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Pregnant mice infected with Lymphocytic Choriomeningitis Virus (Armstrong)

(LCMV-Arm) experience high viral loads in the placenta and uterine tissue by 5–8

days post-infection, a time when the virus is nearly completely cleared from the spleen

and blood. Interleukin 10 (IL-10) plays a crucial role in T cell responses associated

with systemic viral clearance. Using the LCMV-arm model of infection, we examined

first, whether IL-10 is involved in viral clearance in the placenta and uterine tissue and

secondly, the potential mechanisms underlying this phenomenon. C57BL/6 (WT) and

mice deficient in IL-10 (IL-10 KO) were infected with LCMV-Arm on day 10 of pregnancy.

Placenta and uterine tissue, collected 2 and 8 days later, were analyzed using real

time RT-PCR, plaque assays for viral load, and flow cytometry. In WT mice placenta

and uterine tissue expression of IL-10 was elevated with LCMV-Arm infection. Fetus

resorption was elevated in WT on days 2 and 8 post-infection as compared to IL-10

KO, and by day 19 of gestation delivery was greater. Viral loads in the placenta and

uterine tissue were resolved early in IL-10 KO mice, but persistent in tissues of WT

mice. Levels of NRF2 and FAS were equivalent, but BCL2L11 was higher in IL-10 KO

uterus. IL-6, Interferon-β (IFN-β), CCL2, and IL-17 levels were also equivalent. IL-10 KO

tissues tended toward higher expression of interferon-γ (IFN-γ) and had significantly

lower expression of Transforming growth factor beta (TGF-β). The proportion of placenta

and uterine tissue CD8T cells expressing the activation markers CD44hi and PD1

were elevated in IL-10 KO mice. These data suggest that high IL-10 expression at the

fetal-maternal interface following LCMV-Arm infection prevents clearance of viral load by

impairing CD8T cell activation and poses a significant threat to successful pregnancy

outcome. The ability to modulate IL-10 expression at the maternal-fetal interface may

help overcome negative pregnancy outcomes arising during acute LCMV and other viral

infections in humans.
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INTRODUCTION

Emerging infections with such agents as Zika virus and
Coronavirus, and more common agents such as Influenza and
Cytomegalovirus continue to serve as reminders about our
deficient understanding of maternal immunity. This is especially
true with regard to the maternal fetal interface. In spite of
potentially relevant conflicting data [reviewed elsewhere (1)],
there still exist models of maternal tolerance which rely on
mechanisms of inherent suppression of maternal immunity.
These mechanisms are thought to act systemically or at the
maternal-fetal interface, and at the tissue or cellular level. The
study of infections during pregnancy offers an opportunity
to examine and determine the relevance of some of these
mechanisms. In addition, it presents a means to uncover
possible subtle elements and regulatory circuits in the maternal
immune system. These may support fetal tolerance, but at
the same time protect fetus and mother against overwhelming
disease. Accumulating evidence suggests that pregnancy drives
the expansion of unique cellular phenotypes particularly at the
maternal fetal interface (2–4) which may specifically express
mechanisms which can both support immune surveillance and
minimize harmful anti-fetal tissue responses (5, 6).

Lymphocytic choriomeningitis virus (LCMV) is an ambisense
single stranded RNA virus belonging to the family Arenaviridae,
which can cause human disease (7, 8). Generally, infection
occurs through contact with aerosolized mouse feces and urine,
causing a self-limited febrile illness (9). However, the virus can
be transmitted vertically in mice (10) and humans (11). In
humans, transmission vertically results in congenital neurologic
abnormalities (12, 13) while death is an outcome if viral
transmission occurs via transplantation of infected organs (14,
15) in immune suppressed patients. A recent estimate is that∼4%
of pregnant women may be seropositive with LCMV specific
IgG (16).

Laboratory strains of this virus have long been used to study
mechanistic aspects of the elicited immune response in mice.
Infection with the LCMV-Armstrong strain results in an acute
infection with a peak systemic viral load about 3 days after
inoculation. This is followed by a rise in CD8 virus-specific
effector T cells that peaks between 5 and 8 days post-infection
(17) and which contributes to the resulting clearance of virus.
By day 15 of infection, the CD8T cell population consolidates
and forms a memory T cell pool (18). In contrast, infection
with Clone 13 leads to persistent infection and is associated with
dysregulation of T cell function (19).

We have previously observed that infection with the LCMV-
Arm on day 8–10 of pregnancy results in systemic (spleen,
peripheral blood) immunity, including specific CD8T cell
expansion, interferon-γ (IFN-γ) production, cytotoxicity and
viral clearance that is equivalent to that found in non-pregnant
mice infected at the same time. However, by 8 days after infection,
when the systemic circulation is cleared of virus, the placenta and
uterus remain infected (20) until birth.

