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Toward the unveiling of HIV-1
dynamics: Involvement of
monocytes/macrophages in
HIV-1 infection

Sayaka Sukegawa* and Hiroaki Takeuchi*

Department of Molecular Virology, Tokyo Medical and Dental University, Tokyo, Japan
HIV-1 targets the monocyte/macrophage lineage and CD4+ T cells for its

replication. The efficiency of infection, replication, and cell-to-cell spread

differs between these cell types. These differences are caused by various

factors such as viral tropism, viral proteins, host factors, and cell proliferation.

However, the precise mechanisms of how macrophages influence HIV-1

infection have not been fully elucidated. Macrophages are long-lived cells

susceptible to infection predominantly with R5-tropic strains of HIV-1.

Although co-receptor use switches from CCR5 to CXCR4 in up to 50% of

patients during AIDS progression, R5-tropic strains remain predominant in the

remaining patients. Compared to HIV-1-infected T cells, infectedmacrophages

are less susceptible to HIV-induced cytopathic effects and survive for more

than a few weeks. Efforts to cure HIV-1 may be thwarted by the existence of

reservoir cells that cannot be targeted by ART. Resting CD4+ T lymphocytes

are thought to be the primary reservoir cells, but recent studies demonstrated

that monocyte/macrophage lineage cells may also act as viral reservoirs. This

review will focus on the impact of monocytes/macrophages during HIV-1

replication, the establishment of the reservoirs, and recent approaches toward

HIV-1 eradication by specifically targeting monocyte/macrophage

lineage cells.
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The mode of HIV-1 entry into macrophages

Macrophages have a crucial role in capturing foreign entities by endocytosing or

phagocytosing pathogens as the first line of defense. They contribute to the adaptive

immune response by presenting antigens to T cells, and to innate immunity by regulating

inflammation via cytokine secretion (1). Macrophages express several receptors on their

plasma membranes, including pattern-recognition receptors (PRRs), which contribute
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significantly to recognizing pathogens for phagocytosis.

Phagocytosed proteins are processed and presented in

histocompatibility complex class II (MHC class II) to activate

CD4+ T lymphocytes, while exogenous proteins such as viral

proteins are presented on histocompatibility complex class I

(MHC class I) to activate CD8+ T lymphocytes. In addition, the

phagocytosed proteins can be presented on MHC class I, which is

called cross-presentation. Macrophages and dendritic cells (DCs)

play a critical role as antigen-presenting cells (APCs). Once

pathogens are phagocytosed, these cells degrade and ingest

exogenous proteins, then cross-present antigens on MHC class I

to activate CD8+ cytotoxic T lymphocytes (2). PRRs function as

sensors that rapidly initiate innate immune responses after

binding with pathogen-associated molecular patterns

(PAMPs) (3). Interferons (IFNs), secreted after the recognition

of PAMPs by PRRs, have the potential to inhibit HIV-1 infection.

IFNs also induce the expressions of several interferon-stimulated

genes (ISGs), including SAMHD1, APOBEC3, Mx2 → MX2,

tetherin, SERINC, and Siglec-1, which are well-known host

factors that restrict HIV-1 replication (4). The functions of these

host factors in HIV-1 replication are described in detail in the

following section.

