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Modeling of vertical transmission
and pathogenesis of
cytomegalovirus in pregnancy:
Opportunities and challenges
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1Department of Gynecology and Obstetrics, The Johns Hopkins Hospital, Baltimore, MD, United States,
2Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland, Baltimore,
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In addition to facilitating nutrient, oxygen, and waste transfer between developing

fetus andmother, the placenta provides important immune barrier function against

infection. Elucidation of the complexity of placental barrier function at the

maternal-fetal interface has been greatly aided through experimental model

organism systems. In this review, we focus on models of vertical transmission of

cytomegalovirus (CMV), a ubiquitous double-stranded DNA viruses whose vertical

transmission during pregnancy can lead to devastating neurological and obstetric

sequelae. We review the current evidence related to guinea pig andmurine models

of congenital CMV infection, discuss the possible translatability of a non-human

primate model, and conclude with recently developed technology using human

placental organoids.
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Introduction

Among its many roles, the placenta serves to protect the developing fetus from potential

teratogens and microbes. Congenital infections can occur when the placental barrier is

breached, allowing pathogens to enter fetal circulation and exert deleterious effects on

growth, organ development, and even survival. Study of congenitally acquired infections has

focused on the maternal-fetal interface, where pathogens derived from multiple sources

including the bloodstream and reproductive tract cause disruption of the placental barrier

and transmission across the fetal membranes, reaching the developing fetus (1).

In this mini-review, we focus on vertical transmission of cytomegalovirus (CMV), a

double-stranded DNA herpesvirus that is the most prevalent congenital infection, occurring

in an estimated 0.6 to 6% of pregnancies depending on the population (2, 3). The virus can

cause a spectrum of teratogenic effects, from asymptomatic infection to neurocognitive

impairment, microcephaly, ventriculomegaly, and growth restriction, and is the most

common nongenetic cause of sensorineural hearing loss in higher income nations (4, 5).
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Studies of basic placental biology have been used to decipher how and

under what conditions CMV crosses from maternal to fetal

circulation and how such effects can occur.

The human placenta forms from cytotrophoblasts creating

anchoring villi into the uterine decidua basalis beginning during the

second and third weeks of pregnancy (6). Humans have hemochorial,

villous, discoid placentas, in which fetal and maternal circulations are

separated by a single layer of trophoblast cells, facilitating efficient

exchange of oxygen and nutrients (7). Indeed, the placenta becomes

the sole source of gas, nutrients, antibodies, and waste exchange

between maternal and fetal circulation (8). This also renders the fetus

vulnerable to potentially harmful substances and pathogens that are

capable of placental crossing, especially through such a thin maternal-

fetal interface.
Current understanding of
cytomegalovirus vertical transmission

To understand how CMV breaches the placental barrier, it is first

important to understand the basics of placental immunology.

Maternal leukocytes lie within the decidua, and within the

chorionic villi, fetally-derived macrophages known as Hofbauer

cells are present (9). In the first trimester of pregnancy, about one

third of decidual cells are leukocytes, which can be subdivided into

uterine natural killer (uNK) cells, macrophages, dendritic cells, and T

lymphocytes (both natural killer and regulatory) (9, 10). In humans,

uNK cells represent the most abundant placental leukocyte in early

pregnancy, diminishing in number by term, and under physiological

conditions are responsible for spiral artery remodeling via disruption

of vascular smooth muscle cells and extracellular matrix, critical steps

for proper placentation (11, 12). In humans, CMV replicates in the

decidua, and so it is unsurprising that the first line of defense against

CMV are decidual CD8+ effector memory T cells and natural killer

(NK) cells, with apolipoprotein B mRNA-editing enzyme catalytic

polypeptide 3A (APOBEC3A) serving to curb viral replication (1). In

the setting of maternal viral infection, uNK cells are largely

responsible for limiting spread into fetal circulation, likely

explaining the low rate of vertical transmission of CMV in the first

trimester (Figure 1) (13). Indeed, uNK cells have been shown in co-

culture experiments to efficiently eliminate human CMV-infected

autologous fibroblasts using immune synapses (13). On the other

hand, Hofbauer cells (CD68+, CD64+, CD32+, CD16+), upon

encountering viral pathogens, become polarized and secrete pro-

inflammatory cytokines to recruit peripheral immune cells to the

site of infection, also inflicting damage to the placenta in the process

and likely leading to a host-inflicted compromise of the placental

barrier (14).