Interleukin-10 (IL-10) is an important driver of “anti-
inflammatory” and regulatory immune functioning in subsets
of T cells (21), B cells (22) “alternative” macrophages (23), and

dendritic cells (24). It is a complex moderator of autoimmunity
(25) and anti-tumor immunity (26). Particularly, the activity of
IL-10 is thought to be a driver of pathogen persistence and
chronicity in parasitic (27) and viral infections (28–31), including
infection with LCMV Clone 13 in non-pregnant mice. This
activity is thought to be related to its role in inhibiting T cell
production of IFN-γ and other immunomodulatory mechanisms
(28, 31, 32). IL-10 may also have pleiotropic functions as it may
control angiogenesis (33) vascular function (34) and apoptosis
(35). In pregnancy, IL-10 is expressed by trophoblast (36) and
decidua (37). It is also thought to be important in early pregnancy
development, as relative deficiency is a contributor to early
pregnancy loss in both mouse models (38, 39) and in human
recurrent early pregnancy loss (40). In addition, mid-gestation
deficiency in IL-10 has been linked to the inflammatory response
leading to lipopolysaccharide-induced preterm birth in mouse
models (41–43). However, early higher expression of IL-10 (44)
or a group of factors that include IL-10 (45) in humans identifies
women who subsequently have preterm birth, and is elevated
in chronic placental infection [e.g., malaria (46)] in humans.
This suggests a complex relationship between viral infection,
immunity, IL-10 and homeostasis in pregnancy-related tissues.
To begin to understand this relationship, we returned to our
finding of viral persistence in mice infected with LCMV-Arm,
which does not cause systemic viral persistence, but does cause
prolonged infection in the placenta with mid-gestation infection
(20). We hypothesized that IL-10 modulates the local immune
response to LCMV-Arm. We report that deficiency in IL-10 led
to a significantly lower viral load in the placenta and uterine
tissue 8 days post mid-gestation infection. This was correlated
with alterations of cytokine expression in these tissues, and an
increase in activated CD8T cells, but a decrease in the extent
of fetal resorption. These data point to a complex interaction
between maternal immunity, acute LCMV infection and the
fetal-placental unit, and support an important role for IL-
10 in aberrant pregnancy outcome following acute infection
with LCMV.

MATERIALS AND METHODS

Mice and Infection
Adult male and female C57BL/6 (B6, or “Wild Type” WT stock #
00664) and IL-10 KOmice of the same genetic background (Stock
# 002251) were obtained from The Jackson Laboratory (Bar
Harbor,ME).Mice weremaintained under specific pathogen-free
conditions and used in procedures approved by the Institutional
Animal Care and Use Committee at the University of Vermont
and in accordance with The Association for Assessment and
Accreditation of Laboratory Animal Care. Females were mated
with same-strain males and the males were removed 24 h later
which was taken as∼day 0 of pregnancy. On day 10 of gestation,
pregnant B6 and IL-10 KO females were infected with LCMV-
Arm (2 × 105 PFU/mouse) by intraperitoneal (IP) injection in
100 ul PBS or left uninfected and unmanipulated (20). At days 2
and 8 post-infection (i.e.,∼days 12 and 18 of gestation)mice were
euthanized by CO2 inhalation. Fresh samples from the spleen,
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uterine tissue (wall and decidua), placenta and uterine draining
lymph nodes were harvested and either used immediately for
flow cytometry or stored in RPMI (Sigma, St. Louis, MO) or
frozen at−80◦C until further use for either plaque assay or RNA
expression. Analysis elaborated here include one representative,
healthy-appearing (e.g., not necrotic) placental sample or
one uterine sample (2–3 implantation sites and underlying
nonplacental, e.g., decidua/endometrium/myometrium, tissue
plus intervening non-implantation uterus) per mouse. All
infection-related experiments were carried out in an ABSL2+
facility at the University of Vermont.

Flow Cytometry
The spleen, uterine tissue, placenta and uterine draining lymph
nodes of pregnant B6 and IL-10 KO mice were placed in “Ghost
special” medium [Iscove’s Modified Dubeco’s Medium, IMDM,
without bicarbonate (Gibco, Carlsbad, CA)], supplemented with
1% fetal bovine serum (FBS; Gibco). From spleen and uterine
draining nodes, single cell suspensions were generated through
mechanical dissociation using 70 um nylon mesh. Uterine tissue
and placenta were washed once in Ghost medium, cut into small
pieces and subjected to enzymatic digestion by incubation in
Hanks Balanced Salt Solution (HBSS, Gibco/Invitrogen, Grand
Island, NY) containing 200 U/ml hyaluronidase (Sigma), 0.2
mg/ml DNAse I (Sigma) and 28 U/ml Liberase Blendzyme 3
(Roche, Indianapolis, IN) for 20min in a 37◦C warm water bath.
After digestion, samples were pressed through 70-µmmesh. The
resulting cell suspension was washed with phosphate buffered
saline (27) (Mediatech,Manassas, VA) supplemented with bovine
serum albumin (0.1%; PBS-BSA; Sigma). Approximately 1× 106

