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Viruses are highly evolvable biological entities capable of wreaking havoc on

our society. Therefore, a better understanding of virus evolution is important

for two main reasons: (i) it will lead to better management of current diseases

and prevention of future ones, and (ii) it will contribute to a better

understanding of evolutionary processes and their dynamics. In order to

understand the evolution of viruses as a whole, it is necessary to consider

different elements that shape virus evolution. In this review, we give a general

overview of the most relevant factors that determine the evolution of plant

viruses. We will focus on mutation rates, epistasis, robustness, recombination,

genome organization, virus-host interactions, transmission, community

interactions and abiotic factors. Since this review gives a summarized

overview of the most important factors in virus evolution it can be a useful

starting material for anyone interested in approaching (plant) virus evolution.
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Introduction

Viruses can rapidly tune the efficiencies of their replication, intra-host movement and

between-host transmission to maximize their fitness (1). The consequent virus

adaptation and propagation through host populations impacts the infected hosts’

health as well as the ecosystem (2). The study of virus evolution provides useful

knowledge about specific evolutionary parameters that can be targeted to disrupt virus

populations and prevent or mitigate viral diseases (3). Furthermore, studying viruses

allows us to address evolutionary questions in a relatively short period of time (4).
The dimensions of plant virus evolution

The evolution of viruses is shaped by numerous factors (5, 6). In this minireview we

will use plant viruses as an exemplar to outline the most important factors described so

far. In order to better address this, we have classified each component affecting virus
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evolution into different levels (Figure 1). In the following

sections, we will summarize each one.
Intrinsic viral factors

Plant viruses can have DNA or RNA genomes of different

sizes, architectures, and with different mutation rates.
Sources of genetic variation

The main drivers of genetic variation in viruses are

mutation, recombination and reassortment. Generally, single

stranded RNA and reverse transcribing (RT) viruses have

higher mutation rates (10-6 – 10-4 substitutions per nucleotide

per cell infection) compared to double or single stranded DNA

viruses (10-8 – 10-6) (7–11). The mutation rate is higher in RNA

and RT viruses due to the high-error prone RNA-dependent

RNA polymerase and RNA-dependent DNA polymerase

(retrotranscriptases, RT) that lack the proof-reading ability or

base excision repair (12). Viral mutation rates can be measured

as per strand copying or per cell infection estimated rate. These

two definitions stem from two different modes of replication: (i)

linear replication (mutation rates defined as per strand copying),

where multiple copies of the genome are made from the same

template or (ii) geometric replication (mutation rates defined as

per cell infection), where progeny strands can also be used as

templates leading to a geometrical increase in the number of

molecules and mutations (8). The actual replication mode of

viruses can alternate between the two mechanisms (13). Some

viruses can have lower mutation rates and generate less diversity

due to their persistent or acute lifestyle (14). Other factors

affecting mutation rates in plant viruses are mutagens, host

antiviral enzymes and spontaneous chemical reactions (15).
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RNA viruses tend to have smaller genomes since the

probability to accumulate detrimental mutations is smaller

(16–19). Although there are exceptions to this rule, for

example, closteroviruses that infect plants with genome sizes

of up to 20kb (the usual size is 4-12 kb) (20). These large

closterovirus genomes can be explained by the acquisition of

new genes, such as heat shock protein 70, and the presence of

duplicated genes (21). It appears 20kb is the size limit for an

RNA virus without a proofreading activity (20). Compared to

animal viruses, plant viruses have lower mutation rates and are

genetically more stable since they are under weaker immune

selection, strong stabilizing selection, strong bottlenecks or

different replication modes (21–33). Mutations generate

diversity and novelty upon which natural selection can act,

thus giving rise to new variants in the virus population (15). A

higher mutation rate does not confer greater adaptability,

instead high mutation rates of viruses (especially RNA) are in

line with the hypothesis in which faster replication is favored at

the cost of fidelity (11, 34, 35). This type of replication generates

a large proportion of detrimental mutations, and viruses live in

an error-threshold or mutation-selection balance. Still, with so

many new variants generated, the chances that a beneficial

mutation will appear in the population will also increase. This

is important in adaptation to new environments and evasion of

host defenses (36–39).

A way that viruses can mitigate the detrimental effects of

large mutation rates and possibly adapt better to new

environments is through epistasis, the interaction between

mutations resulting in a lower or higher fitness of the virus.

