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The pandemic of coronavirus disease 2019 (COVID-19) caused by infection by severe
acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) continues to take a huge toll on
global health. Although improving, currently there are only limited therapies against SARS-
CoV-2. Curcumin, a natural polyphenol, exerts antiviral effects against a wide variety of
viruses and can inhibit SARS-CoV-2 entry. However, undesirable physicochemical and
pharmacokinetic properties of curcumin limit its clinical application. Here, we determined
the effects of dimethoxycurcumin (DiMC), a methylated analog of curcumin with improved
bioavailability, on the entry of SARS-CoV-2. DiMC blocked entry of pseudo-SARS-CoV-2
into Calu-3 human non-small cell lung adenocarcinoma cells and Vero E6 green monkey
kidney epithelial cells. Mechanistically, DiMC acidified lysosomes, enhanced lysosome
degradation capabilities, and promoted lysosome degradation of angiotensin converting
enzyme 2 (ACE2), a major receptor for SARS-CoV-2 entry, as well as pseudo-SARS-CoV-
2 and the SARS-CoV-2 S1 protein. Furthermore, other lysosome acidifying agents,
including the TRPML1 agonist ML-SA1 and the BK channel activator NS1619, also
blocked the entry of pseudo-SARS-CoV-2. Thus, the anti-SARS-CoV-2 potential of DiMC
and lysosome acidifying agents might be explored further as possible effective therapeutic
strategies against COVID-19.
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INTRODUCTION

Infection by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) causes the current
pandemic of coronavirus disease 2019 (COVID-19) (1, 2). COVID-19 has resulted in over 200
million confirmed cases and almost 4.7 million deaths (https://www.who.int/emergencies/diseases/
novel-coronavirus-2019). SARS-CoV-2 is an enveloped single-stranded RNA virus, and like other
enveloped viruses, SARS-CoV-2 enters host cells and utilizes host cell machinery for replication.
SARS-CoV-2 enters the host cell by either direct fusion of the viral envelope with plasma
membranes of host cells or fusion with endosomes following endocytosis (3–6). Once fused with
host cell membranes, viral RNA is released into the cytosol where viral replication occurs (7, 8).

Although improving, there are limited drugs and therapeutic strategies to prevent SARS-CoV-2
infection and to combat COVID-19. Curcumin, a natural polyphenol derived from the Indian spice
turmeric, has been reported to exert antiviral effects against a wide variety of viruses including
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influenza A, dengue, zika, hepatitis C, HIV-1, and SARS-CoV
(9). Recent findings from in silicomodelling (10, 11) and in vitro
studies (12) indicate that curcumin can disrupt SARS-CoV-2
spike protein-mediated receptor-binding and inhibit cellular
entry of SARS-CoV-2. However, curcumin is metabolically
unstable, has low water solubility, and has poor bioavailability;
physicochemical and pharmacokinetic properties that limit its
clinical application (13, 14).

Asamethylatedanalogof curcumin(13,15),dimethoxycurcumin
(DiMC) is more metabolically stable, has better bioavailability, and
exerts greater antioxidant (16) andanti-inflammatoryproperties (17)
than does curcumin. Here, we determined effects of DiMC on the
entry of SARS-CoV-2 pseudo-virus and found that DiMC blocked
the entry of SARS-CoV-2 pseudo-virus in Calu-3 human non-small
cell lung adenocarcinoma cells and Vero E6 green monkey kidney
epithelial cells, acidified lysosomes, enhanced lysosome degradation
capabilities, and promoted lysosome degradation of ACE2 as well as
pseudo-SARS-CoV-2and theSARS-CoV-2S1protein. Furthermore,
other lysosome acidifying agents also blocked the SARS-CoV-2 S
protein-mediated entry of pseudo-SARS-CoV-2. Thus, the anti-
SARS-CoV-2 potential of DiMC and lysosome acidifying agents
might be explored further as possible effective therapeutic strategies
against COVID-19.
MATERIAL AND METHODS

Cell Culture
Human non-small cell lung adenocarcinoma Calu-3 cells and
green monkey kidney epithelial Vero E6 cells were purchased
from ATCC and cultured in 1X EMEM (Calu-3) and DMEM
(Vero E6) supplemented with 10% fetal bovine serum (FBS) and
1X penicillin and streptomycin antibiotic at 37°C in 5% CO2

incubator. For our experiments, cells were not used after
10 passages.

