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Recent reports have suggested a tight relationship between viral infections and

neurodevelopmental disorders. In this regard, fetal brain damage can be caused by

direct viral infection or induced immune responses and cytokine storm. Although recent

years have seen phenomenal progress in diagnosing autism spectrum disorders (ASD)

and identifying genetic and epigenetic causative factors contributing to this group

of neurodevelopmental disorders, almost 60% cases in children remain of unknown

etiology. Little is known about the collective pathophysiology of ASD. In this regard,

epidemiological data suggest that viral infections during pregnancy are associated

with high risk of having an autistic child. Although SARS-CoV-2 infections have been

documented in pregnant women, we do not yet know whether COVID-19 pandemic

will contribute to the onset of autism-like features in the offspring or impact autistic

individuals. We hypothesize that ASD are programmed in the mother’s womb and

that uterine, not peripheral, immune activation is the initial trigger to induce fetal brain

developmental anomalies. We further hypothesize that exposure to infections only during

a temporal window of pregnancy impact the onset of ASD-like pathology, particularly

in the male fetus/offspring. We will discuss the role of uterine regulatory T cells and

their inflammatory trans-differentiation in the pathophysiology of ASD and comment on

possible therapeutic intervention options.

Keywords: ASD autismspectrumdisorders, UIA uterine immune activation, Tregs regulatory T cells, Th17 T helper

17 cells, IL17a interleukin 17a isoform, poly I, C polyinosinic, polycytidylic acid

INTRODUCTION

Obstetric infections are particularly dangerous to both the mother and the developing fetus as
they may orchestrate events that interfere with normal fetal developmental programs (1–4). The
placenta is now considered a specialized immune organ, and in this regard, intrauterine infections
may adversely affect the immune balance regulated by the placenta in concert with the maternal
immune system (5, 6). Viruses have evolved contemporary ways to evade the immune system and
to cause diseases (7). Local cytokine storm and functionally or proportionally altered immune
cell profiles have been the main consequences of viral infections (8, 9). Other co-infections
by bacteria or parasites may further compound these immune responses. In the case of fetal
growth and survival, these infections will have enormous deleterious effects. The well-known
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congenitally acquired infections/pathogens that cause
morbidity and mortality in newborns are called TORCH
(Toxoplasma gondii, Others like Treponema pallidum, Rubella,
Cytomegalovirus, Herpes Simplex Virus) infections. The
TORCH group has been expanded to include Parvovirus B19,
human immunodeficiency virus (HIV), Varicella zoster virus,
Hepatitis C virus (HCV), Zika virus (ZIKV), and Plasmodium
falciparum among others (5, 10–14). These maternal infections
are passed either transplacentally or during the birth process.
These pathogens may act independently or in concert to cause
neonatal morbidities. More importantly, an array of literature
now suggests an association between viral infections and poor
fetal brain development and childhood diseases such as autism,
schizophrenia, bipolar disorders, microcephaly and other
serious brain disorders (14–16). As a matter of fact, several of
these adverse neurobehavioral outcomes share the perinatal
inflammation pathogenesis.

Autism spectrum disorders (ASDs) are characterized
by symptoms such as early social impairment, repetitive
behavior, communication challenges, and learning and speech
impairments, among other social traits (17, 18). Children
and adults with autism have impaired social cognitive ability
and perception, common executive dysfunction, and delayed
information processing. Genetic causes have a crucial role in
the development of ASD-like disorders, but early exposure
to environmental factors during brain development has been
shown to significantly increase the severity of the disorder
(19, 20). According to the World Health Organization (WHO),
ASDs affect around 1 in every 160 children worldwide. However,
in the United States, the prevalence is astonishingly high, at one
in every 55 children. The male offspring show a prevalence of
ASD that is four to five times higher than that of their female
counterparts (21).

Since inflammation, cytokine imbalance, and viral
neurotropism could have an impact on fetal brain development,
the potential role of immunological dysregulation in autism
has garnered particular attention (22, 23). Viruses may
cause ASD by directly infecting the brain, by inducing
local and/or systemic cytokine storm, or by altering
maternal or offspring localized immune responses. Several
prior studies have linked ASD to various viral infections
(24, 25).

In this review, we will focus on the evidence that
uterine infection/specialized inflammation during a narrow
gestational window (second trimester) has deleterious effects
on fetal neurodevelopment. How viruses can access cellular
components of the placenta and the pathogenic mechanisms
that facilitate the process of specialized inflammation at the
maternal–fetal interface is a subject of intense discussion.
We also discuss resistance mechanisms used by the fetus

Abbreviations:ASD, autism spectrum disorders; UIA, uterine immune activation;

Tregs, regulatory T cells; Th17, T-helper 17 cells; IL17a, interleukin 17a isoform;

LPS, lipopolysaccharide; Poly I:C, polyinosinic:polycytidylic acid; SARS-CoV-2,

severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease

2019; ZKV, Zika virus; CMV, Cytomegalovirus; TNF-α, tumor necrosis factor

alpha; STB, syncytiotrophoblast.

and maternal–fetal interface that protect viral infections and
inhibit the onset of ASD-like diseases. We summarize the
emerging body of evidence in both humans and animals
that links viral infection with increased incidence of autism.
We propose a mechanism of inflammatory transformation
of a uterine immune cell type that could be the basis of
the early onset of brain developmental defects associated
with ASD.

