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University of South Florida, Morsani College of Medicine, Department of Obstetrics & Gynecology, Tampa, FL, United States

Zika virus (ZIKV) is spread by mosquito bites or via sexual or vertical transmission. ZIKV-
infected adults are generally asymptomatic, but can display mild symptoms including
fever, joint pain, rash and conjunctivitis. However, during pregnancy, vertical ZIKV
transmission can cause placental dysfunction and elicit severe fetal defects, including
microcephaly, retinopathy, fetal growth restriction and/or stillbirth. Since no FDA-
approved vaccine or anti-viral agents are currently available, ZIKV infection poses a
global maternal-fetal health challenge. The maternal-fetal interface consists of maternal
decidual and immune cells as well as fetal-derived trophoblasts. Compared to other cell
types at the maternal-fetal interface, syncytiotrophoblasts, which form the outer layer of
floating villi, are less-permissive to ZIKV, thereby preventing ZIKV transmission to the
underlying cytotrophoblasts and/or other cells such as Hofbauer cells or fetal endothelium
in the villi. However, anchoring villi are tightly attached to the decidua and their
cytotrophoblastic cell columns are ZIKV-permissive, suggesting this location as the
most likely site of ZIKV vertical transmission. Thus, at the maternal-fetal interface,
maternal decidual cells likely serve as a reservoir of ZIKV persistence since they: 1)
overexpress viral entry molecules compared to trophoblasts; 2) are highly permissive to
ZIKV infection in a gestational age-dependent manner (more easily infected earlier in
gestation); 3) augment ZIKV infection of weakly permissive primary cytotrophoblast
cultures; and 4) display local maternal-immune tolerance, which prolongs ZIKV survival
to facilitate fetal transmission. This review focuses on molecular mechanisms underlying
ZIKV infection of cells at the human maternal-fetal interface, thus highlighting how decidual
cells enhance propagation of ZIKV in extravillous cytotrophoblasts and why development
of agents that eliminate ZIKV persistence in reproductive tissues before pregnancy is
crucial to prevent perinatal ZIKV transmission.

Keywords: Zika virus, decidual cells, trophoblasts, maternal-fetal interface, vertical transmission
INTRODUCTION

Throughout pregnancy, the placenta is a specialized tissue that acts as a physical and immunological
barrier against invading pathogens to protect the developing fetus from infectious agents. Unlike
most viruses, which cannot cross the placental barrier, Zika virus (ZIKV), varicella zoster virus,
rubella, and cytomegalovirus are transmitted from the mother to the fetus by infecting various
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placental cell types (1–3). Serving as major antecedents of
infection-related global morbidity and mortality during
pregnancy, these pathogens cause congenital anomalies and
placental dysfunction resulting in adverse pregnancy outcomes
such as preterm birth or fetal growth restriction and/or
miscarriage (1–8). Therefore, pregnant women represent a
vulnerable population for viral infections since pregnancy
confers a unique immune status that facilitates maternal
tolerance of the semi-allogenic fetus and enables viral
infections (9, 10). Better understanding of the role and
mechanism(s) responsible for viral infections during pregnancy
has become increasingly relevant because of the risk of
current pandemic.

ZIKV utilizes vertical route to cross the placenta and reach
fetal neuronal tissues causing severe fetal defects (11, 12).
Vertical transmission was confirmed by detection of ZIKV
RNA in the cerebral tissues of the aborted fetuses and
placental tissues as well as the increased numbers of neonatal
neurodevelopmental defects during the ZIKV outbreak (13, 14).
Identification of ZIKV-infected cell types as well as better
understanding of the cellular and molecular mechanisms
utilized by the ZIKV to cross the placenta are particularly
important in preventing viral transmission to the fetus as well
as ameliorating fetal prognosis and adverse pregnancy outcomes.
Therefore, improved understanding ZIKV pathogenesis during
pregnancy may guide the design and/or development of
therapeutic agents against ZIKV.
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This review focuses comprehensively on underlying
molecular mechanisms of vertical ZIKV transmission at the
maternal-fetal interface and highlights the trimester-dependent
role of decidual stromal cells in promoting ZIKV replication as
well as describes the potential use of Food and Drug
Administration (FDA) approved drugs against ZIKV infection,
thereby preventing perinatal ZIKV transmission.
ARCHITECTURE OF THE MATERNAL-
FETAL INTERFACE