Despite their role in the clearance of pathogens, monocytes/

macrophages as well as CD4+ T cells are targeted by HIV-1 for

its replication. HIV-1 entry into the host cell begins with the

attachment of viral envelope (Env) to CD4+ T-cell surface

receptors, resulting in the exposure of the V3 loop of Env-

gp120 following conformational changes induced by

attachment. Sequentially, chemokine receptors CXCR4 or

CCR5 are bound by Env-gp120, allowing insertion of viral

Env-gp41 into the cell membrane and entrance of the viral

capsid core into the host cell (5, 6). Macrophages are long-lived

cells expressing CD4 as the primary receptor and chemokine

receptors CXCR4 and CCR5 as co-receptors imbuing

susceptibility to infection with HIV-1. The R5- and dual-tropic

HIV-1 strains preferentially infect macrophages and memory-

type CD4+ T lymphocytes by utilizing the CCR5 co-receptor,

whereas most other CD4+ T lymphocytes are infected with X4-

tropic viruses utilizing CXCR4. Co-receptor usage is thus one of

the factors determining virus susceptibility, with several other

factors such as differences in host cell proliferation and the

existence of viral protein or host factors being significantly

associated with disease progression after HIV-1 infection

(7, 8). Generally, R5-tropic viruses are predominant at the

early stages of infection and are associated with cell-to-cell

transmission in individuals, whereas X4-tropic viruses usually

emerge later (9). At this time, co-receptor usage switches from

CCR5 to CXCR4, according to disease progression from acute to

chronic infection in up to 50% of AIDS patients (9). However,

R5-tropic virus predominance is sustained in the remaining

patients. It is still unclear which conditions or factors are

associated with facilitating this switch in tropism, but the

series of HIV-1 infections with X4- or R5/X4-dual tropic HIV-
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1 are strongly associated with progression to AIDS by

accelerating the reduction of CD4+ T cells (9).
Host and viral proteins involved in
HIV-1 replication in myeloid
lineage cells

Several factors are involved in the regulation of HIV

replication, and a sufficient supply of nucleotides (dNTPs) is

essential for efficient reverse transcription and the subsequent

production of proviral DNA. Because the concentration of

cellular dNTPs is strictly regulated by host cell cycle status, the

characteristics of reverse transcription in non-dividing myeloid

cells and activated CD4+ T cells are different. Cell cycle status

greatly affects the level of ribonucleotide reductase subunit R2,

which determines the amount of dNTPs available for reverse

transcription (RT) (10). In addition, sterile alpha motif domain

and HD domain-containing protein 1 (SAMHD1) was reported

to be a host factor restricting HIV-1 and Vpx-deficient HIV-2

replication at the RT stage by depleting intracellular dNTPs in

non-dividing cells such as DCs, macrophages, and resting CD4+

T cells (11–13) (Figure 1). It was reported that dNTP levels are

approximately 130- to 250-fold lower in macrophages than in

activated CD4+ T cells (14). HIV-2 Vpx counteracts the function

of SAMHD1 by its degradation in a proteasome-dependent

manner. In HIV-1, cyclin L2 promotes the proteasomal

degradation of SAMHD1 (15). Thus far, the important roles of

several other host factors including APOBEC3F, APOBEC3G,

tetherin, and MX2 have also been implicated in HIV-1

replication in monocytes/macrophages (Figure 1). The

apolipoprotein B editing complex (APOBEC) is a family of

cellular cytidine deaminases. The APOBEC3 family is

incorporated into nascent virions, which induce G-to-A

hypermutation in the target cell. The viral cDNA produced by

this mutation leads to HIV-1 genome changes, resulting in the

inhibition of HIV-1 infection (16–18). HIV-1 Vif counteracts the

function of this through proteasomal degradation. Macrophages

express APOBEC3G, APOBEC3F, and APOBEC3DE, which are

all upregulated by IFN-a stimulation. Similar to other APOBEC

family members, APOBEC3A (A3A) is also upregulated by

stimulation with IFN-a secreted during innate immune

responses (18, 19). Interestingly, A3A is highly expressed in

monocytes, whereas its expression is weak in fully differentiated

macrophages (19). As the result of the silencing of A3A, HIV-1

infected monocytes increase virus replication. This differential

expression level of A3A is tightly connected to the susceptibility

to HIV-1 infection (16, 19). Myxovirus-resistance protein 2

(MX2, also known as MXB) is another well-known host viral

restriction factor expressed in monocytes/macrophages and CD4

+ T cells. MX2 protein limits HIV-1 replication by restricting

nuclear import and repressing proviral DNA integration into
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host chromatin (20–23) (Figure 1). This protein is a member of

the RNA polymerase II-associated factor 1 (PAF1) family,

identified in HeLa-CD4 cells by siRNA screening to identify

restriction host factors in HIV-1 replication. A previous study

reported that PAF1 was expressed in monocytes/macrophages in

addition to T lymphocytes, and that the PAF1 complex (PAF1c)

had a role in the inhibition of HIV replication by repressing RT

and proviral DNA integration (24). There are two possible

mechanisms of PAF1c restriction: first, according to their

observations, a large quantity of PAF1 complex is localized in

the nucleus. The interaction of PAF1 and RNA polymerase II is

thought to be involved in mRNA transcription, elongation, and

stability (25); second, the interaction with SKI8 (WDR61), which

is part of the SKI complex, is associated with mRNA decay (25).