IMMUNE DEFENSE AT THE
MATERNAL–FETAL INTERFACE DURING
VIRAL INFECTION

The decidual lining of the uterus, which is high in leukocytes,
is one of the first lines of defense for the mother and
fetus at the maternal–fetal interface. The decidua is replete
with effector T lymphocytes, regulatory T cells (Tregs), NK
cells, innate lymphoid cells, and macrophages (26). As the
trophoblast invades and establishes the placental vascular bed
and interacts with decidual immune cells, a milieu of immune
tolerance is established. In order to orchestrate immune-
tolerance, decidual cells remain in close contact with invading
extravillous trophoblasts (EVTs) during pregnancy, particularly
first and second trimesters. Using cell-to-cell fusion and the
production of interferons (IFNs), exosomes, and antimicrobial
peptides, trophoblasts create a functional barrier that confers
antiviral resistance (3, 27). Fetal macrophages, also known as
Hofbauer cells, proliferate rapidly upon virus infection. Hofbauer
cells are targets of many viruses, including CMV and ZIKV. It is
not clear if Hofbauer cells act as a check on viral propagation
or more as a reservoir for the virus itself (28, 29). However,
despite the fact that decidual immune cells generally have a more
anti-inflammatory profile than their blood-borne counterparts,
there is evidence of inflammatory transformation of decidual
natural killer cells (dNKs), macrophages, and T cells in response
to viral and bacterial products (30, 31). When infected with
the influenza RNA virus during pregnancy, pDC exhibited an
increased response and type I IFN production (32, 33). This
is in contrast to required physiological inflammation during
embryo implantation. Post implantation, the maternal–fetal
interface is dominated by an “anti-inflammatory” phenotype,
which is associated with preponderance of regulatory NK
cells, M2 macrophages, and regulatory T cells (Tregs) that are
critical for fetal protection. Tregs appear to play a vital role
in regulating inflammation in early pregnancy and developing
a responsive uteroplacental environment through their potent
anti-inflammatory regulation (34, 35). When encountered with
pathogenic assault, Tregs may switch to Th17 phenotype and
suffer from plasticity or acquire a dual phenotype of Treg-Th17
cells (36, 37). Depending on the pathogen and the gestational
age, these cells may promote overlap (plasticity) with Th17 cells
and reprogram their conventional role as suppressive T cells (37).
Our unreported findings suggest that uterine immune activation
during pregnancy may lead Tregs to trans-differentiate into Th17
cells, altering fetal brain development and causing an ASD-like
behavioral phenotype in the male offspring (38) (Figure 1).
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FIGURE 1 | A proposed model for Th17/Treg imbalance and IL-17a in viral infection mediating autism spectrum disorders (ASD). Uncontrolled systemic or uterine

inflammation during pregnancy by pathogenic infection might generate cytokine storm effect. The principal component of cytokine storm, IL-6, could modify the

uterine cytokine microenvironment and facilitate alteration of the Th17/Treg imbalance in favor of the Th17-population. Th17 cells, in an exacerbated proinflammatory

response, can promote ASD through IL-17a. In contrast, Treg cells maintain self-tolerance and maintain normal fetal development through an anti-inflammatory

response (IL-10, TGFβ). Th17 cells and Tregs, despite their seemingly diametrically opposed functions, share comparable features and differentiation mechanisms.

IL-17 released by Th17 cells traverses the placenta and could potentially reach the fetal brain in the presence of an incomplete blood–brain barrier.

PLACENTAL VIRAL INFECTION

The placenta is a temporary reproductive organ that allows

the intermediation between the mother and the fetus during

pregnancy. Because of its ability to modulate maternal immune
responses, it is also called a potent immune organ. The
syncytiotrophoblast (STB) forms and maintains the outer layer

of villi by fusing the inner layer of proliferative progenitor
cells known as villous cytotrophoblasts (CTBs) (39). CTBs
also differentiate into invading trophoblasts primarily residing

in the anchoring villi. These invading trophoblasts further
differentiate into endovascular trophoblasts that are involved in
spiral artery remodeling in the decidua. Invading extravillous
trophoblast (EVTs) are involved in the cross-talk with decidual
immune cells to regulate immune tolerance, angiogenesis, and
fetal development (39, 40). Within the maternal–fetal contact,

viruses can infect a variety of cell types and also traverse from
one cell to another through caveolin-dependent endocytosis,
macropinocytosis, or uptake processes, without the need for
cellular receptors (41).

In the case of ZIKV, evidence of viral replication was found
in proliferating villus and Hofbauer cells in the villous core.
Through infected maternal blood macrophages, ZIKV or HIV
can get into placental trophoblast cells and infect them (42, 43).
Significant maternal viremia is required for placental infection to
occur. By bathing terminal villi inmaternal blood, the STB barrier
serves as a common entry point for infectious agents to enter
fetal blood and other organs later in the gestation. Viruses such as
CMV, ZIKV, and SARS-CoV-2 may all infect the placenta directly
by attaching to viral receptors on the maternal side of STBs,
while other viruses can use antibody-dependent enhancement
(ADE) to get through the STB barrier (44–46). Complex immune
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evasion approaches are employed by members of the HSV
and CMV families. These viral infections may be curtailed
by robust IFN responses and anti-inflammatory activities of
hormones and cytokines. In normal pregnancy, the placenta is
equipped to protect the mother and baby from low viremia
cases. However, overwhelming viremia and compromised local
immunity may lead to infections in the placenta. CMV, ZIKV,
and other infections have been shown to maintain vigorous viral
replication in the placenta (47, 48). The evasion mechanisms
employed by the viruses often target components in the type I
interferon pathway. Congenital infections such as ZIKV, HIV,
CMV, SARS-CoV-2, and others have been shown to suppress
this pathway (49–52). Consequently, proinflammatory cytokines
are normally induced, leading to the downstream events of
tissue inflammation and damage (49, 50). The ZIKV protein
NS5 antagonizes type I interferon-mediated induction of RIG-
I pathway to neutralize the placental defense. Similar to ZIKV,
CMV utilizes its IE1 protein to weaken the host’s natural
defense mechanisms (53, 54). When it comes to mimicking
congenital pathogens, CMV and ZIKV are particularly effective
since they both target the host interferon response while
producing widespread infections during early pregnancy when
innate defense in the placenta is challenged by immune evading
mechanisms (53, 54).