As alluded to above, early pregnancy is a particularly immune-

privileged time period during gestation, due in large part to the

maternal innate immune system. In fact, following primary infection

with CMV, vertical transmission of the virus occurs in 30-40% of

cases during the first and second trimesters, with up to 70% of cases

being transmitted in the third trimester (15, 16). The reasons why

advancing pregnancy is associated with increased susceptibility to
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vertical transmission of CMV are likely multifactorial. Decreasing

numbers of uNK cells in addition to CMV evasion of NK cell

recognition via downregulation of MHC class 1 complexes and

upregulation of MHC decoy UL18 on infected NK cells renders the

placenta more vulnerable to pathogenic invasion (17).
Experimental animal models of
congenital CMV vertical transmission

Our understanding of the mechanisms by which viruses evades

the cell-mediated immune response resulting in vertical transmission

and human fetal infection has been greatly aided through the

development of model systems. In terms of model organisms, three

major animal models have emerged in this field of investigation:

guinea pig, mouse, and non-human primate. The guinea pig model of

congenital CMV infection came about after the findings by Connor

and Johnson reported in 1976 that direct guinea pig CMV (gpCMV)

inoculation in weanling guinea pigs resulted in high-titer infection in

the salivary glands, thymus, and resulted in multifocal inclusion cell

encephalitis with intracerebral inoculation (18). Like humans, guinea

pigs also exhibit hemochorial placentation, although they utilize a

labyrinth rather than villous strategy, with a dense meshwork of

maternal and vascular channels (7, 19). Transplacental transmission

of gpCMV in guinea pigs was subsequently demonstrated two years

later, with successful fetal infection occurring in 24% of pregnancies

in which maternal primary infection occurred during what would

correspond to the second and third trimesters of human gestation

(20). Since these foundational studies, investigators have used the

guinea pig model to demonstrate that gpCMV enters host cells via a

glycoprotein complex whose receptor is PDGFRA (21, 22).

The gpCMV pentameric complex (PC) consisting of virion

envelope proteins gH, gL, UL128, UL130, and UL131A has been

the focal point in the development of a vaccine against human CMV

(hCMV). Specifically, Schleiss et al. used the the guniea pig model of

congenital CMV infection to show that a two-dose vaccine series with

live, attenuated gpCMV (either genetically modified to lack PC or

with intact PC) protected against maternal viremia compared to

placebo (23). Importantly, the vaccine harboring the PC led to

improved immunogenicity and decreased vertical transmission in

the model (23). Another vaccination strategy has been to use purified

gpCMV glycoproteins to provoke a host antibody response prior to

conception (24). Despite these advances, we still lack a vaccine against

CMV that is approved for use in humans to protect against congenital

CMV infection.

Understanding the pathogenesis of congenital CMV vertical

transmission has been further aided by mouse models, which may

improve our ability to engineer targeted and effective vaccination or

treatment of the disease in humans. Like humans and guinea pigs,

mice also display hemochorial placentation and like guinea pigs and

other rodents, mice use a labyrinth rather than villi (7). Vertical

transmission of murine CMV (mCMV) was first demonstrated in

1979, just as other animal models of the disease were coming into the

arena. Chantler et al. inoculated young adult non-pregnant mice with

high-titer mCMV intraperitoneally, then waited one year and allowed
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them to become pregnant before studying their embryos (25). They

found that cultured embryonic cells contained mCMV particles and

mCMV-associated histopathological changes.