The placenta is a unique, multifunctional organ that supplies
oxygen and nutrients to the fetus to promote its development and
functions as a physical barrier that protects the fetus against
infections (9, 10). In humans, following implantation,
collaboration between trophoblasts and extraembryonic
mesodermal cells permits formation of the placenta’s floating and
anchoring villi (15–17). Subsequently, the anchoring villi attach to
the decidua basalis (17–19). Figure 1A represents schematized cells
in the human maternal-fetal interface, which is composed of the
maternally derived decidua and fetal-derived placenta. Both
cytotrophoblasts (CTBs) and syncytiotrophoblasts (STBs)
originate from the trophectoderm layer of the blastocyst (19, 20).
CTBs are highly proliferative mononuclear cells that are attached to
a basal membrane within the placental villi (Figure 1A). Villous
A B

FIGURE 1 | Schematic presentation of the maternal-fetal interface and ZIKA virus infection. (A) The fetus-derived placental villi, which are bathed in maternal blood
within intervillous space are composed of floating villi and anchoring villi that invade the maternal decidua. The maternal decidua consists of decidual cells that
differentiate from uterine endometrial stromal cells, maternal blood vessels and maternal immune cells consisting of decidual natural killer (NK), dendritic cells (DC)
and T cells. The placental villi are composed of fetal blood vessels, villous fibroblasts and Hofbauer cells in the villous core as well as proliferative cytotrophoblasts
and multinucleated syncytiotrophoblasts, which cover the surface of the placental villous and direct contact to maternal blood. Extravillous trophoblasts are
differentiated from cytotrophoblasts and invade the maternal decidua and maternal spiral arteries. Substantial crosstalk exists between maternal decidual cells and
fetal trophoblasts that are essential for a successful pregnancy. (B) Representative presentation of decidual cell-mediated vertical transmission of the ZIKA virus. The
enlarged inset represents the potential route of ZIKA virus (ZIKV) transmission from decidual cells to fetal cells. At the maternal-fetal interface, decidual cells exhibit
higher viral entry/attachment factors AXL, GAS6 and PROS1 and they are more permissive to direct ZIKV infection in a gestational age-dependent manner compared
to extravillous trophoblast or cytotrophoblast cells. Thus, ZIKV infects and spreads via decidual cells to fetal trophoblasts or Hofbauer cells or fetal endothelial cells.
Therefore, decidual cells act as reservoirs for trimester-dependent placental transmission of ZIKV, thereby accounting for the higher ZIKV-infection susceptibility and
more severe fetal sequelae observed in early versus late pregnancy.
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CTBs are progenitor cells for STBs, which are multinucleated,
terminally differentiated cells formed by fusion of CTBs. STBs
cover the outer cell layer of placental floating villi and are in
direct contact with the maternal circulation (Figure 1A) (3).
Thus, STBs serve as the initial site of defense against pathogen(s)
attempting to cross the placental barrier. In addition to their
defensive role, STBs facilitate maternal-fetal oxygen exchange and
nutrient transport and produce several growth factors and
hormones that are critical for fetal development (3, 21). In the
anchoring villi (Figure 1A), proliferation of CTBs forms extravillous
trophoblasts (EVTs) of the cytotrophoblastic cell column, which
differentiate into interstitial and endovascular CTBs that invade the
maternal decidua and spiral arteries, respectively, thereby facilitating
the spiral artery remodeling to markedly increase utero-placental
blood flow required for fetal survival and growth (21–23).