Cellular Entry of SARS-CoV-2 Spike
Protein Pseudo-Virus
Following pretreatment with DiMC, ML-SA1, NS1619, or
DMSO as a control for 18 hr, Calu-3 and VeroE6 cells
cultured on 96-well plates were treated with luciferase-
integrated and SARS-CoV-2 spike protein-conjugated
pseudovirus for 6 h, washed 3-times with media, and
incubated for another 36 h according to the manufacturer
protocol (BPS Biosciences). Post-incubation, S protein-
mediated entry of SARS-CoV-2 pseudo virus was estimated by
luciferase activity, which was determined with a steady glow
luciferase assay (Promega). Luciferase activity was measured as
luminescence relative light unit (RLU) using microplate reader
(Synergy H1).

Cathepsin B Activity Assay
Magic Red was used to measure cathepsin B activity. Magic Red
substrate is cleaved by active cathepsins and Magic Red cresyl
violet fluorescence was measured by confocal microscopy (Zeiss
LSM 800). Cells at 30 to 40% confluency (~10K cells) were
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seeded were seeded on 35 mm2 dishes and incubated with Magic
Red at a 1:500 dilution and Hoechst 33342 (nucleus stain) for 30
minutes. Cells were washed three-times with PBS and
fluorescence images were acquired by confocal microscopy;
excitation/emission wavelengths were 592/628 and data were
analyzed using ImageJ software.

Lysosome pH Assay
Endolysosome pH was measured using LysoBrite Green (AAT
Bioquest); a pH-sensitive dye that selectively accumulates in
lysosomes via the lysosomal pH gradient. Cells at 30 to 40%
confluency (~10K cells) were seeded on 35 mm2 dishes and
incubated for 40 min at 37°C with LysoBrite green at a 1:500
dilution. Cells were washed three times with PBS and
fluorescence images were acquired at an excitation of 543 nm
and emission of 565 nm by confocal microscopy (Zeiss LSM
800). Data were analyzed using ImageJ software.

Immunoblotting
Cells receiving various treatments were harvested and lysed in 1 x
RIPA lysis buffer (Thermo Fisher) containing 10 mM NaF, 1 mM
Na3VO4, and 1 x protease inhibitor cocktail (Sigma). After
centrifugation (14,000 x g for 15 min at 4°C), supernatants were
collected, and protein concentrations were determined with a
Bradford protein assay (Bio-Rad). SDS-PAGE (4-12% gel) was
used to separate proteins (10 mg/lane) and blots were transferred
to nitrocellulose membranes using the iBlot 2 dry transfer system
(Invitrogen). Membranes were incubated overnight at 4°C with
antibodies against ACE2 (SinoBiological), SARS-CoV-2 S1
(GenScript), SARS-CoV-2 S2 (GeneTex, 1A9), ATG5 (Abcam),
LC3B (Sigma), actin (Abcam), and GAPDH (Abcam). Blots were
developed with enhanced chemiluminescence, and the density of
antibody-positive protein bands was determined using an Odyssey
Fc Imaging System (LiCor).

Immunostaining
Calu-3 cells were fixed with 4% paraformaldehyde for 5 min
followed by cold methanol (−20°C) for 15 min. Following
washing and blocking with 5% BSA, cells were incubated
overnight at 4°C with primary antibodies (1:100) against
SARS-CoV-2 S2 protein (GeneTex, 1A9). Cells were then
washed with PBS and incubated with corresponding Alexa
647-conjugated secondary antibodies (Invitrogen). Cells were
examined by Zeiss LSM800 confocal microscopy and data were
analyzed by ImageJ software.