cells were incubated in a 1:50 dilution of 2.4G2 (BD Biosciences,
San Jose, CA) in order to block non-specific antibody staining
due to Fc receptors, and then incubated for 1 h at room
temperature in a specific antibody mix, washed twice with
PBS-BSA and then fixed with PBS-BSA+1% paraformaldehyde
(Fisher Scientific, Fair Lawn, New Jersey). The antibodies used

in these studies included CD45.2 (clone 104, PerCP-Cy
TM

5.5),
PD1(Clone J43 PE), from e-Bioscience (San Diego, CA); CD8
(Clone 5H10-PE-Texas Red), Invitrogen, and CD44 (clone IM7
APC BD-Biosciences, San Jose, CA). Samples were processed
with a LSRII flow cytometer (BD Biosciences) and the results
of ∼10K cells were analyzed using FLOWJO software (Version
8.8, Tree Star, Inc, Ashland, OR). The gating scheme used was
previously described (47).

Plaque Assay
Placenta and uterine tissue were dissected, weighed and kept
in 200 µl of RPMI (Sigma) supplemented with 1% FBS at
−80◦C until they were homogenized using a Mini-BeadBeater
setup (BioSpec, Bartlesville, OK). Plaque assays were then
performed on homogenates as previously described (20). Briefly,
serial dilutions of virus-infected homogenates were placed on
monolayers of VeroE6 cells and incubated for 1 h at 37◦C. A
warm mix of 1× M199 media (Sigma) and 0.5% agarose was
overlaid and allowed to solidify for 20 mins. Plates were then
incubated for another 6 days, fixed with 25% paraformaldehyde
(Fisher Scientific) and stained with 0.1% crystal violet. Excess

stain was washed with water and then the plaques were visually
counted. Data are expressed as PFU (number of plaques× 106) /
gm of tissue used in the assay).

QRT-PCR
Placenta (one representative healthy-appearing per mouse) and
samples of uterine tissue (2–3 implantation sites with intervening
tissue) were dissected, immediately frozen and stored at −80◦ C
until ready for processing. Total RNA was extracted from 0.5 to
1mg of tissue using the PrepEase RNA spin kit from USB [The
iScript cDNA synthesis kit (Bio-Rad Laboratories, Hercules, CA)]
was used to synthesize cDNA from 250 ng of RNA template using
a mix of random hexamers and oligo dTs. From each sample 1µl
cDNA was used to amplify the genes of interest. QRT-PCR was
performed on an ABI Prism 7000 (Applied biosystems-CA) using
Power Sybrgreen master mix. Each sample was run in triplicate
and the CTs were averaged. The following primers (forward and
reverse, each in 5

′

-3
′

orientation) were used for amplification:
Beta-2 microglobulin (β2m) ATGCTATCCAGAAAAC

CCCTCAAA and CAGTTCAGTATGTTCGG
CTTCCC; Fas, AACAAAGTCCCAGAAATCGCCTATG
and TCCTGTCTCCTTTTCCAGCACTT; Forkhead box

protein P3 (Foxp3), AATGGGTGTCCAGGGAGC and
TGGCAGTGCTTGAGAAACTC; Transforming growth

factor beta (Tgf-β), CGCAACAACGCCATCTATGAG
and TGCTCCACACTTGATTTTAATCTCTGC; Interferon

gamma (Ifn-γ), CCTCATGGCTGTTTCTGGCTGTTA
and CATTGAATGCTTGGCGCTGGACC; Ifn-γ

receptor, CAGGTAAAGGTGTATTCGGGTTCC and
CCAGGCAGATACATCAGGATACATAAT; Interleukin-

10 (IL-10), TTACTGACTGGCATGAGGATCA
and GAAAGAAAGTCTTCACCTGGCTGA;
IL-17, GACTCTCCACCGCAATGAAGACC
and CCCACACCCACCAGCATCT; IL-6,

AGAAAGACAAAGCCAGAGTCCTTCAG and
GTCCTTAGCCACTCCTTCTGTGACT; Bcl-2-like protein

11 (Bcl2L11) GACGGAAGATAAAGCGTAACAGTTGT
and TCCATACGACAGTCTCAGGAGGAA;
Nuclear factor (Erythroid-derived 2)-like
Nrf2 ATGATGGACTTGGAGTTGCCA and
GCTCATAGTCCTTCTGTCGC; Interferon

beta (Ifn-β )TGTCCTCAACTGCTCTCCAC
and CCTGCAACCACCACTCATTC; CCL2

(monocyte chemoattractant protein-1, MCP-

1), TGATCCCAATGAGTAGGCTGGAG and
ATGTCTGGACCCATTCCTTCTTG. Relative expression
was determined using the 11CT method with an uninfected
uterine sample as a comparator, and the results of PCR with β2m

as a “loading control.”