In humans, the maternally derived decidua originates from
the endometrium and promotes immunological tolerance of the
semi-allogenic fetus as well as host defense against pathogens
(24–28). The decidua is comprised of decidual stromal cells,
glandular epithelial cells, maternal blood vessels and an immune
cell population dominated by decidual natural killer (NK) cells
and macrophages, with smaller percentages of dendritic cells and
T lymphocytes (Figure 1A) (29, 30). Decidual cells are large,
round, polyploid, epithelial-like cells derived from progesterone-
induced decidualization of endometrial fibroblast-like stromal
cells and are required for the establishment and maintenance of a
normal pregnancy. Impaired decidualization is strongly
associated with recurrent pregnancy loss or placental accreta or
maternal hemorrhage confirming the importance of decidual
cells in maintaining pregnancy (31–33). In the decidua, maternal
immune cells play a crucial role in defending against infection
with their numbers and subtypes changing dynamically during
pregnancy. As the dominant lymphocyte population in the
decidua, decidual NK cells participate in trophoblast invasion
and spiral artery remodeling attaining maximum numbers
during the first trimester then declining near term (34).
Moreover, decidual NK cells play critical roles in promoting
anti-viral innate immunity as well as placental development by
producing several soluble factors (34–38). Conversely, lower T
cell numbers are present in the first versus third trimester (39). In
addition to decidual NK cells, decidual CD8+ T cells play a key
role in balancing the paradoxical requirement for induction of
maternal–fetal tolerance and anti-viral immunity (40).
EPIDEMIC OF ZIKV INFECTION

ZIKV is a member of Flaviviridae that includes Dengue, West
Nile, Japanese encephalitis, and yellow fever viruses and is
primarily spread by the bite of the infected female Aedes
mosquito (41, 42). The ZIKV was first isolated from a rhesus
monkey in the Zika forest of Uganda in 1947 (43, 44). The first
ZIKV infection outside of Africa occurred in Indonesia in 1981
(45), and then spread across the South Pacific islands in 2007,
reaching Brazil in 2015 (43, 46). In 2016, a major ZIKV outbreak
occurred in Central and South America and became a worldwide
Frontiers in Virology | www.frontiersin.org 3
public health problem (46–48). ZIKV infections in adults are
generally asymptomatic, but they can display mild symptoms
including fever, joint pain, rash, and conjunctivitis (49, 50).
However, during the 2015-16 epidemic in South America,
ZIKV became a global health threat because of the dramatic
increase in accompanying developmental defects e.g.,
microcephaly, ocular changes and retinopathy in up to 20% of
children of affected mothers as well as a remarkable increase in
adults with Guillain-Barré syndrome (46–48). The Centers for
Disease Control and Prevention reported 42,750 symptomatic
ZIKV cases in the U.S. and territories including 7,407 ZIKV-
infected pregnant women delivering 283 live infants with ZIKV-
associated birth defects and 17 pregnancy losses; among 1450
babies born to ZIKV infected mothers, 6% had ZIKV-associated
birth defects such as small head size, eye damage etc., whereas 9%
developed postpartum nervous system problems e.g., seizures,
swallowing, movement problems, or developmental delays (51).
In one large Brazilian series, Brasil et al. (11) reported that the
rate of fetal death in ZIKV-infected pregnancies was 7% and
overall adverse outcomes were 46% vs. 11.5% among newborns
from ZIKV-noninfected women. Additionally, the recent
findings from population-based birth defects surveillance data
reported a four-fold increase in the prevalence of birth defects
related to ZIKV infection during pregnancy (12). These
observations suggest delayed postnatal sequalae and the need
for long-term monitoring of children that were exposed to ZIKV
in utero and born with a normal head circumference (52).
Although no additional ZIKV infections have recently been
reported in the Americas, ZIKV infections and outbreaks still
occur in India (53) and China (54), indicating that ZIKV
continues to pose a maternal-fetal health challenge.
ZIKV GENOME ORGANIZATION