Epistasis seems to be the main driving force behind across-host

fitness trade-offs and adaptive processes since it determines the

effect of mutations (40). Most studies on epistasis in plant viruses

focused on RNA viruses and showed a prevalence of antagonistic

epistasis, where two mutations combined have higher fitness

than each of the single mutations. This antagonistic epistasis is
FIGURE 1

Representation of some of the most relevant factors affecting plant virus evolution, from an ancestral to the evolved virus.
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highly dependent on the host background (41–45). In RNA

viruses the effect of epistasis is large due to their small genome

size, presence of secondary structures, overlapping genes and

multifunctional proteins where disruption of one function

affects many others (38). Another important phenomenon that

affects the fitness of viruses in their hosts is antagonistic

pleiotropy, where mutations that are beneficial in one host can

be detrimental in another (46–48). Because of that, antagonistic

pleiotropy can lead to viruses capable of crossing host or species

barriers that provoke novel diseases.

Viruses can also buffer the effects of large mutation rates

through robustness, or the constancy of the phenotype in the

face of heritable perturbations (genetic or epigenetic) or non-

heritable perturbations such as external stressors (for example

heat, light changes or developmental noise) (49). Robustness acts

on the population level and helps viruses deal with genome

instability by increasing their tolerance to mutations (50, 51).

Due to their nature (high mutational pressures, small genomes

that maximize the impact of mutations, and constantly changing

environmental conditions) and the fact that they constantly face

changing and unpredictable environments (host switches,

environmental perturbations, and changes in the physiological

state and the immune responses of the host), robustness plays an

important role in RNA viruses (52–57). Genetic robustness and

environmental robustness have been described in an RNA plant

virus (51), confirming the theoretical postulates (50). Generally,

plant viruses that are more robust will have more chances of

survival and further propagation in unpredictable environments.

Recombination is an event in which two RNA or DNA viruses

coinfecting a single host cell exchange parts of their genome (15,

58–63). Recombination is frequent in (+) RNA, ssDNA and

reverse transcribing viruses and rare in (-) RNA viruses (37, 62,

64–69). While reassortment is exclusive to segmented RNA and

ssDNA viruses, where different viruses exchange genome

segments and pack heterologous molecules into a single virion

(70–74). These differences in recombination rates can be

explained by the evident differences in the biology of (-) RNA

viruses compared to (+) RNA, ssDNA and reverse transcribing

viruses. In (-) RNA viruses the genomes are quickly bound to the

nucleocapsid subunit which limits the recombination events (70).

Many theories have emerged about the evolutionary advantages of

recombination, explaining it as: (i) a sort of sexual reproduction,

(ii) a derivate of the processivity of the RNA polymerase, or (iii) a

‘recombination dependent replication ’ mechanism in

geminiviruses, where fragments of the genome are recovered to

create recombinant viruses (70, 75, 76). While the most plausible

theory regarding the existence of reassortment in segmented RNA

viruses and ssDNA (begomoviruses and nanoviruses) describes

this process as a by-product of the segmented genome structure

(77). Various studies have shown that recombination plays an

important role in RNA and ssDNA virus evolution and

epidemiology by affecting virulence, pathogenesis, host range,

vector transmission, and evasion of host immunity (62, 78).
Frontiers in Virology 03
Changes in virus genomes caused by recombination or

reassortment can lead to the emergence of new virus diseases

and cause significant changes in symptomatology (79–81).
Genome architecture

A considerable proportion of known plant viral species are

multipartite and their genome architecture is composed of

several segments which are packaged in different viral particles

that are independently transmitted (82). A multipartite genome

allows viruses to rapidly tune their gene expression by adjusting

their relative copy number (83). The adjustments in the

proportion of virus segments can regulate the expression of

viral genes, thus possibly having a consequential impact on viral

fitness and infectivity. This rapid adjustment is particularly

useful under environmental changes, as it allows the

multipartite virus to have an immediate adaptive response

(84). The genome formula of a virus is adaptive and it changes

in different hosts (85). Furthermore, even if infection starts with

different relative abundances of each segment, their final

abundance will evolve to a host-specific segment ratio

equilibrium (86). This frequency-dependent selection may

happen at the replicative level or during encapsidation.

However, it has been shown that not all segments of a

multipartite virus need to infect and replicate within the same

host cell since viral proteins can be exchanged between host cells,

ensuring the availability of all viral proteins needed to assemble

new virus particles (87). This phenomenon implies that each

fragment may be exposed to slightly different conditions

depending on the status of the particular cell they are infecting.
Virus interactions with hosts
and vectors

Interactions with hosts

In order to successfully infect a cell of a new host, viruses

need to first overcome the host defense response. Plants have

evolved mechanisms to restrict virus replication and movement

in order to resist infection or tolerate it (88–94), while viruses

evolved mechanisms to fight the host defense response (95, 96).

