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Pregnancy significantly elevates the risk of developing severe viral diseases, which can
have a detrimental effect on fetal development and increases maternal mortality. In
addition, certain viruses can be transmitted vertically from mother to babies, either in
utero, during delivery, or postnatally during breastfeeding, resulting in congenital or
neonatal diseases and associated sequelae. While neonates are highly susceptible to
viral infections and severe disease outcomes, due to the immaturity of their developing
immune system, virus-specific maternal antibodies transferred either trans-placentally or
via breast milk provide protection to infants against intestinal, respiratory, or systemic
infections, during the first months of life. Thus, maternal prenatal immunization is important
not only to protect pregnant women from viral diseases, but also to prevent infection and/
or improve disease outcomes for the fetuses and neonates via passively transferred
antibodies. In this review, we discuss the protective role of maternal antibodies against
three categories of viruses: (i) viruses that cause severe maternal disease outcomes with
mainly indirect consequences to the fetus (e.g. SARS-CoV-2, influenza, DENV, filovirus),
(ii) those that are vertically transmitted from mother to their infants and cause congenital
diseases (e.g. HIV, ZIKV and CMV), and (iii) those that cause elevated disease severity
among neonates and infants postnatally (e.g. RSV, Rotavirus, Norovirus, HSV and HBV).
Furthermore, we review relevant pre-clinical animal models that can be employed to
develop novel immunization strategies against these viruses to enhance protection of
pregnant women and their babies.

Keywords: pregnancy, mother-to-child transmission, congenital disease, early-life, breastmilk, vaccination
INTRODUCTION

Pregnancy is a period of increased risk for a variety of viral infections and associated disease severity
(1), due to the unique biological, physiological, and immunological alterations in mothers in order
to tolerate the fetus (2). Viral infection in pregnant women often results in severe or fatal
complications such as intrauterine growth restriction, preterm birth, stillbirth, or miscarriage (1).
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For instance, the currently ongoing Coronavirus disease 2019
(COVID-19) pandemic resulted in a higher risk of severe
maternal infections, hospitalization, maternal mortality,
preterm birth, and severe neonatal and perinatal morbidity
index, compared to uninfected pregnant women (3).
Additionally, viral infection during pregnancy results in
immune inflammation at the placental-fetal interface, which
might interfere with fetal development (4). Moreover, several
viruses such as cytomegalovirus (CMV) and Zika virus (ZIKV)
can cross the placenta and infect the fetus, resulting in severe
congenital diseases in newborns (4), whereas others such as HIV
and hepatitis B (HBV) can lead to chronic infection. Infants
during their first few months of life represents another
population at increased risk for poor virus-associated disease
outcomes (5). For instance, a prospective study performed
between 2015 and 2016 at US pediatric hospital sites indicated
that hospitalization rate due to RSV infection was highest in
infants <6 months of age (6). Despite the elevated risk of
morbidity and mortality among pregnant women, their unborn
fetus, and infants, limited preventative or therapeutic strategies
are available for these populations. Notably, vaccination is the
most effective strategy to prevent virus-related disease
complications during pregnancy; Yet vaccines are not available
against several viruses associated with poor maternal and/or fetal
outcomes. Importantly, prenatal active immunization does not
only protect pregnant women from the deadly consequences of
infection by generating maternal immunity but can also protect
their offspring via transfer of the protective maternal immunity,
trans-placentally or via breast milk to the fetus and the
newborns, respectively. One of the main limitations of prenatal
vaccination research is exclusion of pregnant women from
vaccine safety and efficacy trials, which limits or delays the
Frontiers in Virology | www.frontiersin.org 2
availability of vaccines to pregnant women in need. Moreover,
because pregnancy is associated with an altered immunological
landscape, some vaccines such as live attenuated vaccines are
contraindicated during this period (7). Hence, there remains a
need for developing vaccine formulations that are safe for
pregnant women and tailored to the unique gestational
immune landscape.

Here we review the current state of prenatal immunization to
prevent viral disease outcomes during pregnancy and early life.
We have categorized viruses into three categories: (i) viruses that
cause heightened maternal diseases severity with mainly indirect
consequences to the fetus (SARS-CoV-2, influenza, DENV,
filoviruses), (ii) viruses that are vertically transmitted from
mother to their infants and cause congenital abnormalities
(HIV, ZIKV and CMV) and (iii) viruses that cause elevated
disease severity among neonates and infants (Rotavirus,
Norovirus, RSV, HSV and HBV). We focus on a few key
representative viruses (Figure 1), and discuss the associated
complications, with special emphasis on pregnant women and
infants. Additionally, for each of the viruses, we highlight recent
advances and ongoing studies in development of prenatal
immunization strategies, particularly focusing on the protective
roles of trans-placentally and postnatally transmitted maternal
antibodies to improve infant disease outcomes. Finally, we
review preclinical animal models that have been developed to
date to study viral pathogenesis and clinical course of infection.
Such knowledge can be utilized to improve our understanding of
the interactions of the virus with pregnant women, their unborn
fetus, and infants, which will ultimately guide development of
effective prenatal vaccination strategies. We acknowledge that
additional categories of viruses may cause elevated disease
severity in both pregnant mothers and their infants yet are
FIGURE 1 | Examples of viruses with the potential to cause severe disease in pregnant women, fetuses, and infants. Viruses can be broadly categorized into three
groups: (A) those causing severe maternal disease, indirectly affecting the fetus (SARS-CoV-2, Influenza, DENV and Filovirus) (B) those vertically transmitted from
mothers to fetus causing congenital defects (HIV, ZIKV, and CMV) and (C) those causing severe disease outcomes in infants and neonates (rotavirus, norovirus,
RSV, HSV and HBV). Schematic depicts whether FDA approved vaccine is available and whether such vaccines are recommended for pregnant women, for each
virus. N/A indicates not applicable, due to unavailability of approved vaccines. Of note, EBOV vaccine is occasionally recommended for pregnant women, when
benefit outweights risks. Figure constructed using Biorender.
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rarely associated with congenital infections. An example of such
a virus is varicella zoster virus (VZV). These additional
categories of viruses were excluded to keep the scope of the
review focused. Of note, throughout our review, we refer to
congenital transmission as viral transmission in utero, perinatal
transmission as transmission during delivery and postnatal
transmission as transmission via breastfeeding.
VIRUSES CAUSING MATERNAL DISEASE,
INDIRECTLY AFFECTING THE FETUS

Alterations in hormonal levels such as estrogen, progesterone
and glucocorticoids and an anti-inflammatory immune response
associated with pregnancy impact maternal immune response to
pathogens (2). As a consequence, pregnant women are either
more vulnerable to viral infections and/or have increased risk of
severe viral diseases. Some of these adverse outcomes of viral
infection in pregnancy are due to the abnormal release of pro-
inflammatory cytokines in the infected mothers that disrupt fetal
development (4, 8). Maternal infection with viruses can also lead
to psychological anxiety and stress in the pregnant women (9),
that might influence fetal neurodevelopment (10, 11). Hence,
maternal immunization before conception or during pregnancy
is beneficial to generate antibody responses that will protect the
mother and their fetus from adverse virus-associated
disease outcomes.

Severe Acute Respiratory Syndrome-
Coronavirus-2 (SARS-CoV-2)
SARS-CoV-2, the causative agent of COVID-19, is a positive-
sense single-stranded RNA virus, belonging to the Coronaviridae
family (12–14). Since its emergence in 2019, this virus has
afflicted over 250 million people and resulted in >5 million
deaths (15), worldwide. The primary mode of transmission of
this virus is via exposure to infectious respiratory droplets (16).
Since January 2020, the US has reported over 150,000 cases of
COVID-19 among pregnant women, of which >25,000 resulted
in hospitalizations and >250 resulted in death (17). A higher risk
of SARS-CoV-2 infection-associated maternal mortality and
hospitalization along with neonatal complication was also
observed in a multinational cohort-based study, in which
pregnant women were enrolled from 18 different countries (18).

Clinical Presentation and Associated Complications
SARS-CoV-2 infection during pregnancy results in increased
mortality and adverse pregnancy outcomes. A study conducted in
Washington State estimated that 10% of SARS-CoV-2-infected
pregnant women required hospitalization, whereas for non-
pregnant adults this number was only 2.8% (19). In addition,
pregnant women diagnosed with COVID-19 are at higher risk for
preeclampsia/eclampsia, severe infections, intensive care unit
admission, maternal mortality, preterm birth, still birth, and
severe neonatal and perinatal morbidity index, compared to
uninfected pregnant women (3, 20). Current data indicate that
mother-to-child transmission (MTCT) rarely occurs. Notably, in a
Frontiers in Virology | www.frontiersin.org 3
recent study, SARS-CoV-2 RNA was only detected in the umbilical
cord plasma and placental tissue of 2 out of 31 infants born to
SARS-CoV-2 positive mothers (21), indicating limited replication
capacity of the virus in the in-utero environment. This phenomenon
may be explained by the unfavorable localization and scarcity of
ACE2 and TMPRSS2 receptors in the placenta (22, 23). Similarly,
only a few studies have reported the detection of SARS-CoV-2 RNA
in the breast milk of infectedmothers (24, 25). Zhu et al, reported an
association between the presence of SARS-CoV-2 RNA in the breast
milk and mild symptoms in infants (25), but this association was
not observed in other studies (26). Importantly, the detection of
viral RNA does not necessarily indicate the presence of replication
competent SARS-CoV-2. In fact, to date, infectious SARS-CoV-2
particles have not been isolated from breast milk (27), highlighting
the need for further investigations to confirm if postnatal MTCT of
the virus via breast milk can occur.