The ZIKV genome consists of a single-strand positive-sense (ss)
RNA with approximately 10.7 kilobases in length that contains a
single open reading frame flanked with ~100 nucleotides at 5’
and ~400 nucleotides at 3’ untranslated region (UTR) (41, 55).
As displayed in Figure 2A, the open reading frame of the ZIKV
genome encodes three structural proteins (the capsid, precursor
membrane, and envelope) and seven non-structural (NS)
proteins (NS1, 2A, 2B, 3, 4A, 4B and 5). The encoded single
polyprotein is subsequently cleaved by both viral and host
proteases to yield structural and NS proteins. The structural
proteins play a role in viral attachment, entry, assembly, and
pathogenicity, whereas the NS proteins are involved in viral
replication, polyprotein processing and attenuating host antiviral
responses (55–58). The viral promoter is located at 5’UTR with a
cap site, and the terminal end of the 3’UTR contains a conserved
dinucleotide (CU) instead of polyadenylation (59–61). The
mature capsid (C) protein protects the viral genome and is
produced by cleavage of the immature C-protein by the viral
protease. The membrane (M) protein, which is located on the
viral surface, is generated by cleavage of precursor (pr) M protein
by a host furin protease (62). The envelope (E) protein is a major
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viral surface protein that mediates viral entry by binding to host
cell surface receptors (63, 64). Among NS proteins, central
enzymatic activities are primarily encoded by NS3 and NS5
proteins. NS3 protein displays serine protease, RNA
triphosphatase, and helicase activities, whereas NS5 possesses
methyltransferase and RNA-dependent RNA polymerase
(RdRP) activities (65, 66). The methyltransferase activity is
required for methylation of the 5’-end caping of viral genomic
RNA. Thus, viral RNA cannot be distinguished from host RNAs
and consequently is translated into viral proteins by host
ribosomes. RNA-dependent RNA polymerase generates a
negative sense RNA using the viral positive sense ssRNA as a
template, and thus is essential for viral genome replication and
transcription (41, 67).

As depicted in Figure 2B, the initial step in ZIKV infection is
viral attachment to host cell surface receptors followed by
endocytosis, enabling the virus to release ssRNA into the host
cell cytoplasm (63, 65, 66). Subsequently, the ssRNA acts as a
genome template that is translated into a viral polyprotein, which
functions as a viral genome replicator by recruiting ssRNA to
viral replication complexes. ZIKV replication occurs on the
surface of the endoplasmic reticulum, resulting in a double
Frontiers in Virology | www.frontiersin.org 4
stranded RNA genome synthesized from the genomic ssRNA
by viral RdRP (68–70). The resultant double stranded RNA
genome is then either transcribed to viral mRNAs for viral
translation or replicated to produce new ssRNAs. Assembly of
immature viral proteins and genome occurs in the endoplasmic
reticulum, then transported to the Golgi apparatus for viral prM
protein cleavage, which then fuse to form competent mature
virions. These mature virions are then released by exocytosis
(69, 70).
ZIKV ENTRY RECEPTORS

Like other viruses, ZIKV can infect and replicate in various cell
types by attaching to several surface proteins that facilitate viral
binding and entry into host cells (71). Since ZIKV displays a wide
range of cellular tropisms, identification of ZIKV entry factor(s)
is/are crucial to delineate details of ZIKV tropisms and
pathogenesis. Several cellular receptors that contribute to ZIKV
infection have been identified. These include C-type lectins aka
dendritic cell-specific intercellular adhesion molecule-3-
A B