Spike Protein Internalization Assay
Calu-3 cells pretreated with DiMC (1.0, 2.0, and 4.0 µM for 24 h)
were incubated with SARS-CoV-2 S1 protein (5.0 µg/ml,
GenScript) for an additional period of 6 h. Following washing,
cells were harvested for immunoblotting to determine cellular
levels of internalized SARS-CoV-2 S1 protein.

Cell Toxicity Assay
Cell toxicity was quantitatively assessed by the measurement of
lactate dehydrogenase (LDH) released from damaged or
destroyed cells into the extracellular fluid (Pierce). Cells were
June 2022 | Volume 2 | Article 923018
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treated with DiMC (dissolved in DMSO) for 24 hr. DMSO was
used as a vehicle control and a positive control supplied by Pierce
was used. Following treatment, an aliquot (50 µL) of bathing
media was combined with NADH and pyruvate solutions. LDH
activity is proportional to the rate of pyruvate loss, which was
assayed by absorbance change using a microplate reader (Synergy
H1). Data were expressed as percentages of positive control.

Statistical Analysis
All data were presented as means ± standard deviations.
Statistical significance between two groups was determined
with Student’s t-test, and statistical significance among
multiple groups was determined using a one-way ANOVA
plus a Tukey post-hoc test. p<0.05 was accepted to be
statistically significant.
RESULTS

DiMC Blocked SARS-CoV-2 Spike Protein-
Mediated Entry of Pseudo-SARS-CoV-2
First, we determined effects of DiMC on the SARS-CoV-2 spike
protein-mediated entry of pseudo-SARS-CoV-2 using a viral
Frontiers in Virology | www.frontiersin.org 3
entry luciferase reporter gene in Vero E6 cells derived from the
kidney of an African green monkey and Calu-3 human lung cells.
In both cell lines, DiMC (2 and 4 mM for 6 h) significantly
attenuated spike protein-mediated pseudo-SARS-CoV-2 entry as
indicated by decreases in luciferase activity (Figure 1A, C). As
indicated by results from an LDH cytotoxicity assay, DiMC at the
concentration of 5 mM or lower was not toxic to Calu-3 cells
(Figure 1B) or to Vero E6 cells (Figure 1D). Significantly, such
no-toxic concentrations (2 and 4 mM) of DiMC are achievable in
mice treated with DiMC (18, 19). Because entry of SARS-CoV-2
entry into Vero E6 cells is cathepsin L-dependent and entry into
Calu-3 cells is dependent on TMPRSS2 (20, 21), these findings
suggest that DiMC affects SARS-CoV-2 entry v ia
multiple mechanisms.

DiMC Decreased Protein Levels of ACE2
Because ACE2 is involved in the entry of SARS-CoV-2 into both
Calu-3 and Vero E6 cells (20), next we determined effects of
DiMC on protein expression levels of ACE2. In both Calu-3 cells
(Figure 2A) and Vero E6 cells (Figure 2B), DiMC (0.5 - 4 mM
for 24 h) significantly decreased protein expression levels
of ACE2 in a concentration-dependent manner. Because the
binding of SARS-CoV-2 to ACE2 leads to ACE2 internalization
A B

DC

FIGURE 1 | DiMC blocked SARS-CoV-2 spike protein-mediated cellular entry of pseudo-SARS-CoV-2: DiMC treatment (2.0 and 4.0 µM for 18 h) significantly
attenuated SARS-CoV-2 spike protein-mediated pseudo-SARS-CoV-2 cellular entry as indicated by decreases in luciferase activity in both Calu-3 (A) and Vero E6
(C) cells (n = 3, **p <0.01, ***p <0.001, ****p <0.0001). As indicated by LDH cytotoxicity assay, DiMC at the concentration of 5 mM or lower was not toxic to Calu-3
cells (B) or Vero E6 cells (D) (n = 3, ***p <0.001).
June 2022 | Volume 2 | Article 923018

https://www.frontiersin.org/journals/virology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/virology#articles


Khan et al. DiMC Inhibits SARS-CoV-2 Entry
into endosomes (5) and because ACE2 can be degraded in
lysosomes (22), next we determined whether lysosomes are
involved in DiMC-induced ACE2 down regulation. DiMC-
induced decreases of ACE2 protein expression levels were
lysosome dependent because inhibiting vacuolar-ATPase with
bafilomycin A1 (100 nM) prevented DiMC (4 mM for 24 h)-
induced decreases of ACE2 protein levels in Calu-3 cells
(Figure 2C). These findings suggest that DiMC enhanced
lysosome degradation of ACE2.