Furthermore, the interactions of PAF1/SKI8 with DNA and

RNA in the cytoplasm allow it to function as a PRR. Tetherin

(BST-2, also known as CD317) is highly expressed on the surface

of macrophages, in contrast to its absence or low-level expression

by CD4+ T cells. Tetherin plays a crucial role in retaining

progeny virions in infected cells and preventing their release

(Figures 1 and 2A). However, Vpu, an accessory protein of HIV-

1, antagonizes this function by downregulating tetherin by

interfering with the trafficking of newly synthesized and
Frontiers in Virology 03
recycling of tetherin proteins from the plasma membrane

(26–29). In 2015, the serine incorporator (SERINC) family,

especially SERINC3 and SERINC5 members, was newly

identified as a host factor antagonized by Nef protein, which

inhibited infection by progeny viruses (Figure 2C). The

mechanism involves the incorporation of these proteins into

newly synthesized virus particles, resulting in interference with

their fusion to secondary target cells (30, 31). Furthermore, Zutz

et al. revealed that endogenous SERINC5 is highly expressed in

differentiated monocyte-derived macrophages at levels sufficient

to exert antiviral effects in these primary cells but not in

monocytes themselves (32). To date, it is clear that Env

glycoprotein has a crucial role in the function of SERINC3/5,

but its precise mechanisms of action remain incompletely

understood (33–36). Neuropilin-1 (NRP-1), a transmembrane

protein, was newly identified in 2021 by Wang et al., and shown

to inhibit progeny virus infection (Figure 2C) (37). This protein

is highly expressed on the cell surface of macrophages and DCs

but not on stimulated or resting CD4+ T cells. Virion-

incorporated NRP-1 inhibits their attachment to secondary

target cells and consequently contributes to the suppression of

infectivity, affecting HIV-1 transmission in a myeloid lineage

cell-specific manner.
FIGURE 1

Schematic of the HIV-1 life cycle and host factors regulating HIV-1 replication in myeloid lineage cells. ① Viral infection begins by interactions
between the viral envelope (Env) and the host cell receptor, CD4, and subsequently with the co-receptors CXCR4 or CCR5. ② This binding
enables the fusion of virus to the host cell membrane and the release of viral cores into the cytoplasm. Once the viral core is released, ③ the
uncoating and ④ reverse transcription (RT) of viral RNA are initiated in the cytoplasm. Virion-incorporated APOBEC3F/G and target cell SAMHD1
play a role in the inhibition of RT. ⑤ Viral content is transported to the nuclear pore, and uncoating and RT may then be completed. MX2 inhibits
nuclear import. Following the completion of RT, ⑥ the viral genome is integrated into the host chromatin DNA. ⑦ Proviral DNA is transcribed
and ⑧ translated into the Gag polyprotein. ⑨ Gag polyproteins are assembled at the plasma membrane and ⑩ initiate the viral budding and
release of immature virions. Tetherin and mannose receptor (hMRC1) contribute to the inhibition of viral release. ⑪ For viral release from the
cell membrane, viral protease cleaves Gag polyproteins, and mature virions are entirely released from the cell membrane. Image created with
BioRender.com.
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In addition to the host factors described above, several viral