FIGURE 2 | Detailed structure of the ZIKA virus genome, replication, and maturation into host cells. (A) The ZIKA virus (ZIKV) genome is single stranded positive
sense RNA, which is approximately 10.7 kilobase in length and contains a single open reading frame (ORF) with two flanking untranslated regions on the capped 5′-
end and the 3’-end lacking a polyA-tail. ORF encodes a single polyprotein comprised of 3423 amino acids, which is post-transcriptionally cleaved by viral and host
cell proteases into 3 structural proteins (the capsid (C), precursor membrane (prM), and envelope E) and 7 non-structural proteins (NS; NS1-NS2A-NS2B-NS3-
NS4A-NS4B-NS5). Structural proteins mediate viral attachment, entry, and fusion into host cells, whereas non-structural proteins are involved in viral replication and
the host antiviral response. (B) Schematic presentation of ZIKV entry, replication, and maturation in host cells. The initial step in ZIKV infection is viral attachment via
the viral envelop (E protein and phosphatidylserine; PS) to receptors (DC-SIGN, TIM, and TAM family members) on the host cell membrane. Subsequently, this
binding mediates internalization into host cells via clathrin-mediated endocytosis. Then, the viral RNA is released into the host cytoplasm following fusion of viral and
host endosomal membranes. The released RNA is immediately bound onto host ribosomes and translated into a polyprotein that is cleaved by viral and host cell
proteases to form mature structural and nonstructural proteins. Viral replication is mediated by viral RNA-dependent RNA polymerase and methyltransferase on the
surface of the endoplasmic reticulum (ER), resulting in a double stranded (ds) RNA. Transcription and replication of the dsRNA result in the formation of new viral
mRNAs and ssRNA genomes, respectively. Following viral assembly of capsid proteins at the ER, the virion is transported to the Golgi apparatus where virion prM
protein is cleaved to form the mature M protein. Finally, the host cell releases the mature virus by exocytosis.
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grabbing nonintegrin (DC-SIGN) and phosphatidylserine (PS)
receptors (71), which serve as entry co-factors for ZIKV, include
members of the T-cell immunoglobulin (TIM) (72) and the
TYRO3, AXL, MERK (TAM) family (73, 74). TIM-family
members (TIM1-4) bind viral PS in the viral membrane,
whereas TAM members bind PS indirectly, through the soluble
intermediates growth arrest-specific 6 (GAS6) and protein S1
(PROS1) that act as a bridge for ZIKV-TAM receptor binding,
which induces viral endocytosis (Figure 2B) (73, 74). Among
these putative ZIKV receptors, AXL is the most studied receptor
for ZIKV infection. AXL is a transmembrane receptor that
contains an extracellular and intracellular tyrosine kinase
domain. The AXL extracellular domain acts a ZIKV entry
factor by binding to its ligands GAS6 and PROS1, whereas the
tyrosine kinase domain of AXL is involved in mediating an
innate immune response as well as other biological processes
including cell proliferation, differentiation, and survival (75, 76).
Previous studies demonstrated that AXL-overexpressing human
fetal neuronal stem and glial cells, astrocytes, endothelial and
microglial cells are highly susceptible to ZIKV infection (74, 77),
implicating the role of AXL in ZIKV-induced neuropathology.
Later studies showed that the reduced AXL levels elicited by
small interfering RNA or neutralizing antibodies dramatically
diminished ZIKV infection in dermal fibroblast or glial cell
cultures, thereby supporting the crucial role of AXL in ZIKV
infection (74, 78). In contrast to in vitro studies, in situ results
using Axl-deficient mice (79, 80) indicated that Axl may not be
required for ZIKV infection in mice, suggesting that Axl
expression and/or Axl-mediated signaling pathway(s) in mice
are different than in human primary cells.
ZIKV TRANSMISSION

ZIKV is primarily spread to humans by the bite of infected
female Aedes aegypti and albopictus mosquitoes (43, 81, 82),
thereby, accepting the skin as the initial host target. Infected
mosquitoes transmit ZIKV into the epidermis or directly into the
circulation (78, 83, 84). Thus, epidermal cells serve as the initial
site of ZIKV infection since epidermal keratinocytes, dermal
fibroblasts, and immature dendritic cells are reported to be
permissive to ZIKV infection (78).

Sexual transmission from male-to-female or vice-versa is also
common and is responsible for about 32–54% of ZIKV infections
(85, 86). Although the highest transmission occurs frommale-to-
female, female-to-male and male-to-male transmission are also
reported (87–91). Detection of ZIKV RNA in semen (92), vaginal
and cervical secretions (93, 94) supports the contribution of
sexual ZIKV transmission in the increased numbers of infected
people in high-risk areas as well as travelers to areas with risk of
ZIKV. In the male reproductive tract, ZIKV infects testicular
somatic and germ cells such as Sertoli cells, spermatozoa etc. (92,
95). In a mouse model, ZIKV persistence was reported in
testicular tissues up to four weeks post-infection resulting in
testicular inflammation, atrophy, and infertility (96, 97).
Moreover, in humans, ZIKV RNA was detected in semen for 6
Frontiers in Virology | www.frontiersin.org 5
months (92) and in semen used for assisted reproductive
technology up to 112 days (95), indicating that infected men
serve as a potential long-term reservoir for sexual transmission.