Maternally Acquired Antibodies and Implications for
Prenatal Immunization
Several studies have demonstrated that SARS-CoV-2-specific
antibodies generated in the infected women during pregnancy
are transferred to the neonates (28, 29). Flannery et al, reported
that sera of 72 out of 83 infants born to SARS-CoV-2 IgG and/or
IgM positive pregnant women had detectable IgG responses, and
SARS-CoV-2 IgG concentrations in maternal sera correlated
with those of cord blood (29). The timing of maternal
infection may critically impact the efficiency of placental
antibody transfer, as pregnant women with recent or ongoing
infection have been reported to have overall reduced transfer of
SARS-CoV-2-specific IgG against the spike, receptor binding
domain, and nucleocapsid antigens compared to SARS-CoV-2
recovered individuals (30). This suggests that the timing of
maternal vaccination could profoundly influence the ability to
achieve neonatal protection (31, 32). SARS-CoV-2-specific
maternal antibodies could also be transferred to babies through
breast milk. In a recent study, 84% of SARS-CoV-2 positive and
COVID-recovered mothers had IgG, IgA or IgM against the
receptor binding domain in breast milk, with 53% being positive
for all three isotypes (24). Conti et al, reported significantly
higher levels of SARS-CoV-2 spike-specific IgA in the saliva of
infants born to COVID positive women who were exclusively
breast-fed compared to those that were formula-fed (28).
Notably, both IgG and IgA responses in breast milk exhibited
neutralization activity against live SARS-CoV-2 virus (33),
indicating that immunization of pregnant women could induce
infant protection via the transfer maternally acquired antibodies.

After initial hesitation to recommend SARS-CoV-2
immunization in pregnant women due to lack of safety data,
both the CDC and the WHO now recommend the use of the
COVID-19 vaccine during pregnancy, with several studies
reporting its safety (34, 35). Similar to infected women, women
who received SARS CoV-2 vaccine during pregnancy transferred
virus-specific antibodies to their babies (36, 37). In a recent
study, Low et al. demonstrated that two doses of a SARS-CoV-2
mRNA vaccine in lactating mother was able to elicit virus-
specific IgG and IgA antibodies in the breastmilk (38).
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Antibody titers (36, 38) as well as durability (37) of the
maternally transferred antibodies are typically higher in infants
born to vaccinated mothers compared to infants born to
unvaccinated infected mothers, suggesting that humoral
responses transferred from mothers following prenatal
vaccination could provide a better protection of infants than
those obtained from natural infection, although larger clinical
studies will be needed to verify such a hypothesis. Moreover,
prenatal vaccination has the advantage of protecting the mother
from severe disease consequences (39), thereby preventing
development of adverse maternal-fetal consequences. For
instance, fully vaccinated pregnant women infected with SARS-
CoV-2 during the Omicron wave had lower disease severity,
compared to unvaccinated women (40). Importantly, since the
timing of maternal vaccination may impact the efficiency of IgG
transfer, the prenatal immunization schedule must be carefully
tailored to ensure optimal protection of both mother and infant
(41). In addition, to design a protective prenatal immunization
regimen, it will be important to understand the kinetics and
durability of maternally transferred antibodies and their possible
interference with the developing immune system of infants.

Animal Models to Guide Prenatal
Vaccination Research
A variety of animal models including humanized mice, hamsters,
ferrets, pigs and non-human primates (NHP) are used to study
SARS-CoV-2 infection, pathogenesis and immune responses.
While all of these species express ACE-2 receptors and can be
infected by the virus (42), only a few of these animal models are
able to recapitulate human disease. Golden Syrian hamsters are
considered as valuable models for therapeutic research due to
their ease of handling, low cost and similar lung pathological
phenotypes post-SARS-CoV-2 infection (42, 43). Vaccinology
research however has shown particular interest in using rhesus
macaques (RMs), owing to their similarity to human anatomy,
physiology and immunology and ability to generate neutralizing
antibody responses (44). Moreover, like humans, SARS-CoV-2
replicates in the respiratory tract of RMs and viral infection
results in pulmonary infiltrates and a shedding pattern similar to
mild to moderate human infections (45, 46). To date, there is no
published animal model of SARS-CoV-2 infection during
gestation or preclinical animal studies testing the safety and
efficacy of SARS-CoV-2 vaccines during pregnancy. The
development of such animal models will be critical to design
and evaluate prenatal immunization regimens that will confer
maximum protection to the mother and their neonates against
SARS-CoV-2 infection.

Influenza Virus
Influenza virus is a member of the Orthomyxoviridae family,
with a segmented, negative-stranded RNA genome (14, 47). This
virus spreads via respiratory droplets and approximately 8% of
the US population get sick with the seasonal virus each year (48).
In 2018-2019, 29 million confirmed influenza cases were
reported in the US, of which 380,000 were hospitalized and
28,000 died (49). The virus is categorized into three main types:
influenza A virus (IAV), influenza B virus (IBV) and influenza C
Frontiers in Virology | www.frontiersin.org 4
virus (ICV) (47), of which IAVs are responsible for most
seasonal cases and outbreaks of influenza.

Clinical Presentation and Associated Complications
Pregnant women are highly vulnerable to influenza virus
infection and virus-associated severe disease outcomes,
resulting in increased rates of mortality (50). During the 2009
H1N1 pandemic, pregnant women accounted for 5% of deaths,
while representing less than 1% population (51). While the risk
of mother-to-child transplacental transmission of influenza is
extremely rare (52), maternal infection during pregnancy is
associated with adverse maternal-fetal outcomes such as
preterm delivery, spontaneous abortion, low birth weight and
fetal death (50). In addition, maternal influenza virus infection
disrupts the cytokine and hormonal signaling pathways
responding to respiratory pathogens, compromising lung and
placental architecture, and impacting the health of both mothers
and their offspring (53). Maternal influenza infection may also
have an impact on the neonatal immune response. Notably,
offspring of mice infected with influenza during pregnancy
demonstrated significant challenges in clearing secondary
respiratory infections compared to offspring of healthy dams
and it has been hypothesized that reduced levels of natural killer
and B cells in the pups of influenza-infected dams might
contribute to the increased vulnerability to infection (54).
Whether infants of women who experience influenza infection
during pregnancy demonstrate a similar increased susceptibility
to respiratory infections remains unclear.

Maternally Acquired Antibodies and Implications for
Prenatal Immunization
To prevent maternal influenza infection and reduce the risk of
complications during pregnancy, the CDC recommends that all
pregnant women receive the inactivated influenza vaccine (55).
The safety of maternal vaccination has been widely demonstrated
(56). Vaccination during pregnancy reduced the risk of
influenza-associated acute respiratory infection by one-half,
lowering the risk of being hospitalized with virus-associated
disease by 40 percent (57).

Maternal Influenza vaccination also provides passive immune
protection to the infants, with virus-specific IgG transferred
through the placenta and virus-specific IgA transferred
through breastfeeding (58, 59). These antibodies are
particularly important for protecting infants during their first
few months of life, as influenza vaccination during the first 6
months of life is not advised. In fact, maternal vaccination during
pregnancy reduced infant hospitalization due to influenza
infection by up to 91% (60–63). In addition, cord blood
antigen-specific hemagglutination inhibition (HAI) titer was
found to correlate with protection from IBV during the first 2
months of life and higher titers were associated with reduction in
the risk of infections (64). In fact, trans-placentally transferred
IAV-specific IgG antibodies in cord blood neutralized IAV
in vitro (65). Moreover, anti-influenza IgA antibodies
transferred to infants from their vaccinated mothers during
breastfeeding significantly decreased the number of respiratory
illnesses during early life (58).
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Animal Models to Guide Prenatal Vaccination
Research
Unfortunately, to date the efficacy of seasonal influenza vaccines
is fairly limited, usually around 40–60%, even dropping to as low
as 20% in certain seasons (66). Thus, investigations of novel
vaccination platforms and universal influenza immunization
strategies that will confer protection against multiple influenza
strains are warranted. Potential vaccination strategies will need
to demonstrate efficacy, immunogenicity and safety in pre-
clinical animal models, before proceeding to human clinical
trials. To date, several animal models have been used for
influenza vaccinology research, including mice and ferrets.
Although NHPs are not natural hosts for influenza viruses,
they can be experimentally infected with human isolates and
exhibit disease symptoms, as observed in humans (67). To
specifically study mother-to-child transfer of antibodies post-
immunization, mice models have been mostly employed (68).
While primary findings from rodent models can provide the
proof of concept that maternal antibodies can confer protection
to their offspring, the differences in placentation and
mechanisms of antibody transfer between rodents and
humans, must be taken into consideration and there remains a
need for more physiologically relevant models.