In the context of the new COVID-19 pandemic and
placenta infection, SARS-CoV-2 has been screened in placental
sections, amniotic fluid, and cord blood. SARS-CoV-2 was found
in the STB and villous fibroblasts of a COVID-19 patient
with severe disease using transmission electron microscopy
(TEM) (55). In the case of SARS-CoV-2, the spike protein
must attach to angiotensin-converting enzyme 2 (ACE2) in
order for the virus to enter the cells. Molecular analysis
has revealed the presence of ACE2 in various components
of the placenta, including syncytiotrophoblasts, endothelium,
and vascular smooth muscle (56). Transmembrane protease
serine 2 (TMPRSS2) and molecules, such as cathepsin B/L7
and furin, are required for active viral infection. Researchers
have discovered the substantial expression of ACE2 in the
placenta by single-cell RNAseq, but not TMPRSS2 in the placenta
(57, 58). Recent studies using single cell RNAseq during early
gestation indicated that ACE2 was expressed in the placenta, but
TMPRSS2 expression was either absent or extremely low (58).
It is then possible that other proteases that may contribute to
viral replication in the placenta remain to be identified. There
are a number of interesting aspects of placentation that ACE2
is involved in, including trophoblast migration and maternal
vasodilation (59, 60). Uterine arterial malfunction in pregnant
mice lacking the ACE2 gene was linked to reduced umbilical
blood flow and placental hypoxia. Adverse pregnancy outcomes
such as miscarriage, ectopic pregnancy, and hypertension have
also been linked to ACE2 (60). There is therefore the possibility of
placental anomalies and pregnancy consequences if SARS-CoV-
2 affects the expression of ACE2 in the placenta. The presence
of ACE2 in the placenta suggests that SARS-CoV-2 may be
able to attach to it, resulting in the initiation of viral infection.
Another way for the virus to breach the placental barrier is for
it to be carried by blood cells. However, there is controversy

regarding whether SARS-CoV-2 efficiently infects CTBs and/or
EVTs (61, 62).

Although there are case reports of vertical transmission,
evidence, so far, suggests that SARSCoV-2 does not transmit
vertically (63). SARS-CoV-2 has not been discovered in cord
blood, throat and nasopharyngeal swabs, urine, or feces from
many neonates screened for the virus at birth. SARS-CoV-
2-negative amniotic fluid samples have also been collected
from COVID-positive pregnancies (64, 65). These observations
suggest that SARS-CoV-2-mediated effects on fetal development
must be regulated by local cytokine storm and/or uterine
immune activation.

CYTOKINE STORM AND AUTISM
SPECTRUM DISORDER

Cytokine storm disorders are caused by a complex interwoven
network of cells, signaling pathways, and cytokines. It is
considered that cytokines, such as interferon-γ, interleukin-
1, interleukin-6, tumor necrosis factor (TNF)-α, IL17, and
interleukin-18, play critical roles in immunopathology when
their levels are increased during a cytokine storm (8, 9).
The microbiome, genetic traits, and underlying conditions all
influence the cytokine patterns. Innate immune cells recognize
and respond to a wide variety of microbes by releasing
cytokines that activate cells of the adaptive immune system
via pattern recognition receptors that are not antigen specific
(8, 66). Cytokine storms frequently result in an inflammatory
response that is more of a Th1 type. To protect the body
from intracellular infections, effector T cells release significant
amounts of interferon-γ that induces delayed hypersensitivity
reactions and activate macrophages (8, 67). There is evidence that
Th17 cells can be the driving force behind a cytokine storm that
is not dependent on interferon-γ (68).

The deleterious cytokine storm has been reported in response
to several viral infections, including influenza H5N1 virus,
influenza H1N1 virus, and SARS-CoV-2. MERS-CoV infection
was also reported to induce increased concentrations of
proinflammatory cytokines, IFN-γ, TNF-α, IL15, and IL17. A
significant number of COVID-19-associated deaths have been
linked to acute cytokine storm (67). Plasma cytokine levels of
41 COVID-19 confirmed cases in China revealed elevated levels
of an array of cytokines (68). A recent study with a large cohort
of COVID-19 patients showed that serum IL-6 levels could be
used to predict the patient’s prognosis. These studies reported
that serum IL-6 level was significantly high in mortality cases
compared with recovery cases. Additional studies also confirmed
the significance of plasma IL-6 as a measure of COVID-19
severity. Even in pediatric COVID-19 patients, ranging from 2
months to 15 years, significant increase in the levels of IL-6, IL-10,
and IFN-γ was reported (67, 69).

Systemic “cytokine storm” can potentially cause secondary
immune activation at the placental niche (70, 71). In animal
studies, cytokines have been found to have a critical role in
mediating the effects of uterine immune activation on the
developing embryo. Pregnant women who have been infected
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with certain virus release proinflammatory cytokines at the
maternal–fetal interface, amniotic fluid, and the fetal brain, which
results in altered fetal behavioral outcomes. In animal models,
IL-6, IL-17, TNF-α, and IL-1β have been identified as significant
mediators of the fetal response to local inflammation, leading to
ASD (72–74).

