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Introduction

Coronaviruses have been responsible for severe outbreaks worldwide over the past 20

years. Most recently, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-

CoV-2) virus was responsible for a global pandemic leading to over 500 million

documented cases and over 6 million deaths as of May 2022 (1). Although the

primary symptoms of SARS-CoV-2 infection are associated with the respiratory

system, there is increasing evidence that severe infection is also associated with

neurological complications. Over one third of patients diagnosed with SAR-CoV-2

experience neurological symptoms including stroke, headache, fatigue, impairment of

consciousness, myalgia, seizures, smell impairment and taste impairment (2–4). The

cause of the neurological symptoms remains unknown.

Damage to neuronal axons in the central nervous system (CNS) can cause headaches,

fatigue, nausea, and disorientation (5, 6). In addition, axonal damage is associated with

the development of several neurodegenerative diseases including multiple sclerosis (MS),

Amyotrophic Lateral Sclerosis (ALS), and Alzheimer’s disease (7–9). The overlap in the

symptoms of axonal damage and the neurological symptoms associated with severe

SARS-CoV-2 infection led to the hypothesis that SARS-CoV-2 infection may result in

axonal damage (10, 11). In support of this hypothesis serum levels of neurofilament

light chain (NfL), a highly specific biomarker of axonal damage, are elevated in in

SARS-CoV-2 infected patients.

Coronaviruses, including Middle Eastern Respiratory (MERS), SARS-CoV and

SARS-CoV-2, activate the cellular kinases p38-MAPK and Casein kinase 2 (CK2) (12–

20). Inhibition of these kinases during infection reduces viral replication suggesting that

these kinases are specifically targeted by the virus to promote infection (16, 19). Aberrant

activation of both p38-MAPK and CK2 can induce axonal damage through the

disruption of axonal transport (21–25). In this opinion piece we discuss a possible role
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for SARS-CoV-2 mediated activation of CK2 and p38-MAPK in

inducing the axonal damage associated with infection. We also

discuss how the release of pro-inflammatory cytokines by

neighboring cells may trigger the initial phosphorylation

events that ultimately result in axonal damage. Finally, we

discuss how pharmaceutical interventions targeting aberrant

kinase activation during SARS-CoV-2 infection could be used

to reduce the axonal damage associated with infection.
CNS infection by SARS-CoV-2

Although they are not typically thought of as neuroinvasive

viruses, there is ample evidence demonstrating that

coronaviruses can infect neurons if given the opportunity.

SARS-CoV can infect neurons within the central nervous

system and cause neurological symptoms similar to what has

been observed for SARS-CoV-2 (26). Another closely related

coronavirus, HCoV-OC43, uses axonal transport to spread

between neurons (27). The neurotropism of SARS-CoV-2 has

been an area of intense research since the beginning of the

pandemic. The majority of the early data on this topic came from

autopsies on patients who succumbed to the infection. In

support of direct neuronal infection by SARS-CoV-2, neurons

stained positive for the SARS-CoV-2 spike protein in sections of

fixed brain tissue (28). However, it should be noted that viral

RNA levels in the brain appear significantly lower than in other

organs such as the lung or kidneys (29). In addition, some

studies have failed to find viral infection in neurons of patients

that succumbed to infection (30). These data suggest that the

CNS is likely not a primary target of SARS-CoV-2, however,

even a low level of infection may be sufficient to cause

significant damage.

While primary brain samples have provided valuable

insights into the neurological pathology of SARS-CoV-2

infection, the interpretation of results is complicated by

interpatient variability and the heterogenous nature of the

clinical course of infection. Recent advances in the derivation

of 3-D cerebral organoids from human pluripotent stem cells

have facilitated the study of viral CNS pathology in a highly

controlled system. Cerebral organoids contain the cell

types, multi-cellular structures, and epigenomic signatures

typically found in the developing human brain (31, 32).

Immunofluorescence imaging of SARS-CoV-2 infected

cerebral organoids showed co-localization of the SARS-CoV-2

nucleocapsid protein with both neurons and neuronal

progenitor cells further demonstrating the capacity of SARS-

CoV-2 to infect neural cells (28, 33). Additional data generated

using single cell sequencing of infected brain organoids showed

SARS-CoV-2 transcripts present in multiple CNS cell types

including neurons, glia, and neural stem cells (28). Areas of

the brain organoid with high levels of infection also had

increased levels of TUNEL-positive cells suggesting that
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infection may lead to local toxicity within the brain (33). This

result is consistent with reports on SARS-CoV which showed

extensive neuronal loss at the sites of high levels of infection (34).
Axonal damage as a result of SARS-
CoV-2 infection