accessory proteins, including Vif, Vpr, Vpu, Vpx, and Nef, also

contribute to the regulation of HIV-1 replication in

macrophages. Although the functions of most of these viral

accessary proteins are well characterized, the precise role of Vpr

is still poorly understood. Vpr has multiple biological functions,

including the nuclear import of viral preintegration complex

(PIC), repression of HIV-1 transcription, G2 cell cycle arrest,

enhancement of the expression and processing of Env

glycoprotein in macrophages, and induction of host protein

degradation by recruitment of the E3 ubiquitin ligase complex

(1, 38). Vpr is packaged into nascent virions (39) through

interactions with the P6 domain of the viral Gag precursor

(40). Vpr primarily localizes to the nucleus/nuclear envelope in

PBMCs and macrophages (41, 42), and an observation by Desai

et al. indicated that a substantial amount of Vpr incorporated

into virus particles was released from the PIC and accumulated

in the nucleus, suggesting a role for Vpr in the early stages of

HIV-1 infection (43). However, the effect of virion-incorporated

Vpr in the first round of infection of macrophages has not been

revealed (44, 45). Vpr has a critical role in HIV-1 replication in

monocytic cell lines including THP-1 or primary macrophages,

but not in CD4+ T cells (i.e., Vpr-defective HIV-1 is severely

restricted in macrophages) (46). Indeed, Mashiba et al. recently
Frontiers in Virology 04
reported that Vpr promoted HIV-1 infection in non-dividing

cells such as macrophages (44, 45). This evidence suggests the

existence of host factors suppressing HIV-1 replication, which is

counteracted by Vpr. Numerous host factors neutralized by Vpr

have been identified including HTLF, CCDC137, MCM10,

TET2, and LAPTM5 (44, 47–50). Despite the functional

analyses of these Vpr-associated host factors, the exact role of

Vpr in HIV-1 replication, especially in macrophages, is unclear

and further study is required.
Cell-to-cell transmission

As described by Law et al., in addition to cell-free

transmission, HIV-1 spreads via cell-to-cell contact through

virological synapses (VS) in vivo (41). These are formed when

the viral envelopes on the plasma membrane of HIV-1-infected

cells bind to uninfected CD4+ T cells (51). Modes of cell-to-cell

transmission are classified according to the cellular structures

involved, i.e., filopodial bridges, membrane nanotubes (also

known as TNT), and virological synapses (Figure 3A). The key

feature of this mode of spread is that, in general, the effectiveness

of HIV-1 infection is >10-fold greater than for cell-free infection

of CD4+ T cells (52–56). Similar to the cell-to-cell transmission
FIGURE 2

Host factors regulating the late phase of the HIV-1 life cycle, from viral release to progeny virus infection. Various cellular host factors including
tetherin, mannose receptor (hMRC1), neuropilin-1 (NRP-1), SERINC3/5, and Siglec-1 are highly expressed on the surface of the plasma
membrane. (A) Tetherin and Siglec-1 play a role in capturing viral particles at the budding step. (B) hMRC1 also inhibits viral particle release. It is
hypothesized that (i) hMRC1 expressed on the cell surface may interact with Env glycoprotein and/or unidentified host glycoprotein(s)
associated with viral particles. (ii) Unidentified host glycoprotein(s) expressed on the cell surface may interact with hMRC1 associated with viral
particles. (iii) Viral particle-associated hMRC1 may interact with Env glycoprotein and/or unidentified host glycoprotein(s). However, the precise
mechanisms are still unclear. (C) Virion-incorporated SERINC3/5 and NRP-1 contribute to the inhibition of progeny virus infection through
interference with the binding step. Image created with BioRender.com.
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between CD4+ T cells, infected macrophages/monocyte-derived

dendritic cells (MDDCs) recruit CD4, CCR5, LFA-1, ICAM-1,

Gag proteins, and envelope glycoproteins, at the site of cell–cell

contact, described as VS formation. More recently, it was reported

that cell-to-cell contact between infected macrophages/MDDCs

and CD4+ T cells was stabilized by interactions between gp120-

CD4 and LFA-1-ICAM-1 and might be very effective for HIV-1

transmission (Figure 3C) (57). Previous studies suggested that

DC-SIGN, a C-type lectin expressed on immature DCs, has a role

in capturing HIV-1 particles through interactions with envelope

glycoproteins and the subsequent transfer of infectious particles to

other cells (Figure 3B) (58). Another member of the C-type lectin

family, sialic acid-binding Ig-like lectin 1 (Siglec-1, also known as

CD169), expressed on the surface of DCs and macrophages, also

captures infectious particles via sialyl lactose-containing

gangliosides exposed on the envelope, and thus also contributes

to cell-to-cell transmission (Figure 2A) (59). Furthermore,

Dupont et al. recently reported that TNT was highly positive for

Siglec-1 and was required for TNT-mediated HIV-1 transmission

in macrophages, as shown by silencing Siglec-1 (Figure 3A) (60).