UIA-induced cytokine storm plays a central role in
modulating the local immune system and possibly the brain
immune responses. Cytokines act as messengers between the
brain and the hypothalamus during infection, influencing the
brain’s response to fever and sickness (75). Increasing evidence
points to the role of cytokines in higher-level brain processes,
such as memory and cognition (76). Consequently, dysregulation
of the immune system’s cytokine signaling and/or regulation can
result in a wide variety of neurological effects and complications.
The importance of these interactions varies depending on when,
how long, and how intense they are. For example, cytokines
have varied effects on the developing and adult brains (76).
For brain immune responses, neuronal stem cells (NSPCs)
and immune cells communicate via cytokines, which can have
both protective and harmful effects depending on the cytokine
profile of each cell type (77, 78). The effects of cytokine and
chemokine signaling on brain cell activity, proliferation, and
survival are highly variable. Viral infections frequently change
NSPCs, either directly through viral infection or indirectly
through immune cell activity or cytokine/chemokine signaling
(77). Multiple changes in the behavior of infected NSPCs can
be induced by cytokines/chemokines that affect NSPC numbers,
differentiation into other neural cells, migration to areas of
injury, and eventually the development and repair of the human
brain (79).

Individuals with autism are shown to have dysregulated
interleukin-6 (IL-6). Children and adults with the disease
have elevated amounts of IL-6 in their blood compared with
healthy individuals. Postmortem brain tissues from children
with ASD also show elevated levels of IL-6 (80, 81). According
to immunohistochemistry examination of cerebellar sections,
autistic postmortem brain specimens had considerably greater
IL-6 staining (82). Autistic brain exhibits significantly higher IL-6
and its receptors in the brain (83, 84). In adults, circulating IL-
6 from the peripheral tissues can pass the blood–brain barrier
and affect a wide range of activities in the brain (85, 86).
Multiple studies have shown that UIA triggers inflammatory
response through proinflammatory cytokines in the embryonic
brain. IL-6 mRNA and protein levels in the fetal brain have been
found to increase in the wake of an UIA (87). This molecular
interaction supports the feed-forward inflammatory cycle. The
elevated expression of IL-6 has been seen in a number of central
nervous system (CNS) illnesses (88), including those caused by
HIV, CMV, and Zika viral infections (89–91). IL-6 induction
appears to be responsible for many of the long-lasting behavioral
changes seen in UIA-born offspring. The presence of IL-6 in the
brain throughout neural development affects avoidance learning
and causes autism-like behavior, whereas mice lacking IL-6 are
more susceptible to infection and have impairments in fear
conditioning (92, 93). Exposure to IL-6 in the womb alters
the offspring’s NSPC pools for the rest of their lives. In the

fetus, maternal IL-6 treatment increases the number of cortical
and forebrain neural precursors (94). Neuropathology, GABA
dysregulation, and immune system alterations are all linked to
IL-6 during the course of a child’s life (95). Infection during
pregnancy has the same effect. IL-6 has a wide range of effects
on the developing brain. Neuronal self-renewal, migration, cell
survival, and neurite outgrowth are all influenced by IL-6 and
its family members (96–98). It is also possible that exposure
to IL-6 during critical periods of pregnancy will change the
synaptic networks of neurons in offspring. IL-6 overexpression
causes a reduction in glutamate receptor expression in vitro
and in vivo, as well as an increase in the ratio of excitatory
to inhibitory synapses in the brain (99, 100). This is especially
relevant in the context of autism, where a disproportionate
excitatory-to-inhibitory neuronal ratio is thought to play a role
in the development of the disorder. In this way, maternal IL-
6 not only affects the pre-natal NSC pool but also has an effect
on the post-natal NSPC pool. As a result of the changes in fetal
NSPC activity, the SVZ pools of adult NSC display increased
proliferation and neurogenesis (97, 98). Instead of increasing
NSC proliferation and astrogliogenesis, when localized IL-6 was
expressed from ZIKV infected microglia, there was a decrease
in neurogenesis. This is in contrast to circulating maternal IL-6
(101). IL-6 has also been reported to have some protective effects
on neuronal stem cells. There is a reduction in both the stem and
immature neuron populations in vitro after infection with HSV1.
When an active infection is present, however, IL-6 frommicroglia
prevents these effects from occurring (102). It is possible that the
setting of the inflammatory milieu, together with the presence
of other cytokines, will have an impact on the effects of IL-6.
However, subsequent human studies have cast doubt on the role
of gestational IL-6 alone in the development of autism. Increased
IL-6 levels in mid-pregnancy maternal serum and amniotic fluid
were found to be linked with developmental problems but not
autism in a longitudinal analysis.

Additionally, IL-6 plays a critical role in regulating the balance
of proinflammatory Th17 cells and Tregs (103). Similar to IL-
6, this upregulation of IL-17a in the pre-natal environment can
also lead to abnormal fetal neurodevelopment and has been
consistently associated with ASD (104). Furthermore, expression
of IL-17RA in the brain dramatically increases during UIA.
Cortical dysplasia is a prevalent characteristic in children with
ASD (105, 106). The subtle pathogenic changes in the fetal
brain that may occur in response to viral infections during
pregnancy changes are depicted in Figure 2. This has been
confirmed in mouse models. Interestingly, the architectural
organization of neurons in the cortex was disrupted in embryonic
mice injected IV with IL-17a at an early stage of development
(E14.5). Indirect evidence supports the role of IL-17 in direct
neuronal damage. Different neuronal populations express IL-
17 receptor (104). IL-17 disrupts blood–brain barrier (BBB)
tight junctions in vitro and in vivo and promotes CNS
inflammation (107). IL-17 may contribute to CNS tissue damage
by affecting the cells that express IL-17 receptor, such as
microglia, endothelial cells, astrocytes, and neurons (108, 109).
IL-17a was found to be sufficient to generate ASD-like traits
in male offspring early and persistently. This is consistent
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FIGURE 2 | Proposed pathophysiological pathway illustrating how prenatal maternal viral infection and associated cytokine storm disrupted fetal brain programming

leading to increased risk of ASD. Among cytokines, IL-17a binds to receptors in the upper layer neuronal cells and alters their identity and plasticity. This can lead to

changes in the cortical layer organization and “patchy disorganization” in some regions of the somatosensory cortex. This disorganization potentially affects fine

orchestration, proliferation, neurogenesis, migration, and gliogenesis (astrogliogenesis and oligodendrogenesis, and synaptogenesis). Cortical layering during

embryonic development: MZ, marginal zone; CP, cortical plate; SP, subplate; IZ, intermediate zone; SVZ, subventricular zone; VZ, ventricular zone.