Dengue Virus (DENV)
DENV is a positive-sense single stranded RNA virus belonging to
the Flaviviridae family (14, 69). Transmission of the four similar
but antigenically distinct DENV serotypes (DENV-1, DENV-2,
DENV-3, DENV-4) occur primarily through the bite of the
female Aedes mosquito in tropical and subtropical countries,
but can also occur via blood transfusions and vertically from
mother to their infants (70–75). Each year ~400 million people
are infected with DENV, of which 40,000 die from severe DENV
disease. All four serotypes of DENV can co-circulate during an
outbreak (76). In addition, co-infection between DENV
serotypes and other flaviviruses such as ZIKV has also been
reported (77). DENV infection is of high concern for pregnant
women due to virus-associated severe maternal and fetal
outcomes (78). Pregnant women are approximately 3.5 times
more susceptible to development of severe DENV-disease and
the mortality rate of DENV-infected pregnant women is also
significantly higher, compared to non-pregnant individuals
(79, 80).

Clinical Presentation and Associated Complications
DENV is endemic in over 100 countries including central and
south America, the middle east, Asia, and the Pacific Islands (81).
DENV infection and re-infection was ranked the second most
severe vector born disease worldwide (82) as it can cause varying
levels of disease, ranging from asymptomatic infection to dengue
hemorrhagic fever, dengue shock syndrome and death (81, 83).
Viral infection during pregnancy is associated with premature
birth, fetal death, low birth weight, acute fetal distress, and
hemorrhage (71, 73, 84, 85). DENV transmission from
mothers to their infants have been reported. In a prospective
study, DENV transmission to their infants was reported in 22.7%
women infected during the 2012-2013 epidemic in French
Frontiers in Virology | www.frontiersin.org 5
Guiana (74). However, the pathogenesis of DENV infection in
neonates and infants is poorly understood. DENV transmission
from mother to child often occurs during delivery, although, in-
utero transmission of DENV through the placenta has been
observed (74). Interestingly, Vats et al., demonstrated that
umbilical cord blood cells are highly permissive to DENV
infection, and hence were thought of a site of viral
amplification before vertical transmission (86). To date,
although DENV virus has been found in breastmilk (73), the
virus has been rarely documented to be transferred postnatally
during breastfeeding. Hence, CDC still encourages breastfeeding
for all mothers even if those from DENV endemic areas.
Maternally Acquired Antibodies and Implications for
Prenatal Immunization
Maternal DENV-specific IgG antibodies are efficiently
transferred across the placenta to the fetus and persists in the
infants during the first year of their life (87). Presence of
maternally acquired DENV-specific antibodies has been
associated with low prevalence of symptomatic DENV
infection in infants <3-4 months of age (88). Presence of sub-
neutralizing levels of antibodies generated during primary
DENV infection in adults has been suggested to cause
antibody-dependent enhancement (ADE) during a subsequent
DENV exposure, leading to severe disease outcomes (89, 90). In
neonates and infants, ADE is especially relevant due to presence
of trans-placentally transferred maternal antibodies in the first
year of their life. Although the pathogenesis of DENV infection
in infants is poorly understood, the presence of maternally
derived sub neutralizing levels of anti-DENV antibodies were
postulated to be a critical risk factor for severe DENV disease
outcomes in infants (91). A study conducted with 75 Vietnamese
infants with primary DENV infection indicated that infants
experienced dengue hemorrhagic fever when maternally
derived neutralizing antibody titers have declined (92).
Additionally, Ribeiro et al. reported DENV in fetal tissues of
pregnant women diagnosed with DENV, when a spectrum of
clinical presentations ranging from asymptomatic to dengue
hemorrhagic fever and dengue shock syndrome was observed
in the newborn. However, whether sub-neutralization levels of
maternally derived anti-DENV serotypes enhanced the risk of
newborn disease was not defined (93). This finding highlights
that maternal immunization against DENV, followed by
boosting during the first year of life might protect mothers,
their fetus and their infants from severe consequences of DENV-
associated diseases but also urges for caution as sub-optimal
vaccination may promote ADE. To date, a live attenuated
tetravalent vaccine (Dengvaxia®) is licensed for use in dengue
endemic regions. However, the use of this vaccine is
contraindicated during pregnancy, although accidental
administration in pregnant women was not associated with
adverse outcomes (94). Hence, mother-infant pre-clinical
models to study DENV pathogenesis, maternal antibody
associated ADE and protective efficacy of trans-placentally
acquired antibodies will be instrumental for development of
safe and protective vaccine strategies targeted to this population.
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Animal Models to Guide Prenatal Vaccination
Research
Development of a suitable DENV pathogenesis model has been
challenging due to the poor replication competence of clinical
DENV strains in animals. To study peripheral replication of
DENV, IFNa/b and g deficient mice (AG129) have been used
(95). Furthermore, mouse-adapted DENV strains were used to
identify antiviral therapeutics for DENV replication. To mimic
human dengue like clinical symptoms, humanized mice were
generated by engrafting human hematopoietic progenitors in
immunodeficient mice (96). Efficacy of DENV vaccine
candidates has been tested in both immunocompetent and
immunocompromised mice models (95). NHPs such as RMs
intravenously infected with DENV clinical isolates resulted in
hemorrhagic manifestations as observed in humans (97). Even
though NHPs do not exactly recapitulate the clinical
manifestations of human DENV infection, they develop
comparable anti-DENV antibody kinetics to those observed in
humans (98). More recently, Tree shrews infected with DENV
clinical isolates resembled DENV disease outcomes as observed
in humans. Tree Shrew infection model also resulted in
development of neutralizing antibodies (99). While maternal
immunization for DENV infection is crucial, testing the safety
and efficacy of such vaccines are challenging due to lack of
reliable animal models that can results in high viremia and
mimic DENV clinical manifestation as observed in humans.
Hence, there is an urgent need to develop such pregnant DENV
transmission animal models, perhaps by utilizing the pregnant
infection models already developed for other flavivirus
infections, such as ZIKV, described below. Importantly, the co-
circulation of different DENV strains and co-infection with other
flaviviruses must be considered while developing these models.

Filoviruses
Filoviruses are negative-sense single-stranded RNA viruses
belonging to the Filoviridae family (14, 100). The majority of
Filovirus-associated pregnancy complications are caused by
Ebolavirus (EBOV) and Marburg virus (MARV), which will
therefore be the focus of this review. EBOV and MARV-
associated diseases are characterized by fever, malaise, body
aches, diarrhea, and severe cases of hemorrhagic fever,
petechiaeand death (101). EBOV and MARV are transmitted
through contact with contaminated body fluids. These viruses
have been detected in blood, saliva, amniotic fluids, and seminal
fluids (102). Outbreaks of EBOV or MARV are sporadic and
range from small scale (<100 cases) to large scale (>200 cases),
the largest to date being the West African outbreak which caused
over 28,000 cases of Ebola virus disease in 2014-2016 (103).

Clinical Presentation and Associated Complications
EBOV and MARV associated febrile hemorrhagic disease
symptoms begin 3-21 days after exposure and typically
increase in severity. Filovirus-induced diarrhea can be quite
serious, reaching 10 liters per day and resulting in severe
dehydration, contributing to the pathogenesis of these viruses
(104). Hemorrhage presents as petechiae, bleeding from gums,
venipuncture sites, subconjunctival hemorrhage, as well as blood
Frontiers in Virology | www.frontiersin.org 6
in vomit and stool (104). Patients typically experience
multiorgan failure and hypovolemic shock leading to
death (104).

Pregnant women and infants face an elevated risk of Ebola
hemorrhagic fever and increased risk of mortality (105). Previous
outbreaks have recorded extremely high case fatality rates for
pregnant women and newborn infants, reaching 90% and 100%
respectively (106). Filovirus infection during pregnancy often
leads to fetal loss (107), but MTCT is not well defined, due to the
sporadic and often rural nature of outbreaks as well as the
potential of the viruses to penetrate multiple tissue
compartments. The detection of EBOV RNA in the amniotic
fluid well after viral clearance in the mother, suggests that
transplacental viral transmission might be feasible (108). In
addition, EBOV RNA was recovered from breastmilk (109,
110) and multiple studies suggest possible MTCT of EBOV
during breastfeeding (111, 112).

Maternally Acquired Antibodies and Implications for
Prenatal Immunization
To date, there is one FDA approved vaccine (Ervebo®) for EBOV
infection for adults >18 years of age. Ervebo® is a replication
competent recombinant vesicular stomatitis virus (VSV)
expressing EBOV glycoprotein. This vaccine elicits potent
humoral responses generating high titers of IgG (geometric
mean titer of 969.9-1307.3, day 28 post vaccination) as well as
high titers of neutralizing antibody (geometric mean titer of
122.8-211.7, day 28 post vaccination) (113). The efficacy of
Ervebo® was evaluated during an outbreak in Guinea and was
found to be 100% at preventing EBOV infection (113). While
there are no universally established immune correlates of
protection for the EBOV vaccine, the role of humoral
responses in EBOV-associated disease outcomes has been
implicated (114).