Statistics
Data was graphed, visualized for trends and analyzed using
GraphPad Prism 7 (GraphPad Software, San Diego, CA). Data
points are displayed individually with lines delineating means or
the tops of columns delineating medians. Data passing at least
one of three normality tests were compared using parametric
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FIGURE 1 | Cytokine profile of uterine and placental tissues in normal mice infected with LCMV during pregnancy. C57BL/6 (B6) mice were infected (closed symbols)

or not infected (open symbols) ip with 2 × 105 pfu of LCMV Armstrong on day 10 of pregnancy. (A–H) Values for the uterus (top) or the placenta (bottom) of the

samples collected. ∼Day 12 (early), or ∼18 (late) of pregnancy the mice were euthanized, and the tissues indicated were tested by QT-PCR for expression. Y axis:

relative expression using the 11CT method compared to sample from an unmanipulated animal. X axis: time grouping. Each symbol represents an individual sample

from an individual (distinct) mother (n = 4–6 mothers). Inf denotes samples from an infected mouse while Ctrl denotes samples from an unmanipulated mouse. Data

was analyzed using Kruskal Wallis test with Dunn’s correction for multiple comparisons testing. Letters: a denotes significance (e.g., p < 0.05) when comparing

infected to control samples obtained at the same gestational age; b denotes significance between samples obtained early or late post infection. Trends (p < 0.1) are

noted numerically.

analysis. Two groups were compared with the t test while more-
than-two group analysis used ANOVA with post-test correction
for multiple-comparison testing. For data not passing normality,
two group comparisons utilized the Mann-Whitney test, while
more than two groups utilized Kruskal Wallis testing, and
adjusted using the Dunn’s multiple comparisons test. Significance
was set at p < 0.05, although some trends are noted.

RESULTS

Previous studies of LCMV infection in the mouse placenta and
decidua showed that 8 days after infection with an intraperitoneal
dose of LCMV (20), the systemic circulation developed an
increase in peripheral blood and spleen LCMV-specific CD8
cells and activated CD4 cells as occurs in non-pregnant mice.
However, while the spleen is cleared of LCMV by 8 days
post infection, the decidua (uterus) and placenta is not. One

possible explanation for this difference is enhanced viral uptake,
as subsequent studies revealed the increased expression of a
potential receptor for the virus in mid gestation placenta (48).
However, one potential rational for prolonged viral infection
in the relevant tissues are the adaptive and innate immune
responses generated in those tissues, as deficiency in tissue
specific immunity is a potential contributor to viral persistence
in other models of infection. To begin to assess the local immune
and inflammatory response to LCMV infection, we examined
the expression of a variety of cytokines relevant to innate and
adaptive immunity in uterine and placental tissues of C57BL/6
(Wild Type, WT) mice. Adult mice were mated to same-strain
males and infected on ∼day 10 of pregnancy, since previous
studies suggested a very high rate of resorption with infection
earlier in gestation (20). Figure 1 shows a comparison to the
tissues in uninfected mice. Two timepoints are examined. “Early”
refers to 2 days post infection, ∼ 12 days of gestation, while
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FIGURE 2 | Effect of LCMV infection on pregnancy outcome in WT and IL-10 KO mice. (A) Proportion of implantation sites resorbed (necrotic) 2 days (left, n = 10 WT

and 11 IL-10 KO mothers euthanized) and 8 days (right, n = 17 WT and 14 IL-10 KO) post infection. Each symbol represents a mother euthanized. (B) Number of

non-resorbed sites delivered. Uteri (n = 5 WT and 7 IL-10 KO) were opened on day 19 of gestation and the presence of a pup was counted as a “non-delivered” site.

Lines, sample means. p values, analysis of significance by the t test. (C–E) RNA expression by QT-PCR of the indicated molecules in the indicated tissues on day ∼18

of gestation. Bars, sample medians. p values, analysis of significance by the Mann Whitney test. Blue symbols, WT; Red symbols IL-10 KO. NS, not significant at the p

< 0.05 level.