with the male preponderance, and behavioral findings in ASD,
which suggests that persistent maternal IL-17 contributes to
the pathogenesis of ASD in offspring (104, 110). Persistent IL-
17 during pregnancy may have lingering effects even during
adulthood where it may cause defects in adult glia, inhibitory
synapses, and behavior (111). It is also necessary to examine
if maternal IL-17 are directly responsible for the cytokine
responses reported in the fetal brain. Contrary to its embryonic

effect on ASD development, IL-17 may have opposite effects
during high fever scenario in adults (112, 113). This behavioral
recovery was followed by a reduction in neuronal activity in
the primary somatosensory cortex dysgranular zone (S1DZ).
This finding tends to support the hypothesis that certain
children with autism spectrum disorder (ASD) demonstrate
behavioral gains when experiencing inflammation followed by
fever (113).

Frontiers in Virology | www.frontiersin.org 6 April 2022 | Volume 2 | Article 863202

https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
https://www.frontiersin.org/journals/virology#articles


Jash and Sharma Uteroplacental Origin of Autism

VIRAL INFECTIONS AND RISK OF AUTISM

Pregnant women are more vulnerable to infections. During
pregnancy, viral infections may or may not develop clinical
indications in the mother. Indirect or direct consequences on the
fetal development are inevitable. Infections will trigger immune
responses, particularly in the placental microenvironment.
However, immune responses are not always pregnancy
compatible. The observations from human and animal studies
suggest that pregnancy when challenged with viral infections is
more likely to have an offspring with ASD-like features and other
neurodevelopmental anomalies (114, 115). Neurodevelopmental
problems in the fetus can be caused by both DNA and RNA
viruses that cross the maternal–fetal interface (116). Here we
have reviewed a few of the viral infections during pregnancy
that have been associated with the onset of ASD. We also
suggest mechanisms encompassing neurological immunological
pathways that could play a role in the programming of ASD
during fetal neurogenesis.

Zika Virus
ZIKV is a single-stranded RNA virus of the Flaviviridae family. In
general, in utero exposure to ZIKV is associated with birth defects
such as microcephaly (117). Although ZIKV-associated neuro-
immunological effects have been linked to the development of
neurological diseases (117, 118), it is still not clear whether
ZIKV infection during pregnancy significantly contributes to
the incidence of ASD during the early years of infants (119).
In a study of 216 infants during the Rio de Janeiro ZIKV
epidemic of 2015–2016, the prematurity rate was very high
(13%). Microcephaly was identified in 8 of 216 infants (120).
With neurological Bayley-III and other assessments, ASD was
diagnosed in the second year of life in previously healthy
children. This suggests that ZIKV during pregnancy may
primarily affect gestational age of birth and congenital defects
such as microcephaly. It is noteworthy to state that improved
neurodevelopmental outcomes were observed in female children,
term babies, and maternal infection later in pregnancy (121).
ASD developed in six of the 18 children with very low average
performance. In another study, the findings in 156 infants
from ZIKV infection during pregnancy and 79 infants without
ZIKV infection suggested that there were minimal differences
in neurodevelopmental outcomes at 24 months of age (122),
suggesting that ZIKV infection if not timed for a temporal
window of pregnancy may not lead to increased incidence
of ASD. Although association between ZIKV infection during
pregnancy and ASD is inclusive, more studies with larger cohorts
are needed, particularly in the context of ZIKV infection during
second trimester. Brazilian ZIKV strain may pass the placental
barrier, infect progenitor cortical cells, and drive cell death by
apoptosis and autophagy (123). Infection of cytotrophoblasts
or the transmigration of infected primary human placental
macrophages allowed this virus to infiltrate the embryonic
neural cells (124). In newborns with congenital ZIKV infection,
neuroimmune modulation may have a role in the development
of autism. Proinflammatory cytokines, such as TNF-α- and IL-6,
are generated at high levels in response to ZIKV infection and so

predispose patients for this condition (125). Interestingly, ZIKV
has been found to be highly specific for oRGs (radial glial cells)
(126). Centrosomal abnormalities and early differentiation were
observed in neural precursor cells (NPCs) infected with the virus.
Early differentiation and maybe abnormal radial fiber migration
of newborn neurons may have resulted from the breakdown of
adherens junctions in the vRGs. The general view is that the
ZIKV inhibits the proliferation of NPCs, triggers selective cell
death, and shrinks the size of the brain in humans. Subsequently,
detailed analysis of the structure of the brain of Zika-infected
mice indicated a reduction in the number of VZ-like areas as
well as the number of SOX2-positive RGs and TBR1-positive
layer VI neurons (127, 128). Neurological problems have been
documented in experimental studies in vivo and in vitro as a
result of ZIKV neurotropism and the molecular signatures left
by infection. Even after birth, infected nerve cells generate and
release proinflammatory cytokines that are significantly linked to
neuropsychological disorder. Moreover, ZIKV-infected human
mesenchymal stem cells were also discovered to display ASD
molecular markers in a distinct manner (129). Although there is
no concrete evidence of ASD in newborns with maternal ZIKV
infection, the altered neuro-immune axis may contribute to ASD.