DiMC Enhanced Lysosome Function
Curcumin enters lysosomes (23) and increases lysosome
acidification and enzyme activity (24). Similarly, monocarbonyl
analogs of curcumin promote lysosome biogenesis (25).
Accordingly, we next determined effects of DiMC on lysosome
functions including levels of pH, cathepsin B activity, and levels of
autophagy markers. DiMC (4 mM for 18 h) significantly
(p<0.001) increased fluorescence intensity of LysoBrite in Vero
E6 cells; an indication of increased acidification (Figure 3A).
Because lysosome enzyme activity is related to pH, we next
determined effects of DiMC on activity of lysosomal enzymes
with Magic-red (cathepsin B). DiMC (4 mM for 18 h) significantly
Frontiers in Virology | www.frontiersin.org 4
(p<0.05) enhanced the activity of cathepsin B as indicated by
increased mean fluorescence intensity of Magic Red in Vero E6
cells (Figure 3B). Lysosomes are also important for degradation
of both extracellular cargos delivered via endocytosis and
intracellular cargos delivered via autophagy. Accordingly, we
next determined the extent to which DiMC affected lysosome
degradation of intracellular cargo via autophagy. DiMC (1 to 4
mM for 18 h) significantly decreased protein levels of autophagy
associated LC3B and autophagy-initiating ATG5 in Calu-3 cells
(Figure 3C). Together these findings suggest that DiMC enhances
lysosome degradative capabilities.

DiMC Decreased Cellular Levels of
Pseudo-SARS-CoV-2 and SARS-CoV-2 S1
Proteins
We next explored the possibility that DiMC promoted the
degradation of SARS-CoV2. DiMC (4 mM for 18 h)
significantly (p<0.01) decreased cellular levels of S2 protein in
Calu-3 cells treated with pseudo-SARS-CoV-2 (Figure 4A).
These findings suggest that DiMC prevented the formation of
S2-mediated viral envelope fusion with the endolysosome
membrane possibly by enhanced degradation of SARS-CoV-2.
A B

C

FIGURE 2 | DiMC decreased protein expression levels of ACE2: (A, B) DiMC treatment (1.0, 2.0, and 4.0 µM for 24 h) decreased protein expression levels of ACE2
in a concentration-dependent manner in both Calu-3 (A) and Vero E6 (B) cells (n = 3, *p <0.05, **p <0.01, ***p <0.001, ****p <0.0001). (C) Inhibiting vacuolar-
ATPase with bafilomycin A1 (100 nM) prevented DiMC (4.0 µM for 18 h)-induced decreases of ACE2 protein expression levels in Calu-3 cells (n = 3, ***p <0.001).
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To further test this possibility, we treated cells with recombinant
SARS-CoV-2 S1 proteins (5 mg/ml), which possess ACE2
receptor binding domains and can be internalized (26). DiMC
(4 mM for 18 h) significantly (p<0.0001) decreased cellular levels
S1 proteins (Figure 4B). In cultured media, we did not find
detectable levels of S1 protein by immunoblotting, indicating all
externally added S1 protein was internalized (data not shown).