Axons are long projections in nerve cells that are responsible

for transmitting information both within the CNS and from the

CNS to peripheral organs. The severe neurological

manifestations of SARS-CoV-2 infection prompted researchers

to investigate if infection could cause damage to axons within the

CNS. To determine if axonal damage occurred as a result of

SARS-CoV-2 infection researchers measured the levels of

neurofilament light chain (NfL) in the serum of patients

hospitalized for SARS-CoV-2 infection. Neurofilaments (NFs)

are highly abundant cytoskeletal proteins found primarily in

axons. Damage to the axonal membrane leads to release of NFs

into the cerebrospinal fluid (CSF) and blood. Serum and CSF

levels of neurofilament light change (NfL), which has the highest

solubility of the subunits, are used as a biomarker to detect

axonal damage (35, 36). During the acute stage of infection

serum NfL levels were significantly higher than in healthy

controls (37–39). Higher serum NfL levels correlated with

worse clinical outcomes including admittance to intensive care

unit and the need for mechanical ventilation (39). Follow up

examination on patients with elevated NfL levels showed that

NfL levels decline rapidly after the acute stage of infection (37).

These data suggest that the axonal damage caused be SARS-

CoV-2 infection may be more temporary than what is observed

in neurodegenerative diseases.

As research continues into the neurological manifestations

of SARS-CoV-2 infection it will be important to quantify the

extent of axonal damage using proton magnetic resonance

spectroscopy to noninvasively measure axonal damage. This

method has been successfully used to measure axonal damage

in patients with MS (5). Analysis of magnetic resonance imaging

(MRI) images from SARS-CoV-2 patients with neurological

complications showed significant changes due to infection

however a more targeted examination is needed to determine

if these changes included axonal injury (40).
Disruption of axonal transport leads
to axonal damage

Healthy neurons require the translocation of a wide variety

of cellular cargo to spatially discrete neuronal regions including

the neuronal soma, axonal initial segment, pre-synaptic

terminals, and nodes of Ranvier (24, 41). Within the axon

cellular cargo is primarily transported by the molecular motor
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proteins conventional kinesin (kinesin-1) and cytoplasmic

dynein (CDyn) which move along microtubules in a process

referred to as fast axonal transport (FAT) (42). Conventional

kinesin powers anterograde FAT which moves cargo away from

their place of synthesis in the neuronal soma to distal regions of

the axon. Conversely, retrograde FAT is driven by CDyn and

involves the movement of degraded materials, defective

organelles, or neurotrophic signals from axonal subdomains

back to the neuronal soma. Inhibition or misregulation of FAT

can directly lead to axonal damage and eventual neuronal death

[reviewed in (43–45)]. More specifically, mutations that disrupt

the activity of molecular motor proteins result in progressive

axonal degeneration in a distal to proximal manner (22, 46).

The activity of both CDyn and conventional kinesin can be

modulated through cellular kinases. These effects can either be

direct, through the phosphorylation of specific subunits of the

motor proteins [reviewed (47, 48)], or indirect by

phosphorylation of the adaptor proteins that link cellular

cargoes to the motor proteins. Activation of the cellular

kinases casein kinase 2 (CK2) and p38-MAPK can inhibit

retrograde FAT, however, it is not known whether this

inhibitory effect involves direct phosphorylation of specific

CDyn subunits (23–25). CK2 and p38-MAPK activation also

has the potential to impact anterograde FAT. p38-MAPK

directly phosphorylates the motor domain of kinesin-1, which

reduces the interaction of kinesin-1 with axonal microtubules

(Figure 1) (24). Aberrant CK2 activation leads to increased

phosphorylation of both kinesin-1 heavy and light chains, the

later resulting in the release of kinesin from its cargo

(Figure 1) (25).
SARS-CoV-2 infection activates p38
and CK2

Multiple respiratory viruses including respiratory syncytial

virus, and influenza virus, have been shown to active p38

signaling (49, 50). Coronavirus infection can result in

activation of both p38-MAPK and CK2 (12–14, 16–19). The

spike protein of SARS-CoV was sufficient to activate CK2

whereas the 3a protein has been shown to activate p38-MAPK

(12, 14). Bouhaddou et al. investigated overall changes in

phosphorylation of cellular and viral proteins following SARS-

CoV-2 infection (16). Their results showed that infection of

Vero E6 cells, which are highly susceptible to SARS-CoV-2,

resulted in dramatic increases in the activity of multiple cellular

kinases including p38-MAPK and CK2. Expression of the SARS-

CoV-2 N protein alone was sufficient to activate CK2, suggesting

that this protein may be responsible for kinase activation during

infection (16). Inhibitors of p38-MAPK reduce viral replication

of both MERS and SARS-CoV-2 demonstrating that this kinase

is likely specifically targeted by these viruses and increasing that
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likelihood of activation being conserved across multiple cell

types (16, 19). In addition to activation of p38-MAPK through

the expression of SARS-CoV-2 proteins, it is also possible that

the generation of double stranded RNA (dsRNA), which occurs

during viral genome replication, could result in p38-MAPK

activation (51, 52).