Unlike the guinea pig model, however, the murine CMV model has

been limitedback resistance to vertical transmission in immunocompetent

mice. For this reason, an immunocompromised (severe combined

immunodeficient, SCID) mouse model has been the staple for congenital

CMV investigation inmice. For instance,Woolf et al. (26) performed time

pregnancy in SCIDmice inoculated with high-titermCMVon embryonic

day0 (E0)orE3-E5anddemonstratedboth transplacental cross ofmCMV

and characteristic fetal changes including microcephaly and growth

restriction along with upregulated fetal cerebral interleukin-1alpha (IL-

1alpha) expression suggestive ofneuroinflammation.Despite its benefits at

aiding to elucidate the pathogenesis of congenital CMV disease, the SCID

mouse model of vertical transmission of CMV is limited by the

immunocompromised nature of the host. In the immune-intact

condition, the maternal immune response to viral pathogens relies
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importantly on both peripheral and decidual CD8+ effector-memory T

cells, which likely serve overlapping and complementary functions of

killing virus-infected cells and effecting a memory response, respectively

(27, 28). Thus, the SCID mouse model of congenital CMV disease may

serve as a good representation of infection under immunocompromised

conditions (for instance, in pregnant women co-infected with HIV/AIDS

or who are transplant recipients on immunosuppression), but likely does

not recapitulate the complex interplay between host and pathogen in

immunocompetent individuals.

Approaching the human condition more closely would likely

require a non-human primate (NHP) model of congenital CMV

infection. Similarities between humans and NHPs with regard to

pregnancy anatomy and physiology include both relying on

hemochorial, villous discoid placentation, and having similar

immune systems (7). While no NHP model of congenital CMV has

yet been described, we do have a basic understanding of CMV

pathogenesis in NHP in general, based on several seminal studies.
B

A

FIGURE 1

Immune function of the placenta over gestational time and in response to primary CMV infection. (A) In the first trimester, uterine NK cells (uNK)
remodel spiral arteries and defend against viral infections that threaten to invade into the chorionic villi. (B) In the second and third trimesters, numbers
of uNK cells dwindle, leading increased placental susceptibility to primary CMV infection. Upon infection, placental T cells and antigen presenting cells
(APCs) incudling dendritic cells, macrophages, and Hofbauer cells, recruit peripheral T lymphocytes, inducing placental inflammation.
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Rhesus CMV (RhCMV) infects rhesus mecaques (Macaca

mulatta), and thus this host-pathogen interaction has been utilized

experimentally to model the disease in humans. Lockridge et al. (29)

exposed heatlhy juvenile rhesus mecaques to oral or intravenous

RhCMV and observed clinical symptoms, plasma levels, and immune

response following inoculation. They found that inoculated animals

exhibited splenic tissue that was polymerase chain reaction (PCR)

positive for CMV DNA in all animals examined, and multiple other

tissues (pancreas, ileum, kidney, lung, thymus, submandibular gland

and mesenteric lymph nodes in one animal. In addition, a

monocytosis was noted by 4 weeks post injection (wpi)

accompanied by a decreased CD4/CD8 T lymphocyte ratio at 2

wpi. Further, anti-RhCMV IgG antibodies were first detected at 2

wpi, with a majority of animals exhibiting a response by 4 wpi and a

peak of IgG titers between 10 and 25 wpi. Clinically, IgG avidity

testing is used to temporally differentiate acute primary infection

from distant primary infection. Low CMV IgG avidity indicates

primary infection within the past 3 to 4 months, while high avidity

excludes recent infection within the prior 3 months (30). In rhesus

macaques, increased avidity was noted between 2 wpi and 25 wpi,

consistent with findings in humans (29). Investigating the viral

replication of RhCMV in rhesus epithelial cells, Lilja and Shenk

(31) identified genetic loci implicated in viral entry and efficient

viral replication. These studies aid in our understanding of CMV

infection and pathogenesis in an immunocompetent postnatal host

closely related to humans.