This ongoing arms race between plant defense mechanisms and

viruses drives co-evolutionary events in both of them. So far,

multiple studies described how individuals with different degrees

of susceptibility and tolerance to virus infection impact the

evolution of the virus, where more permissive hosts select for

less virulent and specialized viruses, while more restrictive hosts

select for more virulent and generalist pathogens (97).

Laboratory experiments show that deficiencies in different host

immunity mechanisms determine the rate of evolution of a plant

RNA virus, its genetic adaptations, and the degree of
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specialization of the evolved virus (98). Virus adaptation to

certain host defenses can be highly complex, since virus

evolution is influenced by the host’s genetic background (48).

At the host population level, the defenses vary between

individuals. This heterogeneity of plant defense responses (in

tolerance or susceptibility to a virus) plays an important role in

shaping the patterns of virus evolution (99, 100). For some

viruses, the age of the host may influence and lead to an

increased virulence of a virus (101). The age of the host can

result in viruses with altered infectivity rates, that evolve at

different rates and acquire different mutations (102). Notably,

even when a virus adapts to a specific new host, the newly

acquired adaptive mutations may be hampering the virus’ fitness

on their original host (103–106).

The evolution of a virus in a host is in part also shaped by the

host factors that are necessary for virus replication and

transmission. Virus not only needs to adapt to the host to

overcome its defenses but also to efficiently hijack the cell,

manipulating it for its benefit (107, 108). The host factors

required by a virus for successful infection are specific to each

host and virus and vary depending on the step of the

infection (109).
Transmission

In order to spread to a new host and ensure its survival in a

host population, a plant virus needs to be transmitted from the

infected plant to a naïve one. This transmission can occur in two

different manners: (i) vertically – a way of transmission where

plant viruses can reach the often virus-free reproductive tissues

of the same plant, accumulate in the seeds and infect the

offspring (110, 111), and (ii) horizontally – where a virus is

transmitted from an infected plant to a healthy one by physical

contact. This mechanical transmission can be caused by the use

of agricultural machinery, grazing animals, plants touching due

to winds, exposure to infected plant-derived products, etc. (112–

114). A key element in virus horizontal transmissions is vectors.

Vectors are living organisms that can acquire and disseminate

plant viruses by causing mechanical damage to the plant host,

disrupting its mechanical barriers and allowing the virus to

passively penetrate the plant cuticle and cell wall. In order to be

horizontally transmitted by a vector, a virus needs to be

efficiently acquired and transmitted by its vector. If a virus is

acquired but inefficiently transmitted, the spread of the virus

through a host population will be hampered (115). In addition,

viruses may evolve different ways to manipulate their plant hosts

to generate compounds or morphological phenotypes that

attract vectors (116, 117), which will increase the chances of

the virus being transmitted to a new host. The nature of the

manipulation of the vector’s choice and the success of the viral

spread is complex (118, 119) and has deep evolutionary

consequences (120), especially since the feeding preference of
Frontiers in Virology 04
the vector affects the types of hosts a virus encounters, and

therefore shapes the evolution of a virus toward a specialist or a

generalist pathogen (121).

The transmission mode can also shape virus evolution.

Experimental evolution has shown that adaptation to vertical

transmission can result in less virulent viruses with a lower viral

load (110, 122). Apart from epidemiological traits, the mode of

transmission can also affect the nucleotide diversity of virus

populations, where an RNA virus had higher nucleotide

diversity when vertically transmitted (via tubers) in

comparation with horizontal transmission (via vector or

mechanic) (123). The horizontal transmission inflicts a

stronger pressure on viruses as this mode of transmission

constrains virus population in each of the different steps of the

transmission (124) and the interactions with vectors seem to

impose a stronger selective pressure on certain viral proteins

than the interactions with hosts or other viruses (125). During

the horizontal transmission of the virus and its posterior

systemic movement through the new host, the virus

population goes through bottleneck events. In these bottleneck

events only a reduced fraction of the virus population finds a

new host, thus limiting the genetic variation of the population

and potentially leading to genetic drift (25, 27, 29). Narrow

bottlenecks that impose a strong burden on the genetic variation

of a virus population are frequent, yet still some viruses may be

under wider bottlenecks (126). Soft bottlenecks may even be

beneficial for the virus population as they allow the exploration

of rugged genotypic spaces with multiple fitness peaks (127).
Viral community interactions

When a virus infects a new host, it might have to interact

with other pathogens that are infecting the same host. In this

section we will focus on viral interactions with other viruses and

the evolutionary consequences of these interactions (128), still,

there are complex interactions with other non-viral pathogens

that will not be discussed here (129).