As described above, infected macrophages also significantly

contribute to the cell-to-cell transmission through the formation

of VS between infected macrophages and uninfected CD4+ T

cells, which leads to the transfer of a high multiplicity of HIV-1 to

the latter (61). Several groups also reported that this mode of

infection is less sensitive to certain classes of antiretroviral
Frontiers in Virology 05
therapies (ARTs) and reverse transcriptase (RT) inhibitors (62–

64), and is more resistant to neutralizing antibodies against

specific Env epitopes (65, 66).

In contrast to the mechanisms of viral assembly in infected

CD4+ T cells, viral particles accumulate on the plasma

membrane and in intracellular tetraspanin-enriched virus-

containing compartments (VCCs) in productively infected

macrophages (Figure 3B) (67–70). VCCs rapidly change

transmission mode to VS in a cytoskeleton-dependent manner.

The structural features of VCC are similar to those of late

endosomes or multivesicular bodies (MVB), but are

distinguished from them in terms of acidity. Thus, VCCs are

non-acidic and non-degrading compartments (71–73). As

described in Section 2, tetherin is a critical host factor

regulating HIV-1 release that is highly expressed on the

surface of macrophages (Figures 1 and 2A), but not or only at

a low level on CD4+ T cells (26, 27). Thus, tetherin effectively

restricts HIV-1 release from the cell surface of macrophages

rather than from CD4+ T cells, and this function is antagonized

by the viral protein Vpu (27). In addition to the inhibition of

cell-free viruses, tetherin has a role in forming VCC and

potentially contributes to restricting cell-to-cell transmission

(Figure 3B). Tetherin retains HIV-1 virions at the plasma

membrane, which are subsequently internalized into VCC

(74–76). Recently, Hammonds et al. reported that lectins such

as Siglec-1, expressed on DCs and macrophage cell surfaces, play
FIGURE 3

Models of HIV-1 cell-to-cell transmission in myeloid lineage cells. (A) HIV-1-infected cells form tunneling nanotubes (TNT) to transport
infectious viral particles to other target cells by utilizing attachment receptors such as Siglec-1 or DC-SIGN. (B) Infected macrophages form
unique virus-containing particles (VCC) and retain infectious viral particles through the association of tetherin, Siglec-1, or DC-SIGN with Env
glycoprotein. When encountering other target cells, VCC containing either free virions or host factor(s)-associated virions may release infectious
virus. (C) The binding of adhesion molecules LFA-1 and ICAM-1 has a well-characterized role in stabilizing virological synapse (VS) formation and
contributes to cell-to-cell HIV-1 transmission. Image created with BioRender.com.
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a crucial role in forming VCC (Figure 3B) (72). That study

demonstrated that VCC formation is not necessary for

macrophage infection but is necessary for cell-to-cell viral

transmission from infected macrophages to CD4+ T cells (72).

HIV-1 virions captured and internalized in VCCs through

Siglec-1 are potentially protected from innate immune

responses. Thus, captured HIV-1 infectious virions can

transfer to target CD4+ T cells through VS, a mechanism

independent of normal virus replication (77, 78). Human

mannose receptor C-type 1 (hMRC1) also significantly

contributes to the spread of infection through cell-to-cell

transmission. Its function in HIV-1 infection is described in

detail in the next section.
Contribution of mannose receptor
during HIV-1 replication

The human mannose receptor C-type1 (hMRC1),

designated CD260, is a 175-kDa type I transmembrane

glycoprotein belonging to the C-type lectin family. It is

expressed on most tissue macrophage surfaces, DCs, selected

lymphatic cells, liver endothelial cells, and vaginal epithelial cells

(79). This protein contains three types of extracellular domains,

namely, CR (cysteine-rich domain), FNII (fibronectin type II

repeat), and eight tandem CRD (C-type carbohydrate

recognition domains) (79). The CRD domains have a crucial

role in capturing foreign bodies, including HIV-1. Recently, it

was shown to be involved in capturing pathogens including

bacteria and fungi, as well as viruses like HIV-1 (79). In HIV-1

infection, hMRC1 binds to viral Env through interactions

mediated by glycosylated mannose residues on Env (80–82).