Rubella
Rubella virus is a single-stranded, plus-sense RNA virus
belonging to the Togaviridae family. Congenital rubella
syndrome (CRS), which includes sensorineural hearing
impairment, cataracts, heart problems, and/or brain and nervous
system damage, can arise from rubella infection during early
pregnancy, which is normally a self-limiting condition (130). In
the 1960s, the prevalence of intellectual disability and autism
in CRS patients in the United States was substantially greater
than in the general population, with 42 and 7.4% incidence rate,
respectively (131). The virus enters the bloodstream by infected
cells and alveolar macrophages, which goes to the lymph nodes
in the affected area and cause lymphadenopathy (132). Exactly
how Rubella reaches the maternal-fetal interface has not been
thoroughly investigated. According to one theory, monocytes
in the basal plate diffuse into the intervillous space and/or
lymphatic arteries as a result of persistent infection. CTBs,
endothelial cells of villous capillaries, amniotic epithelium, and
different cells of the basal plate were found to contain detectable
virions in placentas with CRS (133). Of the various side effects of
CRS is ASD. In the 1970s, 200 times higher incidence of ASD was
reported in children with CRS (134). CRS and autistic children
show similar traits of hyperactivity and spasticity. Another
similarity is that in both autism and CRS, certain changes in the
brain are thought to be the result of dysregulated immune system
(134, 135). After 3 to 5 years following the exposure, 95% of
the children with CRS were suspected of having developmental
issues and sensory dysfunction, and 41% were suspected of
having autism (134, 135). At molecular level, viral replication
in the host cell impacts the expression of genes involved in
the development of sensory organs in a direct and indirect
manner. Consequently, the long-term impacts of Rubella on
the developing embryo are compounded by the host–virus
interactions. Another important similarity between CRS and
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autism is that children with these disorders lack antibodies to
rubella. Thus, introduction of rubella vaccines (RCVs) may result
in significant reduction in CRS as well as neurodevelopmental
and sensory issues in young children (136). Evidence for this
supposition is available in small cohort studies.

Influenza Virus
Influenza is a contagious respiratory infection caused by
influenza viruses A and B. Both influenza A and influenza B
viruses are enveloped negative-sense RNA viruses belonging
to the Orthomyxoviridae family. Pregnant women were among
the most at risk during the 2009 H1N1 pandemic of influenza
A (H1N1) (137). Third-trimester pregnant women with high
temperature were more likely to develop severe disease during
the 2009 H1N1 pandemic and in inter-pandemic periods,
compared with those in earlier stages of pregnancy. Influenza
virus infection can be more severe in pregnant women and
their offspring, according to both animal research and clinical
findings (137, 138). During pregnancy, influenza virus can have
detrimental consequences on the fetus because of hormonal
signaling imbalance, inflammation, or activation of the immune
system against fetal tissue. As with other common viral
pathogens, influenza during pregnancy has been linked to a range
of neurodevelopmental issues, including ASD, bipolar disorder,
and schizophrenia (139–141). In spite of the conflicting evidence,
some epidemiological evidence suggests that pre-natal maternal
influenza virus infection increases the likelihood of ASD in
offspring. Autistic children were found among the offspring
of ∼8% of pregnant women who had influenza or had been
exposed to it during their pregnancy. Conversely, analysis from a
large cohort (196–929) of infants delivered at Kaiser Permanente
Northern California between January 1, 2000 and December
31, 2010 at a gestational age of at least 24 weeks) found no
link between maternal influenza infection during pregnancy and
an elevated risk of ASD (142). When it comes to ASD, a new
study found that influenza infection during pregnancy was not
related with an increased risk. There is a pertinent debate on
the maternal influenza A immunization during pregnancy and
risk for autism in the offspring (143). In a large study of 39,726
infants from pre-natally exposed H1N1 vaccine with 13,845 in
the first trimester and 29,293 infants from unexposed group,
the authors found no correlation between H1N1 immunization
during pregnancy and autism (144).

Cytomegalovirus and HSV Infections and
Risk of Autism Spectrum Disorders
CMV and HSVs (HSV1 and HSV2) are double-stranded
DNA viruses, which belong to the herpesviruses class.
Like other TORCH pathogens, CMV, HSV1, and HSV2
may cause pregnancy complications, including spontaneous
abortion, intrauterine growth restriction, preterm birth, brain
anomalies, or visual impairment (145). Although infections with
herpesviruses may not be primary infections, these viruses are
associated with persistent or latent infections and may impact
pregnancy if reactivated. What is important is gestational age
at the time of infection which may control the risk of vertical
transmission to the fetus and disease level (145, 146). There