Lysosome Acidifying Agents Blocked S-
Mediated Entry of Pseudo-SARS-CoV-2
Next, we determined the extent to which additional agents
capable of acidifying lysosomes could affect entry of pseudo-
SARS-CoV-2. We reported previously that the TRPML1 agonist
ML-SA1 and the BK channel activator NS1619 both acidify
Frontiers in Virology | www.frontiersin.org 5
lysosomes (27). ML-SA1 (20 and 40 mM for 18 h) and NS1619
(25 and 50 mM for 18 h) significantly attenuated the entry of
pseudo-SARS-CoV-2 in Calu-3 cells as indicated by decreases in
luciferase activity (Figure 5).
DISCUSSION

The main findings reported here are that (1) DiMC blocked the
entry of pseudo-SARS-CoV-2 into cells, (2) DiMC acidified
endolysosomes, enhanced lysosome function and promoted the
degradation of ACE2 receptors as well as internalized pseudo-
SARS-CoV-2 and SARS-CoV-2 S1 proteins, and (3) that
A

B

C

FIGURE 3 | DiMC increased endolysosome acidification, increased cathepsin B activity and decreased autophagy: (A) Endolysosome pH was estimated by a pH
sensitive LysoBrite green dye in Vero E6 cells. DiMC (4 mM for 18 h) increased fluorescence intensity of LysoBrite (n = 3, *p<0.05); increases in fluorescence intensity
indicates decreases (acidification) in endolysosome pH. (B) DiMC (4 mM for 18 h) significantly enhanced the activity of cathepsin B as indicated by increased mean
fluorescence intensity of Magic Red in Vero E6 cells. (n = 3, ***p <0.001). (C) DiMC (1.0, 2.0, and 4.0 µM for 18 h) significantly decreased protein expression levels of
the autophagy markers ATG5 and LC3B in Calu-3 cells (n = 3, ***p <0.001, ****p <0.0001).
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FIGURE 4 | DiMC decreased cellular levels of pseudo-SARS-CoV-2 and SARS-CoV-2 S1 proteins: (A) In pseudo-SARS-CoV-2 infected Calu-3 cells, DiMC (4.0 µM
for 18 h) decreased spike protein expression levels in Calu-3 cells (bar = 10 µm; n = 3, **p <0.01). (B) In Calu-3 cells treated with SARS-CoV-2 spike protein (5.0 µg/
ml), DiMC (1.0, 2.0, 4.0 µM for 18 h) significantly decreased cellular levels of SARS-CoV-2 spike protein (n = 3, ****p <0.0001).

Khan et al. DiMC Inhibits SARS-CoV-2 Entry
additional lysosome acidifying agents also blocked the spike
protein-mediated entry of pseudo-SARS-CoV-2.

A hallmark feature of lysosomes is their acidic luminal pH
(28–31), which is critical for the optimal activity of up to 60
different pH-sensitive hydrolytic enzymes including proteases,
lipases and nucleases (32). As such, lysosomes are important for
A

FIGURE 5 | ML-SA1 and NS1619 attenuated SARS-CoV-2 spike protein-mediated
significantly attenuated SARS-CoV-2 spike protein-mediated entry of pseudo-SARS-C
**p<0.01). (B) NS1619 treatment (50 µM for 18 h) significantly attenuated SARS-CoV
decreases in luciferase activity in Calu-3 cells (n = 3, ***p<0.001).

Frontiers in Virology | www.frontiersin.org 6
degradation of extracellular macromolecules via endocytosis and
intracellular macromolecules and organelles via autophagy.

Endolysosomes (endosomes, lysosomes, and autolysosomes)
form an integral part of the SARS-CoV-2 infection process
including viral entry into (5, 33) and egress from host cells
(34). S protein, a transmembrane glycoprotein that forms
B

entry of pseudo-SARS-CoV-2: (A) ML-SA1 treatment (40 µM for 18 h)
oV-2 as indicated by decreases in luciferase activity in Calu-3 cells (n = 3,
-2 spike protein-mediated entry of pseudo-SARS-CoV-2 as indicated by
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homotrimers, is composed of S1 and S2 subdomains (35); S1 is
responsible for binding to receptors (ACE2, neurophilin-1, and
others) on host cells, whereas S2, the transmembrane portion of
S protein, is responsible for fusion of viral membrane with host
cell membranes. The strong binding of S protein with ACE2 (36),
which is abundantly expressed in lung alveolar epithelial cells
(37), allows the formation of stable association of SARS-CoV-2
with host cell plasma membrane. The cleavage of the S protein
between the S1 and S2 domains by various cellular proteases such
as TMPRSS2, furin, and cathepsins (3, 4, 20, 38) results in the
release of S1 protein and the exposure of S2 protein, which
mediates the fusion of the viral membrane and the host cell
membrane and subsequent releasing of viral RNA into the
cytoplasm of the host (7, 8).