Currently, there are no vaccines tested prenatally for the
prevention of EBOV or MARV. Clinical trials for development of
the Ervebo® vaccine did not explicitly involve pregnant women.
In fact, this population was considered an exclusion criterion.
However, follow up studies with women who became pregnant
during the course of the clinical trial demonstrated that
pregnancy loss amongst the immunized group was not
statistically different than that of unvaccinated group (115).
Based on these safety data, WHO now recommends Ervebo®

during pregnancy under certain circumstances, when the
benefits outweigh risks. Very recently, Johnson and Johnson
have set up a phase 3 clinical trial to investigate the safety and
immunogenicity of this vaccine in pregnant women (116). There
are currently no vaccine options for MARV. However, preclinical
studies of replication-competent VSV-based vaccines
demonstrate protective efficacy in NHPs (117).
Animal Models to Guide Prenatal Vaccination
Research
Mice, guineapigs, hamsters and NHPs have been widely used for
filovirus research (118). As expected, NHPs such as, marmosets
have similar MARV disease pathology to humans (118, 119), and
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different filoviral vaccine platforms have been studied in
nonpregnant NHP models (120). However, to date, animal
models of pregnant filoviral infections are lacking and data for
vaccine efficacy during pregnancy remains limited. Thus,
preclinical animal models that were utilized for development of
the FDA-approved. EBOV vaccine for non-pregnant individuals
could be employed to investigate the safety and efficacy of
maternal vaccination against Filoviruses.
VIRUSES VERTICALLY TRANSMITTED
FROM MOTHER TO INFANTS CAUSING
CONGENITAL DEFECTS AND NEONATAL
ABNORMALITIES

Several viruses such as HIV, ZIKV and CMV can be vertically
transmitted from infected pregnant women to their babies.
Vertical virus transmission can occur in utero by crossing the
placental barrier, during delivery in the birth canal, or postnatally
during breastfeeding. Congenital or neonatal infections can
result in lifelong infection, developmental defects, physical
deformities, and lifelong disabilities. In addition, maternal
infection may result in pregnancy complications, including
intrauterine growth restriction and miscarriages. For many
congenital infections, timing of infection during gestation plays
a critical role in disease severity and fetal outcome. Hence,
immunization regimens that can generate protective maternal
immunity prior to conception would be optimal to prevent such
vertical transmissions and associated abnormalities.

Human Immunodeficiency Virus (HIV)
HIV is a member of the Retroviridae family comprising of a
single-stranded, positive-sense RNA genome (14, 121). HIV is a
major global public health concern with ~1.5 million people
getting newly infected with the virus each year, globally (122).
The virus is transmitted via exchange of body fluids such as
blood, semen and vaginal secretions from infected individual. In
addition, HIV can be vertically transmitted congenitally and
postnatally from mother to their offspring in utero, during
delivery or during breastfeeding (123). HIV continues to be a
major threat for pregnant women, adolescent girls of
childbearing age and children. In 2020, ~4200 adolescent girls
and young women aged 15–24 years became infected with HIV
every week, accounting for 50% of the total annual HIV
infections. In addition, there were 150,000 new HIV infection
among children (124).

Clinical Presentation and Associated Complications
Good clinical management such as early antiretroviral therapy
(ART) initiation and adherence to treatment can reduce the risk of
MTCT of HIV to <1-2% (125, 126), but implementation
challenges such as suboptimal ART coverage of pregnant and
breastfeeding women, poor access or adherence to ART, and late
presentation for prenatal care prevent the complete elimination of
vertical HIV transmission through ART alone. In addition, ~50%
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of the new infant HIV infections occur when a newly infected
mother, who is not on therapy unknowingly transfers the virus to
their offspring (127). Infants and children who are infected with
HIV early in life from their mothers have to rely on lifelong ART
to keep viral replication suppressed, and as a consequence, they are
predisposed to ART-associated metabolic complications (128).
Moreover, some ART regimens during pregnancy are associated
with fetal complications such as neural tube disorders (129),
preterm birth (130), hematological abnormalities (131), and
mitochondrial dysfunction, later in life (129, 131). Congenital
defects and neonatal abnormalities of HIV infection include
developmental delays, neurological dysfunction, susceptibility to
bacterial, viral and yeast infections, high persistent fever and
weight loss (132).

Maternally Acquired Antibodies and Implications for
Prenatal Vaccination
Studies from the pre-ART era have indicated that in the absence
of any intervention, ~45% of infected pregnant women would
transmit the virus to their babies (133). The fact that more than
50% of exposed infants remain uninfected, suggests that
maternal genetic factors such as receptor and HLA subtypes, as
discussed in (134) or immune factors could play a crucial role in
providing partial protection against infant infections. Several
studies have attempted to identify the maternal immune
correlates of protection against vertical transmission. Notably,
maternal antibodies against conserved regions of the HIV Env
protein responses have been associated with reduced MTCT risk
in multiple studies. For instance, the magnitude of maternal IgG
antibodies specific for Env third variable loop (V3),
neutralization of tier 1 viruses and the magnitude of CD4-
binding site blocking antibodies were associated with reduced
risk of MTCT in subtype B HIV-infected maternal cohort (135).
The specificity of maternal V3-specific IgG responses that were
associated with reduced MTCT risk was further mapped to the
C-terminal region of the V3 loop (136). Another study linked
maternal Env-specific Abs targeting the membrane-proximal
external region (MPER) of gp41 with reduced risk of vertical
HIV transmission among HIV subtype C-infected ART-
experienced mothers (137). In contrast, maternal antibodies
against certain HIV Env protein regions have also been
associated with increased risk of MTCT. For instance, gp41
ectodomain targeting Abs have been associated with increased
MTCT risk in clade C HIV-infected, ART-naïve, breastfeeding
mother-infant pairs (138). Additionally, in a cohort of clade C
HIV-infected, breastfeeding, ART-experienced women, IgG
against the variable loops 1 and 2 (V1V2) and anti-CD4
binding-site Abs were associated with increased risk of MTCT
of HIV, and no association was observed with maternal V3-
specific IgG binding nor tier 1 virus-neutralizing responses (139).
Thus, these findings suggest that maternal immune correlates of
protection against MTCT might differ based on infecting virus
clade, transmission mode and ART status.

Maternal autologous virus-specific neutralizing antibody
responses have also been studied in the setting on MTCT of
HIV. Some of these studies have indicated that viruses
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transmitted to infants are generally resistant to neutralization by
maternal plasma suggesting that viral escape to neutralization
may be important during vertical transmission (140–143).
Additionally, maternal broadly neutralizing antibody responses
may select for neutralization resistant T/F variants (144).
Nevertheless, other studies have reported higher levels of
neutralizing antibodies in women who transmitted the virus to
their babies as compared to non-transmitting infected mothers
(145). Thus, our understanding of the role of neutralizing
antibodies during vertical transmission and the potential
impact of transmission mode remains incomplete. Moreover,
the role of maternal non-neutralizing antibody responses and
MTCT risk also remains poorly defined. Breast milk Env-specific
IgG responses with antibody-dependent cellular cytotoxicity
(ADCC) activity have been associated with reduced risk of
MTCT in some studies (146) but not in others (147).
Interestingly, some studies have reported that ADCC activity
of passively acquired antibody is associated with improved
survival in HIV-infected infants, whereas neutralization activity
is not (148, 149).

Boosting maternal immunity has been explored as a possible
strategy to reduce vertical transmission. HIV Phase I vaccine
regimens have demonstrated high levels of immunogenicity and
safety in nonpregnant adult populations. Few therapeutic vaccine
trials in pregnant women also demonstrated good safety profile
(150). However, these limited sample size trials were not
designed to evaluate efficacy. A recent analysis of samples from
11 HIV infected women who received Env-subunit vaccines
during pregnancy reported an increase in binding antibody
responses following vaccination. However, autologous
neutralization potency in this small group of vaccinated
women were comparable to that of 6 unvaccinated HIV
infected pregnant women (151). As novel HIV vaccine
immunogens are under development, further exploration of
maternal immunization strategies to limit infant infection
especially in the setting of postnatal breast milk transmission
should be pursued.

Animal Models to Guide Development of Prenatal
Vaccination Strategies
A globally effective HIV vaccine strategy must cope with the
broad genetic diversity of HIV viruses, its ability to escape
neutralizing antibodies, as well as different transmission routes,
including MTCT. Preclinical NHP models, such as RMs infected
with Simian/Simian-Human Immunodeficiency Virus (SIV/
SHIV) recapitulates most virological and immunological
hallmarks of HIV infection in humans and have been widely
used in testing HIV vaccine immunogens. To model viral
transmission during pregnancy, female RMs have been
experimentally infected with SIV during various stages of
gestation (152–154). Additionally, breastmilk transmission of
HIV to infants has been mimicked by orally infecting infant
NHPs (152, 154, 155). Using such an infant RM model of oral
SHIV infection, the ability of human breastmilk-derived
polyfunctional antibodies, with weak neutralization and
antibody-dependent cellular cytotoxicity functions, to reduce
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HIV transmission was demonstrated (156). In addition, infant
RM models have been utilized to study HIV in early life and to
evaluate candidate pediatric vaccine regimens (157, 158) and
immunotherapies (159–161).