“late” refers to 8 days post infection, ∼18 days of gestation.
While expression of molecules such as IFNγ-R (Figure 1C)
and FOXp3 (Figure 1G) are not significantly changed over
time and infection, three other patterns of RNA expression are
discernable. In one pattern (e.g., Figure 1B, IFN-γ) expression
does not appear to be different from uninfected tissues until
late in infection. In another (e.g., Figure 1D, TGFβ) infection
over time is associated with decreased expression. In a third,
(e.g., Figure 1E, IL-17, uterus) expression is elevated soon after
infection and continues to be elevated late in infection, raising the
speculation of pleiotropic functions in the context of infection.

One cytokine with this pattern raised this same speculation:
IL-10 (Figure 1H). Because of our finding, and the existing
evidence in the literature, we examined pregnancy outcome
in infected WT mice and in mice deficient in Interleukin-10
(IL-10 KO, Figure 2). Because we suspected a high level of
resorption in the IL-10 KO mice based on a mouse model
of early pregnancy loss (38), we examined the uteri of WT
and IL-10 KO mice 2 and 8 days after infection. When we
reviewed the proportion of resorption sites with necrotic fetal-
placental units consistent with resorption, WT mice had a
significantly greater proportion at both 2 (Figure 2A, left) and
8 days (Figure 2A, right) after infection as compared to IL-
10 KO mice who experienced a level roughly similar to that
found in uninfected WT mice (49). Because IL-10 deficient mice
are more susceptible to preterm birth in response to toll like
receptor activation with agents such as LPS (42), we expected
that deficiency in IL-10 in the face of LCMV infection would
lead to earlier delivery. Observations suggest that mice on this

genetic (e.g., C57BL/6) background have a gestational length of
∼19.5 days (50). Because of this we undertook an investigation
the number of non-resorbed implantation sites did or did not
have an attached fetus (non-delivered vs. delivered Figure 2B).
Unexpectedly, analysis of the calculated proportions suggested
that proportionately more WT pups of infected mothers had
delivered by day 19 of gestation (Figure 2B). Parturition is
the outcome of a complex developmental process [reviewed in
(51)] that likely is influenced by infection. To begin to probe
the potential factors that might mediate oxidative stress (which
could also lead to pathways such as senescence), cell death, and
tissue dysregulation in infected WT and IL-10 infected tissues
at day ∼18 of gestation, we examined tissue RNA expression
of NRF2 (52), BIM/BCL2L11 (53, 54) and FAS/CD95 (35, 54)
(Figure 2). Although uterine NRF2 is decreased by infection
in WT mice (Supplementary Figure 1), we observed that both
NRF (Figure 2C), and FAS (Figure 2E) were similarly expressed
in tissues of IL-10 KO mice as compared to WT. In addition,
RNA expression of the pro-apoptotic mitochondrial molecule
BCL2L11 was increased only in the placenta in IL-10 KO mice
(Figure 2D).

Differences in reproductive outcome in WT and IL-10 KO
mice could be due to viral load over time after infection in
reproductive tissues, even if virus is cleared from systemic
lymphoid tissues (20) (Supplementary Figure 2). We thus
examined uterus and placenta of WT and IL-10 KO mice using
a plaque assay (Figure 3). We infected mice on ∼day 10 of
gestation and harvested tissues 2 (early) and 8 days later. We
found that viral loads appeared equivalent and low early post
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FIGURE 3 | Viral load in WT versus IL-10 KO mice infected with LCMV. WT (C57BL/6) females or IL-10 KO females were mated to same-strain males and on day ∼10

of gestation were infected as in Figure 1 and euthanized on days ∼12 and ∼18 of gestation. Placentas were homogenized and then tested for viral load by plaque

assay. (A) Uterine tissues (n = ∼10–20/strain/time). (B) Placental tissues (n = ∼10–20/strain/time). Y axis: PFU × 10−6 virus per gram tissue as assessed by plaque

assay. X axis: early (2 days post infection or ∼12 of gestation) or late (8 days post infection or day ∼18 of pregnancy). Each symbol is a unique tissue representing a

distinct mother. Blue, WT tissues; Red, IL-10 KO tissues. Bars indicate median for the sample group. p values generated by Kruskal Wallis testing with Dunn’s multiple

comparisons test to compare WT vs IL-10 KO late values. Significance set at the p < 0.05 level.

FIGURE 4 | RNA expression of cytokines in WT vs. IL-10 KO tissues. Tissues from WT (blue) or IL-10 KO (red) mice who were infected on ∼day 10 of pregnancy and

harvested 8 days later were harvested and RNA extracted to determine expression by QT-PCR as in Figure 1. Each symbol denotes a single tissue from a unique

mother. (A) “Innate immunity” cytokines IL-6 (left), Interferon-β (middle) and CCL2 (right). (B) “Adaptive immunity” cytokines Interferon–γ, IL-17, Transforming growth

factor-β. Upper panels, uterus. Lower panels, placenta. Bars—medians. p values analysis of significance utilized the Mann Whitney test. NS, not significant at the p <

0.05 level. Trends (p < 0.1) are noted.

infection in both uterus (Figure 3A) and placenta (Figure 3B)
from WT and IL-10 KO mice. However, late post infection, the
viral load was statistically greater in both tissues from WT as
compared to IL-10 KO mice.