Neurons express both p38 and CK2 (53, 54). Therefore, if

neurons were to be infected with SARS-CoV-2 it is possible that

these kinases could become activated. Consideration of the

activation of p38-MAPK and CK2 during SARS-CoV-2

infection – both pathways with known connections to axonal

dysfunction, and the observed axonal damage in SARS-CoV-2

infected patients results in a hypothesis that SARS-CoV-2 infects

cortical neurons resulting in increased activity of p38-MAPK

and CK2 which in turn causes deficits in FAT. This

misregulation of axonal transport damages the axon which

leads to the observed increase in serum NfL (Figure 1).

As noted in the previous section, SARS-CoV-2 infection of

CNS neurons remains a rare outcome of infection (30). In

addition, olfactory sensory neurons appear to be resistant to

infection, with the virus instead infecting sustentacular cells in

the olfactory epithelium (55). In mice ACE2 is primarily

expressed in astrocytes around the microvasculature, radial

glial cells, epithelial cells, as well as cerebral pericytes (56). A

very recent publication showed that in the developing human

cortex SARS-CoV-2 infection was limited to cortical astrocytes

with minimal infection of other cortical populations (57). For

this reason, one essential question to ask is if the virus could

induce axonal damage through kinase activation in the absence

of direct neuronal infection. SARS-CoV-2 infection induces a

massive inflammatory cytokine response which includes IL-6

and IL-1b (58–60). Exposure to the SARS-CoV-2 spike protein

alone is sufficient to induce secretion of IL-6 by epithelial cells

(61). In addition, viral activation of IL-1b can promote the

secretion of IL-6 demonstrating the feedback loops that promote

the production of these cytokines from infected cells (62). Both

IL-6 and IL-1b can activate CK2 and p38 respectively (63–66).

p38 activation following viral infection has been shown to

promote IL-1b expression which may in turn promote further

kinase activation (50). For this reason, direct infection of

neurons by SARS-CoV-2 may not be required for the

induction of axonal damage. If the virus infects non-neuronal

supporting cells, such as astrocytes, which are adjacent to

neurons these cells may secret IL-1b and IL-6 which could

activate p38-MAPK and CK2 within nearby neurons leading to

misregulated axonal transport and subsequent axonal

damage (Figure 1).

Critical to testing both of these hypotheses will be an

examination of axonal FAT following SARS-CoV-2 infection.

To determine if any observed defects in axonal transport are due

to kinase activation, in vitro experiments should be performed

with and without inhibitors of p38-MAPK and CK2.
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Discussion

SARS-CoV-2 activates cellular kinases as it proceeds through

the viral life cycle. Activation of these kinases has the potential to

impact a number of cellular processes. It has begun to be

appreciated that one of the processes directly impacted by

cellular kinases is axonal transport. Misregulation of axonal

transport can cause axonal damage. Therefore, activation of

cellular kinases may be one of the mechanisms by which SARS-

CoV-2 induces the axonal damage that leads to impaired nerve

function. The association between the acute and chronic

neurological symptoms associated with SARS-CoV-2 infection
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is only beginning to be understood but it is possible that axonal

damage contributes to both of these pathological conditions. It’s

worth noting that related coronaviruses have been found in the

brains of patients with MS and a link has been suggested between

viral infection and development of the disease (67). The

symptoms of MS differ widely from those associated with

SARS-CoV-2 infection, however, this finding suggests the

potential for long term neurological complications following

viral neuroinvasion.

Viral activation of neuronal kinases may represent an

essential event in the development of axonal damage, and

could be a promising target of therapeutic intervention. Highly
FIGURE 1

Model linking SARS-CoV-2 kinase activation to axonal damage. Both SARS-CoV-2 and the cytokines IL-1 and IL-6 can activate p38-MAPK and
CK2 (red arrows). Activation of p38-MAPK and CK2 can impair the axonal transport of the molecular motor proteins cytoplasmic dynein and
kinesin-1(conventional kinesin). Solid black arrows indicate phosphorylation of kinesin-1 subunits (KHC = kinesin heave chain, KLC = kinesin light
chain). Whether p38-MAPK and CK2 inhibit retrograde axonal transport through dynein phosphorylation has not yet been established (dashed
arrow). By altering the activity of kinases involved in the regulation of FAT SARS-CoV-2 may promote FAT abnormalities eventually triggering
neuronal dysfunction and pathology.
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specific, brain-permeable kinase inhibitors have recently been

developed (68). Inhibitors of p38 and CK2 activation show great

potential as antivirals against SARS-CoV-2 (69–71). Treatment

with these drugs may have a multifaceted effect on the

development of neurological symptoms first by reducing the

overall viral load, second by rescuing axonal transport and

improving the neurological symptoms associated with SARS-

CoV-2 infection.
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