Hosts can be co-infected with more than one virus at the

same time (130). It has been shown that a considerable

proportion of both symptomatic and asymptomatic wild

plants are coinfected by multiple virus species or strains (131).

In mixed infections viruses interact with each other which can

result in neutral interactions, a range of competitive interactions

that are detrimental for at least one of the competitors (132), or

beneficial interactions. There is an increased interest (and

therefore more reported cases) in beneficial interactions, where

at least one virus aids another virus’ replication and

propagation (133).

The structure of a viral community can be host-dependent

(134). Therefore, a virus can reach different viral loads and be

transmitted with different efficiencies depending on the host that

is being infected with multiple viruses (135). This host effect on
frontiersin.org

https://doi.org/10.3389/fviro.2022.994057
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
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co-infection and the way viruses interact with their hosts and

their vectors will impact the virus transmission (136, 137).

Furthermore, it will influence the fitness of the virus and affect

the evolution of all viral populations interacting in the co-

infected host. The competition between two viruses can occur

within the host but also within the vector. Examples have been

found where a virus that was a weaker competitor in the host

became the dominant competitor in the vector (138). This

suggests that evolutive pressures a virus has to face during

competition are context-dependent. Within the conditions that

influence viral communities, abiotic environmental factors can

also play a key role by modifying the diversity of a virus

population and the already complex virus-virus interactions

(139, 140).
Abiotic environmental conditions

The environment plays a key role in virus evolution and it

affects all other factors mentioned previously. As described in

section 1, high mutation rate, recombination, robustness and

segmented genomes would be favored in variable environments,

since they promote a rapid response of the virus to changing

conditions. At the host level, abiotic conditions modify the

physiological, hormonal and transcriptional state of the plant

(141–144). This change in the plant status affects the plant -

virus interaction (145), especially considering that abiotic

stressors and viral infection activate the same signaling

pathways in the plant and often interfere with one another

(146). Therefore, many abiotic conditions (such as drought, high

temperatures, elevated salinity, CO2 levels, etc.) have been

described as having an effect on the course of plant virus

infection. These environmental stressors change the plant -

virus interaction by inhibiting plant host defense responses

and promoting plant susceptibility to viruses, which in turn

aids viral infection and symptom development although reverse

effects have also been observed (147–160). Effects of certain

abiotic stressors on plant virus infection are becoming

increasingly important in the wake of climate change, in

particular, temperature increase (161). For example,

seasonality (that is directly correlated with temperature)

negatively affected an RNA virus accumulation during winter

(162). Environmental conditions can also modify virus

transmission. Higher light intensity, temperature, CO2 and

water levels, changed the level of aphid propagation and seed

transmission of plant viruses by affecting plant resistance or

aphid behavior (155, 163–173).

In summary, the optimal fitness of a virus is highly

dependent on the environment (174). However, environmental

impact on virus epidemiology may also vary depending on the

host’s genetics (175). Notably, under certain stressful

environments virus-infected plant hosts can even have higher
Frontiers in Virology 05
fitness and survival compared to non-infected plants (176–179).

This environmental-induced change in the host-virus

interaction can have consequences on the nature of their

relationship; for example, switching it from a parasitic

relationship to a mutualistic one (180).
Conclusions

The study of the factors that shape the evolution of viruses is

extremely important from both the evolutionary and epidemic

point of view. In order to unveil these factors and their impacts,

plant viruses have proven to be a great practical complex

adaptive system used in experimental studies because of (i)

their rapid evolutionary rate, (ii) lesser ethical concerns

regarding plant hosts, (iii) the lower costs and requirements of

plant maintenance compared to animal maintenance, making it

feasible to perform experiments on a large number of hosts, and

(iv) the safer side of plant virus research compared to animal

research. However, there are many aspects characteristic to

plant-virus pathosystems one has to keep in mind when doing

plant virus evolutionary experiments: the existence of

multipartite genomes, reassortment, specific modes of

transport through the host, vector transmission, and a host

that lacks an adaptive immune system. All in all, the

particularities of plant viruses are highly interesting from the

evolutionary point of view. The interesting traits of plant viruses

as a system to study evolution should further heighten the

interest of scientists (and funders).
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13. Martıńez F, Sardanyés J, Elena SF, Daròs J-A. Dynamics of a plant RNA
virus intracellular accumulation: Stamping machine vs. geometric replication.
Genetics (2011) 188:637–46. doi: 10.1534/genetics.111.129114