While we lack a robust evidence base for congenital CMV

transmission in NHP models, there are lessons to be learned from

vertical transmission primate research related to other infectious

diseases. For instance, Terzian et al. identified natural Zika virus (ZIKV)

infection among two species of NHP, Callithrix and Sapajus species from

Brazil (32). ZIKV infection induces both humoral and cell-mediated

immune responses in NHP, and transplacental transmission of this virus

in pregnant NHPs leads to fetal cerebral white matter lesions and

periventricular gliosis as well as axonal and ependymal damage as

measured histopathologically on autopsy (33, 34). This fundamental

work in congenital ZIKV infection has led to a preclinical study in

rhesus macaques testing sofosbuvir, a viral RNA synthesis inhibitor

(currently Food and Drug Administration, FDA, approved for the

treatment of hepatitis C), in an effort to prevent vertical transmission.

Gardinali et al. (35) inoculated healthy, pregnant macaques with a viral

suspension of ZIKV strain ES 2916/2015/ID 250 during the first and

second trimesters of gestation. They then treated half the animals with

sofosbuvir (or no treatment as control) and measured maternal weight,

creatine kinase (CK) elevation, rash, and fetal death. They observed similar

clinical courses, includingweight loss,CKelevation, rash, and fetal death in

both groups. The untreated group exhibited placental calcifications, with

variable fetal manifestations frommild abnormalities to severe congenital

ZIKV-associated defects (e.g. skull and thorax abnormalities) and fetal

death. Immune phenotyping in untreated dams included high numbers of

Hofbauer cells in untreated but not treated dams, and lower numbers of

myeloid-derived suppressor cells (MDSCs) in untreated compared to

treated dams in placental samples, While the untreated group exhibited

ZIKV RNA in placental samples, ZIKV RNA and replication were

undetectable in sofosbuvir -treated dams. Importantly, sofosbuvir

treatment protected four fetuses against ZIKV transmission, pointing to

this pharmacological agent as a potentially viable option for ZIKV
Frontiers in Virology 04
congenital infection prophylaxis, Whether similarly focused antiviral

interventions would prevent spread of CMV in a primate preclinical

model remains to be determined. These studies provide mechanistic

insight into the pathogenesis of vertical transmission of viral vectors as

well as suggesting how such infections may be prevented, yet more work

will be needed to validate these findings in humans and to use these results

for the development of targeted therapeutics.
Placental organoids to model
viral infection

We have reviewed the most widely used model organisms for CMV

vertical transmission and pathogenesis, highlighting the relative strengths

and limitations of each (see Figure 2 for summary). One criticism of any

animal model is that it can never fully replicate the physiology of human

tissue. An emerging technology that goes beyond animal modeling and

may be used to study vertical transmission of viral pathogens (as well as a

myriad of other questions of mammalian pregnancy physiology) is the

humanplacental organoid.Once thenativemicroarchitectural structure of

the human placenta was characterized and the technology to isolate and

culture trophoblast cells became available, it became possible to design

models of human-derived tissue of in vitro placentation. The first human

trophoblast organoids consisted of a two-dimensional layer of villous

cytotrophoblast andextravillous trophoblast cells (36). This in vitro system

displays similar transcriptomic and DNA methylation profiles as

compared to in vivo placenta, forms placental villi-like structures, and

produceshormones andproteinsmuch like the in vivoplacenta (36).More

recently, the same group of investigators has established a three-

dimensional (3-D) human trophoblast-derived organoid (37). Using

first trimester derived human placental tissue, these investigators

dissected off chorionic villi, digested the tissue and deposited the

digested tissue in Matrigel droplet, with organoids forming over the

ensuing days (37).