Intriguingly, unlike typical virus entry, this uptake of HIV-1

mediated by hMRC1 does not lead to productive infection

(82, 83), but the phagocytosed pathogen contributes to antigen

presentation (84, 85). However, Nguyen and Hildreth provided

evidence that hMRC1 on the macrophage surface facilitates virus

transmission to CD4+ T cells (81). Several factors regulate this

function of hMRC1, including viral proteins such as Vpr, Tat,

and Nef, as well as unidentified host factors, but the precise

mechanisms remain unclear. Sukegawa et al. demonstrated that

hMRC1 inhibits virus release from HIV-1-infected macrophages

in a BST-2-independent manner (86) (Figure 2B). Interestingly,

the amount of endogenously expressed hMRC1 was significantly

downregulated after virus infection. It is assumed that the virus

counteracts the function of hMRC1-mediated inhibition of

virion release by removing hMRC1 from the cell surface. This

reduction of hMRC1 has been reported in several other papers,

both in vivo and in vitro. Koziel et al. reported a modest

reduction of hMRC mRNA in HIV-1-positive patients (87).
Frontiers in Virology 06
Other investigators have reported the relevance of viral proteins

such as Nef, Tat, and Vpr. Vigerust et al. reported that Nef

induced the surface repression of hMRC1 without affecting

steady-state levels but interfered with the recycling of mannose

receptors to the cell surface (88). In addition, HIV-1 Tat was

reported to inhibit transcription from the rat mannose receptor

promoter (89). However, recently, Lubow et al. reported that the

contribution of Tat to the downregulation of mannose receptors

was insignificant (53). Furthermore, they implicated the

involvement of Nef and Vpr in the downregulation of hMRC1

and indicated that cooperation between Vpr and Nef induced a

synergistic reduction of hMRC1 (53). Thus, Vpr downregulates

the transcription of hMRC1, and Nef removes hMRC1 from the

cell surface through lysosomal degradation, causing a further

reduction of hMRC1. It was also demonstrated that the

downregulat ion of Env expression by hMRC1 was

counteracted by Vpr through rescue from lysosomal

degradation, which increased the formation of VS and

facilitated cell-to-cell transmission between macrophages and

CD4+ T cells (53, 56). This evidence demonstrates the significant

impact of hMRC1 during HIV-1 replication in macrophages and

on the normal function of host immune defense by

capturing pathogens.
HIV-1 reservoirs in macrophages

As noted above, CD4+T lymphocytes are considered the

primary HIV-1 reservoir cells. The contribution of monocytes/

macrophages remains controversial (7). However, there is

evidence showing the contribution of tissue-resident

macrophages in establishing HIV-1 reservoirs. The earliest

study was reported by Gartner et al. in 1986 (90). Due to the

difficulty of obtaining primary tissue-resident macrophages,

non-human primate models have been widely used to

investigate the association of infectious virus dynamics with

disease progression in vivo (90–92). In 2001, Igarashi et al.

confirmed the contribution of macrophages in HIV-1

reservoirs utilizing SHIV in a macaque model (93). That

report observed the persistence of SHIV infection in tissue

macrophages under the depletion of CD4+ T cells according

to disease progression in the macaque. Furthermore, the

administration of potent RT inhibitors effectively blocked

HIV-1 circulating in CD4+ T cells but not in macrophages,

demonstrating that tissue macrophages can sustain viral

replication independently.

Reservoirs in macrophages start to become established a few

days after the initial HIV-1 infection and are sustained during the

asymptomatic stage of disease in these long-lived cells (7). In

contrast to the loss of CD4+ T cells during the progression to

AIDS, infected macrophages are less susceptible to HIV-induced
frontiersin.org
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cytopathic effects (7) and are more resistant to CD8+ cytotoxic T

lymphocyte (CTL)-mediated killing (94). Hence, they may survive

for more than a few weeks (1) and can therefore persistently infect

cells as they are also poorly targeted by ART (i.e., they are less

susceptible to some antiretroviral drugs). In fact, recent in vivo

studies revealed the contribution of monocytes/macrophages as

reservoirs. Honeycutt et al. developed humanized myeloid-only

mouse models (MoM) unable to support human lymphocyte

development (95). Using these models, they reported the

detection of rebound viremia in three of nine mice 7 weeks after

the discontinuation of ART (96). This report thus provided novel

evidence that monocytes/macrophages can be a source of rebound

viremia following ART cessation. Furthermore, Ganor et al.

demonstrated that integrated HIV-1 DNA, HIV-1 RNA, and p24

were predominantly detected in urethral macrophages rather than

CD4+ T lymphocytes in HIV-1-infected patients on ART (97).