14. Roossinck MJ. Lifestyles of plant viruses. Phil Trans R Soc B (2010)
365:1899–905. doi: 10.1098/rstb.2010.0057

15. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses:
patterns and determinants. Nat Rev Genet (2008) 9:267–76. doi: 10.1038/nrg2323

16. Nowak MA. What is a quasispecies? Trends Ecol Evol (1992) 7:118–21.
doi: 10.1016/0169-5347(92)90145-2

17. Jenkins GM, Rambaut A, Pybus OG, Holmes EC. Rates of molecular
evolution in RNA viruses: A quantitative phylogenetic analysis. J Mol Evol
(2002) 54:156–65. doi: 10.1007/s00239-001-0064-3

18. Holmes EC. Error thresholds and the constraints to RNA virus evolution.
Trends Microbiol (2003) 11:543–6. doi: 10.1016/j.tim.2003.10.006

19. Belshaw R, Pybus OG, Rambaut A. The evolution of genome compression
and genomic novelty in RNA viruses. Genome Res (2007) 17:1496–504.
doi: 10.1101/gr.6305707

20. Lauber C, Goeman JJ, Parquet M, del C, Thi Nga P, Snijder EJ, et al. The
footprint of genome architecture in the largest genome expansion in RNA viruses.
PloS Pathog (2013) 9:e1003500. doi: 10.1371/journal.ppat.1003500
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century of tobamovirus evolution in an Australian population of nicotiana glauca.
J Virol (1997) 71:8316–20. doi: 10.1128/jvi.71.11.8316-8320.1997
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63. Pérez-Losada M, Arenas M, Galán JC, Palero F, González-Candelas F.
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Butković and González 10.3389/fviro.2022.994057
91. Lewsey M, Palukaitis P, Carr JP. “Plant-virus interactions: Defence and
counter-defence,”. In: JA Roberts, editor. Annual plant reviews online. Chichester,
UK: John Wiley & Sons, Ltd (2018). p. 134–76. doi: 10.1002/9781119312994.
apr0366
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110. Cobos A, Montes N, López-Herranz M, Gil-Valle M, Pagán I. Within-host
multiplication and speed of colonization as infection traits associated with plant
virus vertical transmission. J Virol (2019) 93:e01078–19. doi: 10.1128/JVI.01078-19

111. Pagán I. Transmission through seeds: The unknown life of plant viruses.
PloS Pathog (2022) 18:e1010707. doi: 10.1371/journal.ppat.1010707

112. McDaniel L, Maratos M, Farabaugh J. Infection of plants by tobacco
mosaic virus. Am Biol Teach (1998) 60:434–9. doi: 10.2307/4450516

113. Fageria M, Nie X, Gallagher A, Singh M. Mechanical transmission of
potato virus y (PVY) through seed cutting and plant wounding. Am J Potato Res
(2015) 92:143–7. doi: 10.1007/s12230-014-9418-4

114. Ranawaka B, Hayashi S, Waterhouse PM, de Felippes FF. Homo sapiens:
The superspreader of plant viral diseases. Viruses (2020) 12:1462. doi: 10.3390/
v12121462

115. Ryckebusch F, Peterschmitt M, Granier M, Sauvion N. Alfalfa leaf curl
virus is efficiently acquired by its aphid vector aphis craccivora but inefficiently
transmitted. J Gen Virol (2021) 102:001516. doi: 10.1099/jgv.0.001516
Frontiers in Virology 08
116. Mauck KE. Variation in virus effects on host plant phenotypes and insect
vector behavior: what can it teach us about virus evolution? Curr Opin Virol (2016)
21:114–23. doi: 10.1016/j.coviro.2016.09.002

117. Vasquez DF, Borrero-Echeverry F, Rincon DF. Vector manipulation by a
semi-persistent plant virus through disease symptom expression. BioRxiv
[Preprint] (2020). doi: 10.1101/2020.08.19.258178

118. Cunniffe NJ, Taylor NP, Hamelin FM, Jeger MJ. Epidemiological and
ecological consequences of virus manipulation of host and vector in plant virus
transmission. PloS Comput Biol (2021) 17:e1009759. doi: 10.1371/journal.pcbi.
1009759