A potential connection between late pregnancy loss (or
shortened gestation) and viral load could be related to innate
immunity, especially as this connection has been documented in
other infections (55). In contrast, the driver of our observations
could be related to adaptive immunity. To begin to examine this
potential dichotomy, we examined the expression of molecules

related to innate vs. adaptive immunity in tissues fromWT or IL-
10 KOmice. Tissue samples fromWT and IL-10 KOmice taken 8
days after infection e.g., day∼18 of gestation were harvested and
examined for RNA expression of IL-6 (56, 57), IFN-β (58), and
CCL2 (59) which are part of the innate response to viral infection
(Figure 4A). Further, we examined IFN-γ (60), IL-17 (61) and
TGF-β (60, 62) (Figure 4B) which are considered important for
adaptive immunity. At this time point, there was no difference in
expression of innate immune mediators (Figure 4A). However,
we observed a trend toward increase in IFN-γ in the placenta of
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FIGURE 5 | Flow cytometric analysis of tissues from infected normal and IL-10 deficient mice. Single cells suspensions were obtained from tissues harvested from

LCMV-infected pregnant WT (blue symbols) and IL-10 KO (red symbols) mice 8 days after infection on ∼18 of gestation. Each symbol represents a single tissue from

a unique mother. These were stained with antibodies to CD45, CD8, CD44 and PD1 (A) Top panel, percentage of lymphoid gate (by side and forward scatter) cells

positive for CD45; Middle panel, percentage of CD45+ cells observed to be CD8+; Bottom panel, percentage of CD8+ cells highly expressing CD44 consistent with

activation. (B) Expression of PD1 on CD8+ cells in each of the tissues assayed. Lines, means. p values indicate analysis by t test. NS, not significant at the p < 0.05

level, Node: uterine draining lymph node.

IL-10 KO mice and lower TGFβ in both tissues of IL-10 KO as
compared to WT mice (Figure 4B).

This finding allowed speculation that the local CD8T cell
response might be different in the tissues of WT and IL-10
KO mice late in infection. To test this, we harvested tissues
for examination by flow cytometry. We first analyzed single cell
suspensions of tissues to estimate the proportion of relevant cells
(Figure 5A and see Supplementary Figure 4A). CD45+ cells
were increased in proportion in IL-10 KO uterus as compared
to WT (Figure 5A, top row, middle panel), while the proportion
of CD8+ cells was equivalent regardless of tissue (Figure 5A,
middle row). However, the proportion of CD8+cells that were
positive for the activation marker CD44 was higher in both
the uterus and placenta of IL-10 KO mice as compared to
WT (Figure 5A, bottom row, middle and right panels and see
Supplementary Figure 4B, left panel). This suggested that either
there was increased trafficking and or local activation of CD8+
cells in IL-10-infected vs. WT- infected utero-placental tissues
(Figure 5A).

The molecule programmed death-1, PD1/CD279 (22, 63) is
expressed on T cells and is associated with regulation of T cell
homeostasis, activation and tolerance. Expression is upregulated
on activation (64) and expression is associated with modulation

of the response to viral infection. LCMV infection with less
virulent strains leads to transient upregulation of PD1 and
retained functional capacity, while chronic infection with more
virulent strains leads to retained PD1 expression as part of the
“exhausted” T cell phenotype (65). Based on previous findings
of infection with a more virulent strain (28), we expected to
see a decreased level of PD1 on CD8T cells from IL-10 KO
mice. Although the size of the systemic CD8T cell pool is
similar in infected WT and IL-10 deficient mice (Figure 5A,
middle row, left panel), population-based PD1 expression was
increased in IL-10 KO CD8T cells of both the spleen and
uterine draining lymph nodes (Figure 5B, top row, and see
Supplementary Figure 4B, right panel) as compared to WT. In
addition, the expression of PD1 in both uterine and placental
CD8T cells was elevated in IL-10 deficient tissues compared to
WT (Figure 5B, bottom row). Taken together, this data suggests
tissue specific regulation of the CD8T cell pool in the face of
viral infection.

DISCUSSION

These studies are driven by an earlier finding that infection with
LCMV leads to persistent infection of the uterus and placenta,
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but not the fetus, despite the fact that the strain used is deemed
less virulent and does not usually lead to persistent infection
in adult animals (66). We were interested in the role of IL-10
because of its potential role in modulation of both innate and
adaptive immunity.