Zika Virus (ZIKV)
ZIKV is a positive-sense single stranded RNA virus, belonging to
the Flaviviridae family (14, 162). It is a mosquito-borne virus that
was first identified in the Ziika forest of Uganda in 1947 (163).
Since then, rare sporadic cases of ZIKV outbreak have been
reported regionally in different parts of the world, including Asia,
Americas, Africa and Pacific. These outbreaks were of little
concern as they primarily caused asymptomatic infections or
resulted in mild febrile symptoms. In 2015-16, ZIKV outbreak in
Latin America and the Caribbean resulted in a public health
emergency of international concern, particularly for pregnant
women (163). It is estimated that during the 2015-16 ZIKV
outbreak, ~1.5 million people were infected by the virus (164).
During the peak of the ZIKV epidemic in 2016, more than
200,000 cases of ZIKV disease were reported in Brazil (165). In
addition, in the US, ZIKV-associated birth defect occurred
among 5-10% of babies born to ZIKV positive mothers (166).

Clinical Presentation and Associated Complications
ZIKV is primarily transmitted by Aedes mosquito bites, however,
sexual transmission and transmission via blood transfusion has
been reported (167). In the 2015-2016 outbreak, ZIKV was also
identified to be transmitted vertically from mothers to their
infants during pregnancy (163). In healthy individuals including
pregnant mothers, ZIKV infection is typically asymptomatic or
might cause mild febrile disease with rashes, conjunctivitis and
arthralgia (168). However, vertical transmission results in
neonatal birth defects. The congenital birth defects and
abnormalities caused by ZIKV infection during pregnancy, also
known as congenital zika syndrome (CZS), results in
neurodevelopmental disabilities, severe microcephaly, visual
impairments, motor delay and increased morbidity in the
newborn (169, 170). ZIKV is transmitted from mother to child
in 1 out of 10 ZIKV-infected pregnancies (169–171).
Interestingly, although vertical transmission of the virus can
occur at any time during gestation, first- and second-trimester
infections have the highest risk of developing CZS in the
newborn (172). Whether ZIKV can be transmitted during
breastfeeding is currently unknown. Although ZIKV RNA and
infectious virus has been detected in the breastmilk of ZIKV-
infected mothers, viral transmission during breastfeeding has not
been confirmed (173), and future studies with bigger cohorts will
be needed to completely rule out the possibility of MTCT of
ZIKV via breast milk

Maternally Acquired Antibodies and Implications for
Prenatal Immunization
To date, there is no approved vaccine to prevent ZIKV infection.
Diverse vaccine platforms including DNA, mRNA, subunit, live-
attenuated and purified inactivated vaccines have been tested in
non-pregnant animal models of ZIKV infection, and several of
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them have already entered Phase I/II clinical trials. In addition to
being protective against ZIKV infection, an ideal vaccine
candidate should be able to prevent vertical transmission of the
virus and associated fetal complications. Studies have indicated
that humoral immunity, specifically neutralizing antibodies play
an important role in achieving protection against ZIKV infection
(174, 175). Furthermore, ZIKV-specific IgG antibodies were
found to efficiently cross the placenta (176). Hence developing
a prenatal vaccination regimen able to protect mothers from
infection and prevent vertical transmission seems to be an
attractive strategy. Since ZIKV infection early during gestation
has been associated with increased fetal disease severity (172), it
is likely that vaccination prior to conception or early during
pregnancy would be necessary to prevent transmission and
improve fetal outcomes. Furthermore, delineating the
correlates of fetal protection and most importantly, levels of
antibodies necessary to achieve protection against in-utero
transmission will be necessary to design a protective
vaccination regimen. The fact that ZIKV is only one serotype
makes vaccine design slightly less challenging as neutralizing
antibodies developed against one strain would potentially
neutralize others. However, a key concern for ZIKV vaccine
design is elicitation of cross-reactive antibody responses with co-
endemic DENV serotypes, which are antigenically similar
flaviviruses (177). Cross reactive antibodies that can target
conserved epitopes of ZIKV and DENV serotypes, may
contribute to ADE of infection against subsequent viral
infections (178, 179).

Animal Models to Guide Prenatal
Vaccination Research
To determine the mechanisms of severe CZS in the fetus and
ability of maternal vaccination to prevent vertical ZIKV
transmission, relevant animal models to study maternal
immune response and fetal ZIKV pathogenesis will be
necessary. Mice models are often utilized to study ZIKV
pathogenesis. However, for efficient replication of the virus in
mouse models, transgenic type I interferon knockout mice or
wild type dams treated with type I IFN receptor specific blocking
antibody are preferred (180). More recently, several groups have
also successfully recapitulated vertical ZIKV transmission and
adverse fetal outcomes in wild type mice (181, 182). In the
context of pregnancy, while the short breeding times and large
litter size of mice is definitely advantageous, this model cannot
accurately mimic human pregnancy primarily owing to the
differences in the placental organization (183). Other animal
models such as rats and pigs have been used to study vertical
ZIKV transmission (180). The most relevant and widely used
model for studying vertical ZIKV transmission during pregnancy
and CZS-associated pathogenesis are NHPs such as RMs. In fact,
ZIKV was originally isolated from a RM in 1947 from the Ziika
forest and hence, RMs serve as natural ZIKV hosts (184). Coffey
et al. established an intravenous and intraamniotic ZIKV-
infected pregnant RM model, in which ZIKV pathogenesis and
ZIKV-specific immune response comparable to humans were
observed (185). In addition, ZIKV-infected RM model was also
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able to mimic the higher rates of congenital defects in fetus of
mothers infected during first trimester vs. those infected during
third trimester (186, 187). These models are currently used to
assess the efficacy of prenatal ZIKV vaccination to prevent fetal
transmission and associated abnormalities. Notably, Van
Rompay et al. assessed a DNA vaccine regimen in pregnant
RM model of ZIKV infection, where RMs were immunized
before conception. While this vaccine was not able to
completely prevent vertical transmission of the virus, maternal
viral loads and fetal disease severity was reduced by vaccination
(188), highlighting the need for further research in this area.
Cytomegalovirus (CMV)
CMVs are large double-stranded DNA viruses belonging to the
Herpesviridae family (14). CMV prevalence is estimated at 83%
globally and at 86% for women of childbearing age (189).
Transmission occurs by direct contact with bodily fluids, blood
products, and following organ transplants (190, 191). In
addition, the virus is also transmitted vertically from mother to
the fetus via placenta. In fact, in-utero transmission of CMV is
the most common cause of congenital infection, as 1 in every 200
babies are born annually with congenital CMV infections (192).
The greatest challenge with CMV infection, is their lifelong
latency in the host and their ability to reactivate. The risk of
placental CMV transmission is greater for seronegative women
who have primary CMV infection during pregnancy (30-50%),
as compared to chronically infected women (1-4%) (193, 194). In
contrast, among seropositive women, reactivation of latent CMV
or chronic infection accounts for majority of the congenital
infections (60-90%) (195, 196). Due to the global high
prevalence of CMV, congenital CMV infections more
commonly attributable to reactivations of maternal infection
than to primary infections during pregnancy.
Clinical Presentation and Associated Complications
Among healthy individuals including pregnant women,
CMV infection, is typically asymptomatic or mild with flu-
like symptoms (197, 198). Congenitally infected infants
develops symptoms such as rash, jaundice, microcephaly,
hepatosplenomegaly and vision loss, (199–201). In 20% of
cases, congenital CMV is associated with hearing loss and
developmental delays (194, 202, 203). In addition to in-utero
transmission, vertical transmission of CMV can also occur
through viruses secreted in the birth canal, saliva, and urine
(204, 205). Moreover, the virus can be transmitted postnatally via
breastfeeding causing symptomatic disease in preterm (<32
weeks) and very low weight infants (205–211), while,
breastmilk transmission in full-term infants is usually
asymptomatic (212). The risk for in-utero congenital
transmission following primary maternal infection increases
with gestational age with 40-70% transmission risk at the third
trimester of pregnancy (213–216). However, the risk of an infant
developing defects and sequelae is greatest when transmission
occurs early in gestation (217).
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Maternally Acquired Antibodies and Implications for
Prenatal Immunization
CMV-specific antibodies transferred from mothers to infants in
utero and during breastfeeding confers partial protection from
CMV infection to infants (218). Interestingly, Saccoccio et al.,
determined no association between plasma levels of CMV virion-
specific IgG and postnatal CMV, yet identified a weak association
between infant glycoprotein B (gB)-specific IgG levels and
protection against mucosal virus acquisition (219). Although
CMV-specific antibodies in breastmilk may confer some
protection in infants, there are instances of CMV reactivation
in the mother, resulting in viral shedding in the breast milk (218)
that can result in infection of the infant. To avoid this mode of
transmission to a vulnerable preterm infant population, in
France, breast milk pasteurization is recommended for
premature infants (<32 weeks gestational age, <1500g birth
weight) (220). Currently, there is no licensed CMV vaccine,
both due to lack of defined immune correlates of protection and
the vast immune evasion techniques of the virus (221). Of the 12
vaccines under clinical development since 2017, the gB/MF59
subunit vaccine has been one of the most successful to date,
conferring approximately 50% efficacy in prevention of CMV
acquisition in two studies. The elicited antibodies exhibited
limited virus neutralization, highlighting the potential
importance of non-neutralizing antibody functions (221–223).
Moreover, it has been hypothesized that T-cell responses and
both neutralizing and non-neutralizing antibody functions will
likely be needed for a protective CMV vaccine (224). An mRNA-
based vaccine (mRNA-1647) comprised of mRNAs of CMV
surface proteins glycoprotein B and pentameric complex was
tested for safety and immunogenicity in a phase I trial by
Moderna (225). The advantage of this vaccine over a gB
vaccine was inclusion of pentameric complex (PC), since
antibodies to PC can neutralize infection of epithelial cells,
endothelial cells and myeloid cells (228, 229), as compared to
gB, that can only neutralize infection of fibroblasts (230, 231). In
addition, the majority of the neutralizing antibodies in CMV-
seropositive individuals are targeted against CMV PC (228).
Based on the Phase I data for this vaccine, a phase II safety and
efficacy trial involving healthy seronegative and seropositive
individuals is underway (226) and very recently, the company
has launched a phase III trial to test the safety and efficacy for this
vaccine in women of childbearing age (227).