is a 40% chance that a fetus will be infected if the mother is
infected. CMV and HSV2 sero-positivity has been used to
examine a relationship between infections by these viruses and
the incidence of ASD (147). One study involving 442 mothers
of children with ASD suggested that high levels of HSV-2 IgG
antibodies in maternal mid pregnancy were associated with
increased risk of ASD in male offspring. In this study, no
association was found between ASD and the sero-positivity
for Toxoplasma gondii, rubella virus, CMV, or HSV-1 (148).
However, in another study, CMV sero-positivity was found to
be a more potent trigger than HSV-2 to influence the onset
of ASD (149). These observations suggest that this association
with ASD needs to be further evaluated in prospective studies
with larger cohorts of pregnant women, particularly keeping
the gestational age of infection in mind. It is not clear what
immune changes occur during primary or reactivated CMV
or HSV infections. The ability of CMV to infect trophoblasts
has been demonstrated (150, 151). Several investigations have
documented the inflammatory pathology that results from the
placental immune response against CMV. Paracrine apoptosis
of uninfected cells occurs during CMV infection of CTB and
SYN possibly as a result of excessive production of TNF-α.
This inflammatory reaction at the maternal–fetal interface
has adverse consequences on the fetal neurodevelopment.
Children with congenital CMV infection who were previously
asymptomatic at birth have been found to have ASD (152, 153).
In children with neurological disabilities and cerebral cortical
abnormalities, teratogenic consequences of CMV infection
were found by neuroimaging. Forty-five fetuses from women
with a positive pre-natal diagnosis of CMV infection were
examined for neuronal damage. This virus had been detected
in the brain’s cortex as well as its white and gray tissues as well
as the germinal matrix and the leptomeninges (154). Neurons,
neuroblasts, glia, endothelium, ependymal, and meningeal cells
were among the CMV-positive cells identified. In the third layer
of the cerebral cortex, there was significant laminar necrosis,
with numerous macrophages replacing the growing neurons
(155, 156). Multifocal aggregates of CD8+ T-lymphocytes and
granzyme B+ T-lymphocytes were seen in the necrotic and
CMV-positive portions of the inflammatory infiltrate. Severely
brain-damaged fetuses had a noticeable invasion of fetal activated
CD8+ T-cells (157–159).

Human Immunodeficiency Virus and Risk
of Autism Spectrum Disorders
According to the World Health Organization, around 1.3
million women living with HIV became pregnant each year.
Transplacental transmission of HIV can occur during delivery
and/or post-natal breastfeeding. Vertical transmission in utero is
estimated to occur at a rate of around 1%−2% and is associated
to maternal CD4 levels and viral load (160). Lymphocytes
infected with HIV endocytose or transcytose the virion particle
if they come into contact with trophoblast cells. Aside from
that, CTB, SYN, and Hofbauer cells have been found to contain
HIV genetic material (161). These findings are in line with
epidemiological studies, which show that although HIV can
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be transmitted transplacentally, this is a rare occurrence (1%)
(162, 163). On the other hand, the number of HIV-uninfected
children who were exposed to HIV while in the womb or
while breastfeeding is rising, and these children are referred to
as HIV exposed uninfected (HEU). Many children who have
been exposed to HIV but have not become infected have been
shown to have ASD. Congenital infections, such as CMV and
toxoplasmosis, are more common in HEU. As compared with
uninfected individuals, those exposed to the HEU developed
weaker cognitive functioning and poorer motor, mental, and
language development. Researchers found that HEU diagnosed
with an ASD-like pathology had higher leukocyte mitochondrial
DNA content than controls, suggesting that mitochondrial
malfunction may play a role in HEU’s risk of developing
ASD (164–166).

Coronavirus Disease 2019 and Possible
Risk of Autism Spectrum Disorders
Although it is too early to examine an association between
SARS-CoV-2 infection during pregnancy and the incidence of
ASD or other neuropsychiatric disorders, infection-associated
cytokine storm has been thought to be a possible risk factor
for neurodevelopmental disorders in infants (167, 168). The
common notion is that poor placental infection or vertical
transmission, lack of trans-placental transfer of SARS-CoV-2
antibodies, and reduced co-expression of ACE-2 and TMPRSS2
may provide protection against placental infection and vertical
transmission. However, cytokine storm induced by SARS-CoV-2
may reach the placenta and the fetus. In view of recent results
indicating that pregnant women with SARS-CoV-2 infection
have elevated levels of IL-6, IL-17, and other inflammatory
cytokines (169, 170), fetal neurodevelopmental may be at risk.
Although SARS-CoV-2 is rarely transferred to the fetus, it
can breach the blood-cerebrospinal fluid barrier (BCSFB) by
infecting epithelial cells expressing the ACE2 receptor (171).
In light of maternal immune activation, it appears plausible
to assume that infection with SARS-CoV-2 during the early
stages of pregnancy could similarly result in serious fetal
neurodevelopmental defects.

SEXUAL DIMORPHISM IN VIRAL
PATHOGENESIS AT THE
MATERNAL–FETAL INTERFACE

Although male fetuses are exposed to the same in utero
environment, they have preponderance for generalized
complications of pregnancy, showing higher vulnerability
to placental inflammation, hypoxia, placental abruption,
preeclampsia, eclampsia, and preterm birth (172, 173). These
adverse pregnancy outcomes are invariably associated with
increased risk of poor neurodevelopmental outcome. Emerging
research points to a complicated relationship between infant’s
sex and maternal immune surveillance (174, 175). Differential
crosstalk between male and female fetuses with the placenta
might arise from the varying effects on innate immunity.
Sex-specific differences in viral pathogenesis stem from gene

dosage effect of X and Y chromosomes and specific sex hormone
gradient (176, 177). There is evidence that sex-linked genes
regulate innate, cellular, and humoral immune surveillance,
significantly increasing the male susceptibility to adverse
immune response (Figure 3A). The female placenta shares the
same X-linked gene dosage as of the fetus as it is derived from
the extra embryonic tissues. Gene dosage of X-linked genes, such
as IL-13, IL-4, IL-10, XIST, TLR7, FOXP3, and Sox9 in female
placenta could potentially contribute to female protection against
viral infection compared with male through gene dosage and
epigenetic modification. Taken together, sex-specific placental
stress signaling and gene expression significantly impact the
fetal adaptation in a sexually dimorphic manner to the in
utero environment upon maternal immune response and stress
(178–180). Epidemiological data reveal a higher mortality rate
in male compared with female embryos due to viral infection.
This unique immunological advantage to female is attributed
to efficient humoral and cellular antiviral immune responses.
Recent SARS pandemics (SARS-CoV-1 and SARS-CoV-2) also
indicated sexual dimorphic IFN signaling, in blood and lungs,
resulting in high morbidity in male patients (177, 181). Placental
Type I and II IFN signaling at the maternal-fetal interface
dampens viral pathogenicity. The propensity of placental Type I
and Type II IFN signaling at the maternal–fetal interface during
viral pathogenicity depends largely on sexual identity of the
placenta. Sexual dimorphic antiviral response also arises from
sex specific expression of TLR and IFN pathway genes (182, 183).
Female immune cells show 10-fold higher expression of TLRs in
comparison with its male counterpart (184). Furthermore, higher
innate immune cell abundance in female confers higher immune
protection against viruses. Interestingly, Treg abundance and
proliferation rate is also higher in females. Interestingly, human
female naive CD4+ T cells preferentially produce IFN-γ upon
activation, but human male naive T cells produce more IL-17
than their female counterparts. Additional sexual dimorphism
in IL-17 expression from T cells also exists (185–188). This
sexual dimorphism in immune responses originates from
X- and Y- linked chromatin remodeling. In addition to that,
sex-specific microRNA expression, such as miR-124 and miR-
202-5p/3p, could be attributed to sex-specific immune responses.
For example, gestational expression of miR-124 in XX cells
leads to induction of Foxp3+ Tregs by suppressing STAT3
signaling (189).