The key findings presented here are the decreased viral
load late in infection in IL-10 KO as compared to WT mice,
and that IL-10 deficiency in the face of infection leads to
comparatively less pregnancy loss and potentially prolonged
gestation. Based on previous data in IL-10 deficient mice, and the
increased expression of proapoptotic proteins such as BCL2L11
(Figure 2C) the later finding is somewhat counterintuitive. The
trend for increased expression of genes such as IL-6 (Figure 4A)
is however consistent with developmental dysregulation (57)
in the WT pregnancies examined. Although representative of
distinct pregnancies, the relatively small sample size in our
expression studies demands cautious interpretation. Despite the
likelihood that more significant differences might be revealed
with a much larger, potentially challenging number of mice, we
were able to detect differences consistent with the idea that our
findings may be related to differential activity of tissue-localized
CD8 T cells.

In studies of neonatal male mice, intracerebral infection with
LCMV-Arm, the strain used in these studies, leads to persistent
infection as adults, with viral nucleic acid present in several
tissues (67). However, in adult mice, infection with LCMV-Arm
leads to systemic tissue clearance which occurs in ∼ 8 days. This
clearance is associated with long-term LCMV- specific immunity
and protection against more virulent strains. Key mechanisms
of viral persistence in neonatally infected mice include central
tolerance, as the virus is persistent in the thymus as well as other
tissues and adoptive transfer of T cells from immune mice leads
to viral clearance (68).

Viral persistence can be achieved in adult mice through
administration of certain clones of LCMV (e.g., clone 13) which,
interestingly enough, were isolated from the spleen of mice
infected neonatally (66). Viral persistence was initially related
to lack of functional cytoxic T cells. Recently it has been
observed that strains of LCMV which cause either limited or
chronic LCMV infection systemically, alter male urinary scent
proteins (69). The effect on urinary scent proteins appears to
last longer than it takes for systemic clearance, and this leads
to the speculation that the reproductive tract may harbor “non-
virulent” virus for a longer than expected (as compared to
systemic circulation) time in males as well as pregnant females.
This may support extended examination of different viral strains
and LCMV specific immunity in the non-pregnant reproductive
track of females (70).

The fact that injection of LCMV-Arm may generate
different clones of varying immunity (66) raises the possibility
that uteroplacental tissues may generate sub-strains with
enhanced tissue specific binding or tropism (48). This may
lead to clones which cause persistent infection and would
thus be termed “virulent.” Further studies are needed to
examine the potential presence of altered virus genetic

elements, such as those relevant to the L protein (71) in
placental tissues.

The existing data may support a model whereby there are
three different biologies of LCMV infection during pregnancy.
First, infection (more likely early) in pregnancy tends to
embryonic loss (20), observed in our studies as “resorption”
(Figure 2). Second, infection leads to utero-placental prolonged
viral presence at a time during enhanced expression of a
putative viral receptor (48). This may lead to labor complications
[e.g., dystocia (20)] and increased perinatal mortality. The
third, perhaps with infection in late gestation exists along the
same continuum as infection in the brain within the first
day of life. During which the placental status is not clear,
but the fetus becomes chronically infected due to infection
of the immature thymus. These three “biologies” might be
related to inherent elements of anatomy (72), viral tropism
(48) and mechanisms of host defense and innate immunity
which may differ by strain [e.g., SWR/J and HA/ICR (10)
vs. C57BL/6 (our studies)]. This should be examined in
future investigations.

Since IL-10 is expressed in trophoblast, one could expect
that it plays a developmental role as do cytokines such as
IFN-γ (73) as well as a protective immune regulatory role in
pregnancy. Indeed, this is how we interpreted early expression
of IL-10 in women who would go on to have preterm
birth (44). We posited that these women experienced some
dysregulatory insult for which IL-10 expression was enhanced
in a compensatory manner. Because of the proposed role of IL-
10 in “anti-inflammatory responses” IL-10 has been examined
in models of recurrent pregnancy loss and preterm birth. In
models of recurrent pregnancy loss, utero-placental deficiency
in IL-10 leads to increased loss (38). Moreover, in models
of Toll-like receptor mediated preterm birth, deficiency is
related to increase in innate immune activation [e.g., NK
cells (41, 74)] and a more profound phenotype. However,
in the context of LCMV infection, where we would expect
that deficiency would lead to enhanced inflammation, we did
not observe increased expression of inflammatory cytokines
(Figure 4A), an early-expressed interferon (Figures 1A, 4A)
or a modulator of innate immune cell trafficking (Figure 4A;
Supplementary Figure 3). Further, we did not see overall
decreased “resiliency” in uteroplacental tissues of IL-10-KO vs.
WT tissues (Figure 2) as pregnancy outcome was improved,
and there was no difference in RNA expression of molecules
such as NRF2 which should be defense against oxidative stress
and FAS which should mediate apoptosis. Our only finding
was increased RNA expression of the mitochondrial pro-
apoptotic molecule BCL2L11. This may support examination of
mitochondrial function and overall metabolism in the context of
LCMV infection.