Animal Models to Guide Development of Prenatal
Vaccination Strategies
Mice, rat, and guineapig models using species-specific CMV are
the primary small animal models used to study viral
dissemination (232). The guinea pig model can also be used to
study vertical transmission at a much lower resource cost
compared to NHPs, but it may be less advantageous and
clinically relevant because of differences in the virus homology,
placental anatomy, and pathogenesis in guineapigs vs. human
(233–237). Species-specific CMV infecting RMs (RhCMV) and
those infecting humans (HCMV) are similar in their genomic
and amino acid composition, viral pathogenesis, fetal
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transmission, fetal sequelae (238). HCMV and RhCMV share
60% identity in their gB protein which is critical to further study
the current vaccine platforms (237, 239). Notably, Bialas et al.
developed a RM model of congenital CMV infection and
demonstrated that maternal CD4+ T cell immunity during
primary rhCMV infection is important for controlling
maternal viremia and inducing protective immune responses
that prevent severe CMV-associated-fetal disease (240).
Furthermore, this RM model have also been utilized to study
the protective roles of passively infused maternal antibodies
(241) and hence are instrumental for pre-clinical studies to
guide development of a protective vaccine for prevention of
congenital CMV infections (238, 242).
VIRUSES CAUSING SEVERE DISEASES IN
NEONATES AND INFANTS

Owing to the developing immune system, neonates and infants are
particularly vulnerable to infectious diseases during the first few
months of their life. Infectious diseases are responsible for >60% of
child mortality, of which >40% occur during the first month of life
(5). During this period, when the neonatal immune system is
undergoing maturation, maternal IgG transferred across the
placenta and maternal IgA transferred via breastmilk are crucial
to provide protection against infectious diseases (243). Vaccination
during pregnancy will be able to generate robust maternal antibody
responses that will be transferred to the newborns, thereby
protecting them against severe infections. However, predicting the
correct timing of immunization of the mother and having an
understanding of the antibody kinetics and half-life will be crucial
to achieve maximum protection of the newborn.

Rotavirus (RV)
RV is an infectious double stranded RNA virus belonging to the
Reoviridae family (14, 244) that can be transmitted through the
fecal-oral route via contaminated fomites and aerosolized
droplets generated while projectile vomiting (245). While RV
infection is typically mild in adults, infection with this virus
causes severe gastroenteritis in infants and young children,
which could result in death (246). In fact, RV is the most
common cause of diarrhea in neonates and infants, the highest
risk group being infants between 3 and 24 months of age (245).
In 2016, this virus caused over 258 million cases of diarrhea
globally in children < 5 years of age, and ~215,000 children died
of RV-induced diarrheal disease (246, 247).

Clinical Presentation and Associated Complications
RV mainly infects cells in the villi of intestines and virions are
shed in high titers in stool (>1010-1011 RV particles/gram of
stool) and vomitus (248). Vertical transmission of RV perinatally
or during breastfeeding has not been reported to date. In adults,
RV infection can be asymptomatic, or associated with nausea,
malaise, headache, abdominal cramping, mild diarrhea and fever
(249, 250). RV disease symptoms in infants and children
typically begin within 48 hours of infections and include
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diarrhea, intestinal pain and vomiting (245). Children over 3
months of age and immunocompromised infants usually
experience prolonged disease which can increase risk of
complications such as dehydration, electrolyte imbalance and
metabolic acidosis (251).

Maternally Acquired Antibodies and Implications for
Prenatal and Infant Immunization
To date, there are 4 licensed vaccines for prevention of RV-
associated gastroenteritis in infants, of which 2 are primarily
recommended by FDA and WHO (Rotarix and Rotateq) (251).
Currently, CDC recommends infant RV immunizations in 2-3
doses with in the first 6 months of life, but these pediatric
vaccines do not provide protection during the first months of life,
highlighting that a maternal immunization approach will be
needed to ensure protection of newborns. Payne et al, recently
demonstrated the presence of maternal RV-specific IgG in
infants born to naturally RV-infected US mothers (252),
highlighting the feasibility of maternal vaccine-induced
antibody transfer in infants. However, to achieve maximum
protection in the first months of life, the timing of maternal
RV immunization in the setting of current infant vaccination
schedule needs to be evaluated. Interference from maternally
acquired antibodies is considered as a major correlate for
reduced infant vaccine efficacy, particularly those from the
low-and-middle income countries (LMICs) (253). For instance,
a clinical trial of Rotavac in Indian infants determined an inverse
relationship between maternal IgG levels and infant vaccine
response (254). Similarly, anti-RV antibodies in breastmilk
have been associated with decreased vaccine efficacy in infants
(255). To circumvent this maternal antibody interference,
vaccinating the pregnant women and delaying the timing of
infant immunization until the maternal antibody wanes could be
beneficial. This strategy would passively protect the infants from
RV-associated diseases for the first few months of life, followed
by boosting of immune response with infant vaccination. Innate
susceptibility factors such as polymorphism in specific genes
(alpha 1,2 fructosyltransferase, FUT2) can impact development
of RV and norovirus (NV)-specific IgG, IgA and neutralizing
antibody titers both in adults and infants (256). Hence, while
developing RV or NV maternal vaccines, the roles of such innate
susceptibility factors need to be taken into consideration.

Animal Models to Guide Development of Prenatal
Vaccination Strategies
Several pre-clinical animal models of RV infection and
pathogenesis are available that has the potential to be
developed as tools to investigate prenatal vaccination strategies
and protective efficacy of maternally derived antibodies in
infants. RV disease and lethality are studied in wild type and
immunodeficient mouse models, although mouse-specific RV
strains are critical to infect wild type mice, due to lack of lethality
and limited symptoms of human strains in such models (257).
Mice also lack emetic response which makes studying vomiting, a
hallmark symptom of RV infection, in the mouse model
challenging (250). Very recently, Langel et al. has highlighted
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the protective efficacy of maternally-transferred dimeric IgA on
suckling mouse pups (258). Guinea pigs are often used in
infectious disease and vaccine development studies as they
more closely model disease pathology to humans than mice
(259, 260). A recent study utilized guinea pigs in a pre-clinical
trivalent RV vaccine study to determine immunogenicity
characteristics (261). Neonatal and gnotobiotic piglets have
been used to study breastmilk-induced protection against
rotavirus C (RVC), where lower levels of milk IgG and IgA in
nursing pigs resulted in higher levels of clinical symptoms in
their offspring (262). RV disease pathogenesis has also been
tested in NHP models such as neonatal RMs (263). While
maternal RV vaccination to attain protection in infants are
being studied using mouse models (264), development of a RM
models that can mimic clinical symptoms of RV-induced
diseases, such as vomiting, to study maternal immunization
and transplacental transfer of maternal antibodies will be crucial.

Norovirus (NV)
NV is a positive-sense single stranded RNA virus belonging to
the Caliciviridae family (14, 265). NV is the leading cause of
foodborne disease outbreaks worldwide, resulting in contagious
gastroenteritis (266). Although this virus can infect individuals
from all age groups, higher incidence is typically observed in
children. In the US, NV is responsible for nearly 1 million
pediatric medical care visits annually (268). In LMICs, NV
infection is associated with approximately 200,000 deaths in
children under the age of 5, annually (266). This virus spreads
through the fecal-oral route and is transmitted via fomites in
crowded or close living areas. Childcare, college campuses, cruise
ships, and hospitals, and catered events are often sources of NV
outbreaks (267).