The central nervous system (CNS, microglia) is also

considered another tissue-resident macrophage reservoir (98,

99). Within a few days after primary infection, HIV-1 entered

the CNS through the blood–brain barrier (BBB) via infected

monocytes rather than CD4+ T cells (100, 101). In the CNS,

HIV-1 persists predominantly in tissue-resident macrophages,

such as microglia and perivascular macrophages differentiated

from monocytes. More recently, Joseph et al. reported the

isolation of R5-tropic virus from the cerebrospinal fluid (CSF)

of ART-treated patients, suggesting that HIV-1 is continuously

replicating in CNS reservoirs (102, 103). As with other reservoir

cells, HIV-1-infected microglia are also long-lived, and unlike

other hematopoietic reservoirs, the turnover of microglia is very

slow, with only 28% of these cells renewed annually (104). Thus,

HIV-1-infected microglia potentially sustain lifetime reservoirs

in infected individuals. As described above, monocytes/

macrophages, as well as CD4+ T cells, contribute to the

persistence of infection and represent reservoirs in vivo.

Importantly, some antiretroviral drugs such as protease

inhibitors, saquinavir, and ritonavir exhibited a 2- to 10-fold

lower activity in infected macrophages relative to chronically

infected lymphocytes (105, 106). Moreover, Gavegnano et al.

showed that the intracellular concentrations of nucleoside

analog active metabolites in macrophages were 5- to 140-fold

lower than in lymphocytes, contributing to significantly weaker

antiviral activity (107). These features may also contribute to the

persistence of HIV-1-infected macrophages and result in the

establishment of HIV-1 reservoirs and the evolution of drug-

resistant viruses.
The current approach towards
HIV-1 eradication

Viral replication in HIV-infected individuals is controlled

by combination antiretroviral therapy (cART), which mainly
Frontiers in Virology 07
targets viral enzymes. However, latently infected reservoirs and

drug-resistant viruses are still a significant barrier to curing

HIV-1. To this end, several strategies such as gene therapy

using CRISPR, vaccines to boost anti-HIV immune responses,

and immunotherapy with broadly neutralizing antibodies have

been investigated. In addition to these strategies, the “Shock

and Kill” approach to reducing the size of reservoirs is a current

challenge, whereby latency-reversing agents (LRAs) reactivate

latently infected provirus (the shock) and induce cell death

mediated by cytopathic effects, apoptosis, or CTL response (the

kill), combined with ART treatment to prevent the occurrence

of a new infection. This strategy is still under development

(108), and some small-molecule chemical compounds,

including histone deacetylase inhibitors (HDACi) (e.g.,

SAHA/vorinostat) (109), bromodomain and extraterminal

domain inhibitors (BETi) (e.g., JQ1) (110), and protein

kinase C (PKC) agonists [e.g., Prostratin, PEP-005 (ingenole-

3-angelate) and bryostatin-1] (111), are being intensively

investigated as candidate LRAs. Several groups have reported

that using an LRA, active via a single mechanism, might not

lead to effective viral reactivation in reservoir cells, and

combinations of drug candidates with different mechanisms

of action will be needed to enhance proviral activation.

Currently, combining the BRD4 inhibitor (JQ1) and PKC

agonist(s) (e.g., Prostratin, PEP-005) might be the most

effective means of reactivating the HIV-1 provirus (7, 108).

Despite the potent effects of LRA or a combination of LRAs on

ex vivo or in vitro analyses, multiple clinical trials have failed to

reduce latent reservoir size sufficiently, and none have shown

superior therapeutic effects compared with current cART

(112). A reason for this may be that different responses to

LRAs by several types of latent reservoirs (7, 113) are

influenced by the size and chromosomal location of the

integrated provirus (114) in HIV-1 reservoirs. Therefore, the

development of new LRAs or combination therapies of several

LRAs to induce efficient provirus reactivation remains an

unmet need.
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