The S2-mediated viral fusion processes could occur at the
plasma membrane (39) or within endolysosomes, where viral
membrane fuses with the endolysosome membrane following
receptor-mediated endocytosis of SARS-CoV-2 (5). In the latter
scenario, the initial cleavage of S protein between the S1 and S2
domains would occur in endolysosomes by pH-sensitive
proteases such as furin (40) that is internalized (41) and
lysosome-resident cathepsins (42). At the beginning of
COVID-19 outbreak, pH-dependent SARS-CoV-2 viral entry,
as explained in the latter scenario above, provided rationale for
testing lysosome de-acidifying agents for the treatment of SARS-
CoV-2, such as the use of chloroquine and hydroxychloroquine,
both of which are diprotic weak base that accumulate in
endolysosomes and neutralize the acidic luminal pH (43, 44).
Early in vitro evidence indicated that chloroquine and
hydroxychloroquine inhibited the ability of SARS-CoV-2 to
infect monkey kidney-derived Vero E6 cells (45–47). However,
such anti-viral effects of chloroquine and hydroxychloroquine
were not replicated in human lung cells (21), which is consistent
w i th c l in i c a l s tud i e s show ing tha t ch lo roqu ine /
hydroxychloroquine had no therapeutic effect on COVID-19
patients (48–50) and even with worsened outcomes (51, 52).

Our findings suggest that acidifying endolysosomes
represents a promising therapeutic strategy against SAR-CoV-2
infection; acidifying lysosomes would allow complete
degradation of internalized SARS-CoV-2 by more than 50 pH-
sensitive hydrolytic enzymes presented in lysosomes, thus
preventing the formation of S2-mediated viral fusion with
endolysosome membranes. Indeed, we demonstrated that
DiMC, an analog of a natural polyphenol curcumin (12),
blocked S-mediated pseudo-SARS-CoV-2 viral entry in both
Calu-3 cells and Vero E6 cells. Furthermore, other lysosome
acidifying agents including the TRPML1 agonist ML-SA1 and
the BK channel activator NS1619 (27) also attenuated S-
mediated entry of pseudo-SARS-CoV-2. Validation of the anti-
SARS-CoV-2 potential of DiMC and other lysosome acidifying
agents using live SARS-CoV-2 virus and using other cell models
especially in primary cells is warranted. In addition, DiMC
Frontiers in Virology | www.frontiersin.org 7
exhibits anti-inflammatory activities including reducing IL-6
levels (17, 53); such immune modulatory properties of DiMC
could counteract inflammatory responses induced by SARS-
CoV-2 (54, 55) and warrant further exploration.

Mechanistically, DiMC acidified endolysosomes, enhanced
degradation capabilities of lysosomes, and promoted the
degradation of ACE2, internalized pseudo-SARS-CoV-2, and
internalized SARS-CoV-2 S1 proteins. Currently, it is not
known how DiMC acidifies endolysosomes. Based on findings
that a fraction of curcumin enters endolysosomes (23), it is
possible that DiMCmediates endolysosome enhancing effects via
unknown actions within endolysosomes. Alternatively, DiMC,
similar to that of curcumin or curcumin analog (24, 25, 56),
could enhance lysosome biogenesis via activating transcription
factor EB (TFEB), a master regulator of autophagy and
lysosomal biogenesis.

Not without caveat and limitation, our findings suggest that
acidifying endolysosomes and enhancing lysosome degradation
capabilities of host cells by DiMC and other lysosome acidifying
agents have promising anti-SARS-CoV-2 potential. If validated
with live SARS-CoV-2 virus, such findings will provide rationale
for developing DiMC and other lysosome acidifying agents as
effective therapeutic strategies against SARS-CoV-2 and
COVID-19.
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