A recent study highlighted a unique feature of the human
placenta’s ability to reactivate inactive X-chromosome at very
early or late gestational period (190, 191). Unlike other tissues,
these unique molecular features of the human female placenta
highlight the possibility of inducing random X reactivation in an
inimical intrauterine environment in the early stages of embryo
development. This X-reactivation could potentially increase the
gene dosage of certain X-linked genes as described above,
leading to improved protection from viral infection. Sex-specific
placental transcriptional analysis also reveals unique molecular
adaptation under the same maternal in utero environment. The
study highlighted the changes not only in the X- and Y-linked
genes but also in immune regulatory pathways within autosomal
gene cluster. The female placenta showed higher expression of
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FIGURE 3 | Possible mechanism of sexual dimorphism in uterine immunity and autism spectrum disorders (ASD) development. (A) Sexual dimorphism of the immune

responses. Immune components of both innate and adaptive immunity are differently regulated in females and males. (B) Sex-specific placental response to

inflammation generated a differential gradient in both sexes that affects fetal brain differentially.

immune surveillance genes including JAK1, IL2RB, Clusterin,
LTBP, CXCL1, IL1RL1, and TNF-α receptor (179, 192).

Sexual Dimorphism in Autism Spectrum
Disorders Development
Sexual dimorphism has been observed in a range of
neurodevelopmental disorders including ASD, schizophrenia,
attention deficit hyperactivity disorder, and intellectual
disabilities (193–195). The brain is highly vulnerable to
environmental insults during early gestational period, as

it undergoes rapid developmental processes, including

neurogenesis, neuronal migration, and synaptogenesis.

Systemic and uterine immune activation during pregnancy

is associated with disruption in fetal neurogenesis and
predisposes to neuropsychiatric disease in male offspring
(196–198) (Figure 3B). These sex-specific responses serve
as additional mechanisms in which to consider male ASD
predominance (199). The male preponderance does not
appear to be directly linked to genetic factors, as sex-skewed
expression of neurodevelopmental risk genes has not been
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discovered. Although male and female littermates are exposed
to the same maternal in utero inflammation, it has been
reported that behavioral shortfalls manifest mainly in the male
offspring, mirroring the sex bias observed in placental immune
response to viral infection (200). Because the placenta is the
immunologic hub and the first site of fetal exposure to maternal
inflammation, we propose that sex-specific reactions to uterine
immune activation (UIA) that have deleterious impacts on fetal
neurodevelopment may originate in the placenta.

CONCLUSION AND FUTURE
PERSPECTIVE

Knowledge of placental molecular and immunologic pathways
and their role in the transmission or protection from infection
is critical to the care of pregnant women and the health of
their newborn children. Infections during pregnancy can have
serious implications. A variety of host–pathogen interactions
specific to the maternal–fetal niche have been discovered as a
result of the complexity and distinctive characteristics between
the two hosts. Yet, the molecular mechanisms underlying
infection-associated pathologies remain largely unknown, in
part, due to the difficulties inherent in defining the interactions
between the pathogen and the maternal and/or fetal hosts
during pregnancy (201). There are significant differences in
the placental architecture between humans and mice that
prevent direct correlations of these findings to humans,
despite the fact that mouse models have been useful for
gaining valuable insights into numerous aspects of pregnancy.
Even though pregnant women appear to be less susceptible
to early infection than non-pregnant women, immunologic
modifications with advanced pregnancy may hamper pathogen
clearance, resulting in an increased severity of diseases caused by
particular pathogens.

Neuronal development is a complex process that depends
on the interaction between genetic and environmental factors.
Various risk factors might affect embryonic development.

Despite this, studies have shown that the inflammatory response
to infections is a widespread and important feature. The
identification of target cells for infection and study of possible
neurodevelopmental effects require a better understanding of
normal neurodevelopment and its comparison with the pathways
that disrupt it.

Future research is critical to the development of tailored
treatments that take into account the complex relationships
between maternal and fetal tissues and how infections
influence these interactions. Overall, research suggests that these
pregnancy-related problems are linked to neurodevelopmental
abnormalities, particularly ASD. The uterine immune
system is affected by hormonal changes. Thus, therapeutic
approaches to minimize the spread of infectious and other
diseases by modifying the hormonal environment should
be considered. In order to prevent and treat diseases, new
preventive and therapeutic avenues that may interfere with
the pathogen-placenta deleterious cross-talk are a possible
prophylactic or therapeutic avenues. With the view of curtailing
maternal and fetal inflammation during pregnancy, maternal
immunizations may have long-term advantages for the offspring
as well.
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