119. Porath-Krause A, Campbell R, Shoemaker L, Sieben A, Strauss AT, Shaw
AK, et al. Pliant pathogens: Estimating viral spread when confronted with new
vector, host, and environmental conditions. Ecol Evol (2021) 11:1877–87.
doi: 10.1002/ece3.7178

120. Gandon S. Evolution and manipulation of vector host choice. Am Nat
(2018) 192:23–34. doi: 10.1086/697575

121. Dietzgen R, Mann K, Johnson K. Plant virus–insect vector interactions:
Current and potential future research directions. Viruses (2016) 8:303.
doi: 10.3390/v8110303

122. Pagán I, Montes N, Milgroom MG, Garcıá-Arenal F. Vertical transmission
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Parets E, et al. Plant virus evolution under strong drought conditions results in a
transition from parasitism to mutualism. Proc Natl Acad Sci U S A (2021) 118:
e2020990118. doi: 10.1073/pnas.2020990118
frontiersin.org

https://doi.org/10.1094/PHYTO-08-20-0369-R
https://doi.org/10.1094/PHYTO-08-20-0369-R
https://doi.org/10.1093/ve/veab017
https://doi.org/10.1016/j.apm.2021.10.008
https://doi.org/10.1111/nph.12797
https://doi.org/10.3389/fpls.2015.00723
https://doi.org/10.1016/j.jplph.2014.11.008
https://doi.org/10.1016/j.jplph.2014.11.008
https://doi.org/10.1111/tpj.13557
https://doi.org/10.1016/j.envexpbot.2022.104869
https://doi.org/10.1016/j.envexpbot.2022.104869
https://doi.org/10.3390/v12020216
https://doi.org/10.1099/00221287-15-1-210
https://doi.org/10.1099/00221287-15-1-210
https://doi.org/10.1016/S0065-3527(08)60600-4
https://doi.org/10.1093/emboj/cdg74
https://doi.org/10.1099/vir.0.83328-0
https://doi.org/10.1094/MPMI-22-5-0498
https://doi.org/10.1094/MPMI-22-5-0498
https://doi.org/10.1111/j.1438-8677.2012.00582.x
https://doi.org/10.1104/pp.113.221044
https://doi.org/10.3389/fpls.2015.00903
https://doi.org/10.1371/journal.pone.0136062
https://doi.org/10.1371/journal.pone.0136062
https://doi.org/10.5423/PPJ.NT.06.2015.0107
https://doi.org/10.5423/PPJ.OA.12.2015.0259
https://doi.org/10.3389/fpls.2016.01680
https://doi.org/10.1016/j.jprot.2018.11.015
https://doi.org/10.1007/s12600-020-00847-y
https://doi.org/10.1007/s12600-020-00847-y
https://doi.org/10.3389/fpls.2021.649768
https://doi.org/10.1038/s41396-019-0519-4
https://doi.org/10.1038/s41396-019-0519-4
https://doi.org/10.1007/BF02357888
https://doi.org/10.1046/j.1461-9563.2000.00064.x
https://doi.org/10.1038/srep19120
https://doi.org/10.3389/fpls.2016.00552
https://doi.org/10.1038/s41598-017-14023-6
https://doi.org/10.1016/j.virusres.2017.07.009
https://doi.org/10.1111/eea.12661
https://doi.org/10.3390/plants8090304
https://doi.org/10.1111/1744-7917.12661
https://doi.org/10.1016/j.virol.2019.02.001
https://doi.org/10.1016/j.virol.2019.02.001
https://doi.org/10.1371/journal.pone.0174398
https://doi.org/10.3389/fpls.2018.00703
https://doi.org/10.1038/s41598-021-03462-x
https://doi.org/10.1111/nph.13631
https://doi.org/10.1111/j.1469-8137.2008.02627.x
https://doi.org/10.1111/j.1469-8137.2008.02627.x
https://doi.org/10.1016/bs.aivir.2020.01.003
https://doi.org/10.1111/mpp.13172
https://doi.org/10.1073/pnas.2020990118
https://doi.org/10.3389/fviro.2022.994057
https://www.frontiersin.org/journals/virology
https://www.frontiersin.org

	A brief view of factors that affect plant virus evolution
	Introduction
	The dimensions of plant virus evolution

	Intrinsic viral factors
	Sources of genetic variation
	Genome architecture

	Virus interactions with hosts and vectors
	Interactions with hosts
	Transmission

	Viral community interactions
	Abiotic environmental conditions
	Conclusions
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