Independently, Karvas et al. (38) developed a trophoblast

organoid model of the human placenta using human trophoblast

stem cells (hTSCs). They found that hTSCs seeded into 3D Matrigel

droplets form 3D organoids with similar tissue architecture and

human chorionic gonadotropin (hCG) production as in vivo

human placenta. These investigators finally exposed their 3D

trophoblast organoids to the emerging pathogens ZIKV and SARS-

CoV-2 to test placental transfer. They found that both viruses were

successfully able to enter trophoblast cells and produce key surface

proteins, demonstrating tractability for modeling of human placental

infection in vitro. A subsequent investigation employing human

placenta-derived trophoblast organoids and dedicua organoids

discovered that both types of organoids secrete cytokines and

chemokines, and that trophoblast organoids constitutively secrete

antiviral type III interferon IFN-l2 (39) To address the question of

how hCMV is transmitted across the placenta and how the placenta

responds immunologically to this invader, Yang et al. (39) infected

trophoblast and decidua organoids with hCMV strains AD169r

(GFP-tagged) and TB40E (mCherry-tagged), and found that while

trophoblast organoids, representing the fetal contribution to the

placenta, were highly resistant to infection, decidual organoids,

representing the maternal contribution, were susceptible to

infection, as quantified by high GFP and mCherry expression in
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organoids. These results imply a robust innate immune response by

trophoblast organoids, and indeed the investigators identified

differences in transcriptome profiles between trophoblast and

decidual organoids, including a greater number of differentially

expressed genes in response to hCMV infection in the former

compared to the latter. In particular, hCMV induced H3Y1 (H3.Y

Histone 1), KHDC1L (KH Domain Containing 1 Like), members of

the PRAME family, and TRIM49A and B (Tripartite Motif

Containing 43) in trophoblast but not decidual organoids,

potentially explaining the relative resistance to infection in

the former.

This set of carefully conducted experiments demonstrates how

human placental organoids can be used to dissect the individual

contributions of fetal and maternal immune components to defense

against viral pathogens, as just one example of the power of this tool.

Altogether, these findings open up the possibility of in-depth

molecular characterization of human placental response to CMV

and other viral pathogens as well as potential high throughput drug

screens for prevention of viral pathogen vertical transmission.

While human placental organoids are a new technology with many

potential applications, the limits of this technologymust be contemplated.

One potential drawback is that these organoids are derived from first

trimester samples, and as mentioned above, hCMV transplacental

transmission most commonly occurs in the latter two trimesters of

pregnancy. Another potential limitation is lack of the maternal

peripheral immune milieu, including circulating cytotoxic and

regulatory T lymphocytes important in host response. It is also unclear

whether trophoblast organoids retain any of the native uNK cells or fetal

Hofbaur cells of the in vivo condition, calling into question whether this

model could be used to study the host-pathogen interaction from an

immunological standpoint. Thirdly, the integrity of the placental barrier at

the maternal-fetal interface has yet to be rigorously tested in this model,

leaving open the possibility of a “leaky” or disrupted barrier function in

vitro. Thus, carefullydesigned experiments, perhaps co-culturingplacental

organoids with maternal immune cells prior to viral inoculation, will be

needed if these organoids are to be used to model vertical transmission of

CMV or other microbes.
Frontiers in Virology 05
Conclusion

In summary, we have reviewed the current progress towards a

model of vertical transmission of CMV, which have been used not

only to better understand the disease, but also to provide clues for

developing a treatment or even a possible vaccine. For instance,

placental organoids can provide a platform for high-throughput

drug screening to determine candidate compounds that prevent

hCMV entry into cells, viral replication, or viral protein production.

Further, in vivo animal models can be used to test safety and efficacy

of candidate compounds for either prevention (e.g. vaccination or

cellular entry inhibition) or treatment of acquired congenital CMV.

While more work is needed to be done on this front, with no currently

Food and Drug Administration (FDA)-approved treatment or

prevention strategy for congenital CMV infection, our current tools

and refinements in our ability to approach the in vivo human

condition will likely allow us to reach these goals.
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FIGURE 2

Comparison of relative advantages and drawbacks of various models of vertical transmission. Shown above are depictions of the different model systems
of congenital infection. Shown below is a table of the relative advantages and drawbacks of each model system, emphasizing immune system, genetic
tractability, life cycle, and cost.
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