Clinical Presentation and Associated Complications
Signs and symptoms of NV-associated disease include diarrhea,
nausea, vomiting, stomach pains, fever and body aches. This
virus has a brief incubation of only 12-48 hours post exposure,
and complications from infection arise mainly from dehydration
and electrolyte imbalance. Children under the age of 5 are more
likely to develop dehydration with NV acute gastroenteritis
(269), however neonates often experience asymptomatic
infection with NV (269, 270), suggesting that maternally
acquired virus-specific antibodies might play a crucial role in
protection against NV during early life. Although, genetic factors
such as presence of histo blood group antigens (HBGA) may also
play crucial role (271, 272). NV evolution results in novel
dominant pandemic strains every 2-5 years (273), and owing
to the fluctuations in prevalence and a lack of reliable culturing
system, there are currently no maternal or infant licensed
vaccines for NVs (274). MTCT of NV is uncommon.

Maternally Acquired Antibodies and Implications for
Prenatal Immunization
The protective role of maternal breast milk antibodies against
NV has been highlighted in recent studies, where maternal anti-
NV-IgA was associated with lower prevalence and less severity of
infant NV diarrheal disease (270, 275). Interestingly, while there
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was no difference in disease severity with breastfeeding in older
infants (276), other studies have found that high titers of NV-
specific IgA in breastmilk was protective against symptomatic
NV infection in infants (275), potentially suggesting that virus-
specific IgA are important immune correlate of NV-associated
severe disease outcome. Hence, maternal vaccines that can elicit
robust NV-specific mucosal IgA responses, that eventually gets
transferred to infants via breastfeeding needs to be explored as a
strategy to mitigate infant NV, RV or other gastrovirus-
associateddiarrheal disease.

Animal Models to Guide Development of Prenatal
Vaccination Research
NV pathogenesis, host immune response and vaccination
approaches are studied in multiple animal models such as
transgenic mouse, gnotobiotic pigs, calves, pigtailed macaques,
tamarins and RMs. (277, 278). However, a challenge of
employing some of these models such as mice and calves to
study maternal vaccination is their dissimilarities in placentation
mechanisms compared to humans and lack of transplacental IgG
transfer. Therefore, further research in developing NHP models
such as RMs which have long gestation period, and a
hemochorial placenta like humans (279) to study NV
pathogenesis and maternal antibody transfer remains critical.

Respiratory Syncytial Virus (RSV)
RSV is a common respiratory virus belonging to the
Pneumoviridae family (14) that is transmitted through contact
with droplets from infected people. RSV has a single negative-
stranded RNA genome (280). In the US, nearly all children
become infected with RSV by the age of 2 with 75,000-125,000
hospitalizations per year. RSV infection is the most common
cause of bronchiolitis and pneumonia in children less than 1 year
of age, with infant <6 months of age responsible for 50%
infections (6, 281).

Clinical Presentation and Associated Complications
RSV infection in healthy adults typically resolve in a week or two,
however the virus can cause severe disease manifestations,
resulting in hospitalization in infants and children. Severe RSV
diseases is associated with breathing difficulties, cough,
respiratory distress syndrome, pneumonia and respiratory
failure (282). RSV infection during pregnancy also results in
acute respiratory illness, which may be clinically severe and lead
to hospitalization (283, 284). While evidence of MTCT of this
virus is rare, maternal RSV infection can potentially alter infant
immunity, resulting in lower airway lymphocyte and cytokine
profiles that are significantly different from that of an RSV-naïve
host during a first postnatal RSV lower respiratory tract
infection (285).

Maternally Acquired Antibodies and Implications for
Prenatal Immunization
The protective role of RSV-specific antibodies that are trans-
placentally transferred frommother to infants have been recently
studied in a cohort of 587 mother-infant pairs who were followed
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from the time of birth to 6 months of age (286). While a strong
correlation was observed between maternal and infant RSV
antibody titers, it was not very clear why certain RSV-infected
infants suffer from severe disease symptoms even in the presence
of high levels of RSV-specific antibodies from their mothers. In
order to define immune correlates of protection against RSV-
infected in infants, Jans et al, compared the RSV-specific
antibody responses between infected hospitalized infants to
those of uninfected infants. While infected infants
demonstrated lower RSV-specific avidity as compared to
uninfected infants, there was no association between
neutralization potency or antibody epitope-specificity and
disease severity (287). Identifying the functional response of
antibodies associated with RSV-protection is critical to
facilitate the development of maternal vaccination approaches
that can elicit protective antibody response to prevent RSV
infection severity in infants.

There are currently no licensed vaccines against RSV,
although several platforms are under investigation in both non
pregnant and pregnant groups. For instance, a RSVpreF3 vaccine
was found to be well tolerated and immunogenic in a cohort of
non-pregnant women (288). In addition, a single intramuscular
dose of RSV fusion protein-based nanoparticle vaccine in
pregnant women showed protection against RSV infections in
infants, with 1.5% of infants in the vaccine group getting infected
compared to 2.4% in the placebo group. This immunization
regimen was also able to successfully reduce the percent of
hospitalization from 3.7% in the placebo group to 2.1% in the
vaccine group (289). This immunization regimen did not result
in any adverse side effects in pregnant women. However, this
study was not powered to estimate the vaccine efficacy, and
hence, better powered, and extensive studies of maternal
immunization and protection from RSV infection during
infancy are warranted.
Animal Models to Guide Prenatal
Vaccination Regimens
To study RSV replication and pathogenesis, animal models such
as mice, cotton rats, sheep and most commonly NHPs have been
infected with human RSV (290). Chimpanzees have been
previously used in vaccinology research to evaluate the
protective efficacy of RSV vaccine candidates (291). However,
due to their restricted use in research, NHP models such as
African Green Monkeys (AGM) and macaques are often used.
AGM is only semi-permissive to the virus, whereas RMs do not
mimic the clinical symptoms observed in humans (290). In a
recent study, three different NHP models, baboons, AGM and
RMs were experimentally infected with RSV and the kinetics and
titers of virus-specific antibody development was evaluated
(292). Of these NHP models, AGMs demonstrated high levels
of RSV-specific antibody titers and serum IgG levels of the
mother correlated with IgG levels of the infants that remained
detectable 4-5 months post birth. Hence this model was selected
as most suitable for studying prenatal vaccination strategies. This
study indicated that, immunization of pregnant mothers with
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RSV prefusion F protein resulted in virus-specific antibodies in
the infants that were both higher in magnitude and durability
compared to those of unvaccinated controls. Further studies to
evaluate protective efficacy of these antibodies against infant RSV
challenge will be crucial.

Herpes Simplex Virus (HSV)
HSVs are large double-stranded DNA viruses belonging to the
Herpesviridae family (14), that can be categorized into two types:
HSV-1 and HSV-2. Globally, ~ 67% (under the age of 50) and
13% (aged 15-49) individuals are infected with HSV-1 and HSV-
2, respectively (293). HSV is common among women of
reproductive age, and it is estimated to affect 2-3% of pregnant
women (294). Pregnant women infected with HSV-1 and HSV-2
can transmit the virus to their newborns resulting in neonatal
HSV infection (295).

Clinical Presentation and Associated Complications
In adults, HSV is primarily a sexually transmitted virus
associated with physical symptoms like cold sores and
genital lesions. HSV can be largely asymptomatic as the
virus persist in a latent state throughout the lifespan of the
infected individual, with occasional reactivation (296, 297).
Infant’s symptoms can vary and may include ulcerations of
eye or mucous membranes, lethargy, seizures, encephalitis,
respiratory failure, and mortality (298). Up to 85% of MTCT
of HSV occurs in the birth canal during the time of delivery
from exposure to HSV in the vaginal mucous membranes,
whereas 10% of transmissions occur postnatally, when HSV is
primarily transmitted to the infant through microlabial or
cutaneous lesions (298–300). In-utero transmission is rare,
occurring in 1-5% of cases (298). In 2017, HSV-1 and HSV-2
were estimated to cause 14,000 annual infections globally
among neonates (301).

Maternally Acquired Antibodies and Implications for
Prenatal Immunization
HSV-specific antibodies with potent neutralizing functions have
been detected from cord blood and neonatal sera of infants born
to HSV-1 and HSV-2-infected mothers, highlighting the efficient
transplacental transfer of HSV-specific antibodies (302, 303).
Using a mouse model, successful maternal transfer of HSV-
specific IgG to the neonatal trigeminal ganglion (304) and
maternal breast milk was also demonstrated (305). These
findings indicate that a maternal vaccine for HSV infection
might be able to protect neonates via placentally-transferred
HSV-specific IgG during their first few months of life. However,
to date, there is no licensed HSV vaccine available for non-
pregnant or pregnant populations (306, 307). HSV’s immune
evasion techniques including cell to cell spread, Fc receptor
analog production, inhibition of complement-mediated lysis,
and the establishment of latency makes vaccine design
especially difficult (308–314). Furthermore, a randomized,
double blind efficacy trial conducted in 2012 with over 8,000
women found that even though an HSV-2 gD subunit vaccine
elicited neutralizing antibodies, vaccine efficacy was only 20%
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(223, 315), further underscoring the need for investigating the
potential protective role of additional antibody and other
immune functions, in order to guide development of an
efficacious vaccine.