Cell death and tissue destruction in LCMV infection is said
to be related to T cell activation and effector function since
the virus is considered to be non-lytic (75). However, the
correlation between viral load and poor pregnancy outcome
we observed could be explained by subtle (e.g., nonlytic),

Frontiers in Virology | www.frontiersin.org 8 February 2022 | Volume 2 | Article 829991

https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
https://www.frontiersin.org/journals/virology#articles


Negi et al. LCMV and IL-10 in Pregnancy

toxic effects of the virus on utero-placental tissues or innate
mechanisms not examined. If this would be the case, then
viral clearance related to immunity would be expected to be
protective. This is consistent with our findings. The ability
for pregnant animals to clear systemic LCMV, generate anti
LCMV memory, and protect against virulent strains (20) tends
to mitigate against both central (e.g., deletion in thymus)
and systemic (e.g., global, non-thymic) tolerance as a cause
for viral persistence in utero-placental tissues. Moreover, it
appears in these studies and those previously published that
CD8T cells can traffic to uteroplacental tissues in response to
LCMV infection, although this may be due to dysregulation of
mechanisms which limit trafficking to this site (76, 77) in the
uninfected case.

Existing data suggests that not only chronic infection, but
also homeostatic expansion in response to niche, cytokines such
as IL-7, or environmental antigen (78) can lead to T cells with
a molecular and phenotypic signature similar to “exhaustion”
(78), but that the majority of these cells are cleared via FAS/FAS
ligand interactions. We have observed that maternal T cells
may undergo homeostatic expansion, possibly in response to
fetal antigen (54, 79). This is associated with the increased
expression of molecules such as Il-7 receptor and, in the uterus,
expression of PD1, granzyme and downregulation of CD8
(49, 54). This suggests a “quasi exhausted” phenotype which
can be relieved systemically (80) and possibly locally through
inflammation. The factors driving this phenotype may explain
the relative persistence of virus in uteroplacental as opposed to
systemic tissues.

Chronic LCMV infection is associated with increased IL-
10 production in antigen presenting cells and decreased T cell
function. Further, antibody mediated blockade of the IL-10
receptor restores T cell function and enhances viral clearance
(28). Consistent with this, in our studies, deficiency in IL-10 is
associated with decreased viral load in utero-placental tissues
and with a calculated increase in the proportion of CD8T cells
(uterus, Figure 5A). This correlated with increased expression
of the bona fide activation marker CD44 (81) on uterine and
placental CD8T cells (Figure 5A). We were intrigued by the
increased CD8T cell expression of PD1 in both systemic and local
tissues of infected IL-10 KO as compared to WT (Figure 5B),
when we expected this molecule to be downregulated in IL-10
KO cells. We were further somewhat surprised by the contrast
with CD44, which occurred at a relatively higher level in CD8T
cells of only local IL-10 KO tissues (Figure 5A). We attribute
this to the short time-frame of these experiments, as PD1 may
be elevated for a time after antigen is cleared and during the
revival of exhausted cells [reviewed in (22)]. In addition, we could
speculate that genetic deficiency in IL-10 may developmentally
alter (upregulate) PD1 even in the uninfected state. PD1 is
actually a complex modulator of immunity (82) via interaction
with a number of ligands at least one of which, PD-L1 is
upregulated by IL-10 (22). PD1 signaling is also closely linked to
T cell metabolism (83). As such, the highly metabolically active

state of the placenta may influence the cellular expression and
function of PD1 and its ligands.

Our data, taken in this context, is consistent with a model
for a unique phenotype in uterine/placental tissues compared
to systemic CD8T cells (3, 84), which should in the future
be analyzed with respect to exact anatomic site (85) and
fetal sex (43). From our point of view (1, 86), these data
suggest that in local tissues this may not be a phenotype of
inherent suppression or limitation. This state may be one of
heightened early activation, which may lead to a state which
is like exhaustion, but which can be “cured” by tissue-derived
factors when needed to clear viral infections. The concept of
a unique intrauterine CD8T cell phenotype- one that exhibits
elements of the “exhaustion-that-can-be-relieved” phenotype is
supported by studies in other animal models (87–89) and in
humans (90–92). Our hope is that consideration of this concept
can be utilized to develop therapeutic interventions to prevent
congenital infection.
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