resistance to DTG only in certain resistance pathways.

Although first generation INSTIs tend to select the 140 and 148

mutations, these mutations have also been selected by DTG in vivo,

suggesting the potential relevance of T97A substitution in DTG

resistance (13).

The E157Q substitution is also relatively common in INSTI-

naive sequences from SSA. While a prevalence of less than 1% has

been observed in subtypes A and C, in subtypes D (Eastern Africa)

and CRF02_AG (Central Africa) a prevalence of 3.5% and 6.5%,

respectively, has been reported. To date there is limited evidence of
Frontiers in Virology 05
selection of this mutation by dolutegravir; however, its occurrence

together with R263K has been associated with the compensation of

viral fitness. The combination of these mutations has been reported

in vivo in individuals infected with subtype C (20), suggesting that

E157Q polymorphisms may have some role in conferring DTG

resistance in the SSA context.
4 Role of SSA ART programs in the
emergence of DTG resistance

The accelerated rollout of a fixed- dose combination of TLD in

PEPFAR-funded ART programs throughout SSA has been

commendably rapid and highly effective (29). The push is also

aided by the donor’s desire to phase out the acquisition of the

NNRTI-based regimen, not only because of the clinical benefits, but

also because of the lower cost of DTG-based fixed combination

treatment (66). The transition involves the initiation of all

treatment -naive individuals as well as switching all eligible

individuals on a NNRTI-based first- line regimen to a DTG-based

fixed combination regimen (67). The adopted strategy in many

countries does not require confirmation of virological suppression

prior to switching to DTG. This is in line with the initial studies that

suggested the lack of need for viral load estimation and resistance

genotyping during switching to a DTG-based fixed combination

regimen (25, 26). Therefore, there may be a substantial number of

clients experiencing virological failure that are being switched to

TLD with undetected resistance to NRTIs. In this case such clients

can be subjected to DTG functional monotherapy, which is

associated with the selection of DTG resistance. Indeed, the

emerging data since the rollout indicate that DTG resistance is

more frequently selected in treatment- experienced than in ART-

naive individuals (20, 21). In fact, all of the observed cases of DTG
FIGURE 1

The frequency of polymorphisms in four integrase positions associated with DTG resistance. The figure depicts the frequency of polymorphisms
analyzed from sequences deposited in the Stanford University HIV database. Only HIV subtypes with over 100 sequences per subtype per sub region
are shown. The Western Africa region had fewer than 100 sequences per subtype and therefore was not included. Only the percentages of relevant
substitutions are indicated. Blank pie charts indicate that <100 sequences were available for the particular HIV-1 subtype.
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resistance reported in our study from Tanzania (21), the Malawi

study (20), the Uganda study (28), and the Nigerian study (33) were

from treatment- experienced individuals that transitioned to TLD.

The drug resistance profile in these individuals showed extensive

NRTI resistance mutations that render the tenofovir and

lamivudine backbone in the DTG fixed combination treatment

less susceptible (20, 21, 28, 33).

DTG functional monotherapy together with infrastructural and

other programmatic challenges, including suboptimal ART

adherence, lack of adherence to viral load testing guidelines, poor

retention in care, and limited viral load coverage, may significantly

impair the effectiveness of DTG-based fixed combination

treatments and promote the selection of DTG resistance in SSA

(68–72). Therefore, in order to curb DTG resistance in SSA, it is

essential to ensure that national ART programs in SSA carry out

intensified monitoring of individuals on DTG-based fixed

combination, conduct routine resistance surveillance, and

consider the revision of existing ART guidelines to estimate viral

loads prior to switching to DTG.
5 Conclusion and future perspectives

Recent data since the rollout of DTG provide good indications

that DTG can steer the SSA region toward achieving the third 95 of

the 95-95-95 UNAIDS targets for the HIV cascade of care.

However, it is also becoming clear that SSA settings expose DTG

to factors that threaten its effectiveness and promote the rapid

selection of resistance mutations not previously encountered in

other regions. The diversity of HIV-1 integrase in SSA could allow

for the selection of DTG resistance mutations or combinations of

mutations that are rarely observed in HIV subtype B. Therefore,

measures to control the development of drug resistance are equally

important in this era of DTG. Studies to understand DTG resistance

in the context of SSA should be conducted to inform the ART

programs in the region.
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