Animal Model to Guide Development of Prenatal
Vaccination Strategies
Pregnant and neonatal mice models have been used to study
HSV infection (316, 317). A mouse model has been used to study
the trivalent HSV-2 subunit, replication defective live attenuated
d15-29 and HSV-1 0DNLS vaccine candidates (307). Cotton rats
have also been used for HSV vaccinology research ( (316).The
guinea pig model of genital herpes best mimics human disease
and has been currently employed for HSV vaccine research. This
model allows for assessment of acute and recurrent HSV disease
and viral shedding (306, 316). RM model of HSV-2 infection
demonstrates histologic evidence of acute pathology, latency
establishment in the ganglia, and viral reactivation. However,
further modification will be necessary to conduct studies of
maternal infection and placental antibody transfer in the RM
model, as HSV-2-specific antibodies were only detected in 30%
of non-pregnant animals after vaginal inoculation of HSV-2
strains (318).

Hepatitis B Virus (HBV)
HBV is one of the few members of the hepadnaviridae family
with a partially double stranded DNA genome (319) (14). It is
one of the most prevalent viruses with over 250 million people
estimated to be chronically infected, globally (320, 321). The
virus is transmitted mainly through bodily fluids, the most
common routes of transmission being perinatally from
mothers to their offspring during delivery, and between adults
through sexual intercourse, percutaneous injection, piercings,
tattoos, and intravenous drug use (322). Apart from getting
infected during delivery, children may be infected with HBV
through body fluid exposure from an infected individual (323).
But to date, there is no strong evidence to suggest that the virus
can be transmitted via breastfeeding. Individuals infected as
neonates and children have the highest burden of chronic
HBV. Without postexposure immune-prophylax i s ,
approximately 40% of the infants born to HBV-infected
mothers will develop chronic HBV (324).

Clinical Presentation and Associated Complications
As a leading cause of liver fibrosis, hepatocellular carcinoma,
and other related comorbidities, the effect of HBV infection on
health is profound (325, 326). There are two major courses
of HBV pathogenesis; acute hepatitis that resolves completely
over the course of weeks to months, and chronic hepatitis
that results in a carrier state in the infected individual (322).
While chronic hepatitis is largely asymptomatic, there is
ongoing viral replication that over the course of years often
progresses to fibrosis and is associated with high risk of
hepatocellular carcinoma, (327). Chronic HBV is also
associated with extrahepatic diseases including serum-like
sickness, vasculitis (polyarteritis nodosa), and kidney diseases
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(membranous glomerulonephritis, and membranoproliferative
glomerulonephritis) (328). Individuals infected as neonates and
children have the highest burden of HBV disease due to the
length of chronicity. Additionally, the likelihood of acute
hepatitis progressing to chronic one in an individual is largely
dependent on their age at the time of infection. Adults infected
with HBV have a 1-5% chance of becoming carriers, children
have a 20-30% chance, and neonates have a 90-95% chance of
chronic infection (329–333).
Maternally Acquired Antibodies and Implications for
Prenatal Immunization
Because of the risk associated with perinatal HBV transmission
due to primary or chronic maternal infection, pregnant women
are routinely screened for HBV surface antigen. If the pregnant
women is HBV surface antigen negative and at high risk of
acquiring HBV, maternal vaccination is recommended to
achieve protection against HBV infection. Alternatively, if the
mother screens positive for current infection at delivery, the
neonate receives hepatitis B immunoglobulin (HBIg)
prophylaxis in addition to the standard first dose of the HBV
vaccination series within 12-24 hours of birth. Subsequent
boosters for the vaccination regimen occur at 1 month and 6
months of age (334). The virus usually takes more than 24 hours
to establish chronicity and hence HBIg treatment is capable of
reducing infant infcetion by more than 90% (335). The major
barriers currently faced in this effort is the lack of maternal
screening in endemic areas and failure of implementation of this
prophylactic regimen at birth. Moreover, even in areas of
widespread adoption of this practice, there are still 1-9% of
cases of breakthrough infection, mainly associated with delayed
or incomplete immunoprophylaxis (336). Notably, cord blood
HBV antibodies correlated strongly with maternal HBV
antibody levels post maternal vaccination, highlighting prenatal
vaccination could be an additional approach to protect the
newborn against HBV infection (337). Importantly, a three
dose HBV vaccine regimen has been found to be safe when
administered during pregnancy (338).

Animal Model to Guide Development of Prenatal
Vaccination Strategies
HBV’s complex life cycle and narrow host range has significantly
limited the availability of animal models that can recapitulate
HBV pathogenesis in humans. Consequently, animal models to
study HBV prenatal vaccinations are lacking. Chimpanzee is the
only NHP model which closely mimics human HBV disease
pathogenesis and has been previously used for HBV vaccine and
therapeutic research (339). However, chimpanzee models are no
longer used for research purposes due to limited animal
availability and ethical constraints. The other available models
to study HBV pathogenesis are mouse models than can be
manipulated to support infection, and mammals and bird
species that support hepatitis viruses with a similar life cycle to
HBV (340, 341). However, mouse models require genetic
manipulation, humanization, and immune cell depletion to
Frontiers in Virology | www.frontiersin.org 14
support infection and mammalian and bird models such as
tree shrew, woodchuck, and duck do not closely recapitulate
HBV MTCT. Although there is a lack of appropriate animal
models for HBV vaccine research, models for MTCT are limited
as effective vaccines and immunoprophylaxis have already been
developed and are widely and successfully utilized.
CONCLUSION

Strategic maternal immunization protocols can allow to
simultaneously protect pregnant women, their unborn fetus
and neonates from disease severity due to viral infections. The
key to the success of such prenatal immunization regimens will
be their ability to induce protective humoral responses and the
timing of administration, which will likely depend on the viral
disease. Hence, mechanistic understanding of the disease
pathogenesis in the setting of pregnancy will be crucial to
optimize currently available and novel vaccine platforms. In
addition, since pregnancy is a period associated with
physiological and immunological alterations, and due to the
high potential benefits of building protective and safe
vaccination regimens tailored to pregnant women, this
population needs to be included in early-stage vaccine
research. Hence, the development of relevant pre-clinical
animal models of infection whose pregnancy, placentation and
IgG transfer mechanisms are closely related to that of humans
needs to be prioritized. Finally, successful implementation and
maximum coverage of maternal vaccines will require extensive
education and communication with the entire community and
pregnant women as well as improvement in prenatal health care
access to all women.
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The Rotavirus Vaccine Landscape, an Update. Pathog (Basel Switzerland)
(2021) 10:520. doi: 10.3390/pathogens10050520
Frontiers in Virology | www.frontiersin.org 21
249. Anderson EJ, Weber SG. Rotavirus Infection in Adults. Lancet Infect Dis
(2004) 4:91–9. doi: 10.1016/S1473-3099(04)00928-4

250. Hagbom M, Sharma S, Lundgren O, Svensson L. Towards a Human
Rotavirus Disease Model. Curr Opin Virol (2012) 2:408–18. doi: 10.1016/
j.coviro.2012.05.006

251. Cortese MM, Haber P. Rotavirus (2021). Centers for Disease Control and
Prevention. Available at: https://www.cdc.gov/vaccines/pubs/pinkbook/rota.
html#features (Accessed 2021).

252. Payne DC, Mcneal M, Staat MA, Piasecki AM, Cline A, Defranco E, et al.
Persistence of Maternal Anti-Rotavirus Immunoglobulin G in the Post-Rotavirus
Vaccine Era. J Infect Dis (2021) 224:133–6. doi: 10.1093/infdis/jiaa715

253. Otero CE, Langel SN, Blasi M, Permar SR. Maternal Antibody Interference
Contributes to Reduced Rotavirus Vaccine Efficacy in Developing Countries.
PloS Pathog (2020) 16:e1009010. doi: 10.1371/journal.ppat.1009010

254. Appaiahgari MB, Glass R, Singh S, Taneja S, Rongsen-Chandola T, Bhandari
N, et al. Transplacental Rotavirus IgG Interferes With Immune Response to
Live Oral Rotavirus Vaccine ORV-116E in Indian Infants. Vaccine (2014)
32:651–6. doi: 10.1016/j.vaccine.2013.12.017

255. Trang NV, Braeckman T, Lernout T, Hau VT, Anh Le TK, Luan Le T, et al.
Prevalence of Rotavirus Antibodies in Breast Milk and Inhibitory Effects to
Rotavirus Vaccines. Hum Vaccin Immunother (2014) 10:3681–7. doi:
10.4161/21645515.2014.980204

256. Zweigart MR, Becker-Dreps S, Bucardo F, González F, Baric RS, Lindesmith
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