Similarly, prolonged ZIKV shedding was initially reported in
vaginal secretions up to 14 days after ZIKV infection (94).
However, a later investigation by Reyes et al. reported
prolonged viral shedding in vaginal secretions up to 6 months
(98). This difference in ZIKV persistence in vaginal tissues is
likely associated with the menstrual cycle phase during ZIKV
infection. In support of this suggestion, vaginal ZIKV inoculation
during diestrus in AG129 mice causes longer ZIKV survival (~10
days post-infection) and greater lethality compared with
inoculation during estrus (~3 days post-infection) (99),
indicating that ZIKV shedding is affected by estrous cycle
stages. Additionally, vaginal inoculation of pregnant wild-type
mice resulted in fetal brain infection and FGR (100), suggesting
that ZIKV infection via sexual transmission route can amplify
the severity of vertical transmission. ZIKV RNA was also
detected in ovaries and uterus in animal models (101, 102), as
well as in human oocytes (103). In vitro studies indicate that
human endometrial stromal cells (HESCs) obtained from cycling
endometrium are highly permissive to ZIKV infection (104, 105),
and that viral replication is increased during decidualization
(105). Taken together, these studies indicate that ZIKV
persistence in both male and female reproductive tissues plays
an important role in the management of ZIKV infection, since
both male and female reproductive tissues serve as sanctuary and
reservoir for prolonged ZIKV survival (72, 89). Thus, eradication
of ZIKV persistence in the reproductive tissues is expected to
reduce the risk of perinatal transmission yielding invaluable
public health benefits.

Vertical transmission of ZIKV from the infected mother to
the fetus causes severe fetal outcomes aka congenital ZIKA
syndrome, which includes microcephaly, seizures, hypertonia,
and other neurological problems as well as ocular and skeletal
anomalies etc. (106–108),. During pregnancy, maternal ZIKV
infection elicits placental dysfunction resulting in adverse
pregnancy outcomes such as FGR, miscarriage and/or
stillbirths. Araujo et al. (109) reported that 83% of neonates
exposed to prenatal ZIKV infection were small for gestational age
in Brazil during the 2015 epidemic, whereas in the United States,
the rate of small for gestational age was reported to be 11.2% in
women with antenatal ZIKV infection (110). Another study from
Brazil reported that the rate of overall adverse outcomes was
46%, which included 7% of fetal death in ZIKV-infected
pregnancies (11). Recently, Mercado-Reyes et al. (7) reported
the pregnancy outcomes among pregnant women with ZIKV
symptoms in Columbia between 2016-2018. Among the 1180
pregnancies, adverse pregnancy outcomes were found to be
22.4%, which included 1.4% pregnancy losses, 9.7% PTBs, 6.9%
low birth weights and 4.6% small for gestational age. All these
studies indicated that following placental transmission, ZIKV
reaches the fetal brain where it causes severe detrimental defects
by interrupting proliferation, migration, and differentiation as
well as inducing apoptosis of neuronal progenitor cells (111–
115). Recent studies demonstrated that ZIKV can infect a broad
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range of cells in the human placenta including cytotrophoblasts,
endothelial cells, fibroblasts, amniotic epithelial, and/or
Hofbauer cells (71, 115–118) as well as maternal decidual cells
(104) and cause severe histopathological changes (119, 120).
Initially, STBs were assumed to be the site of ZIKV entry.
However, STBs are reported to resist ZIKV attachment and
replication (121), therefore they are less-permissive to ZIKV
infection, suggesting that maternal-fetal ZIKV transmission
occurs at other placental site(s). The ZIKV resistance in STBs
may be related to low expression of ZIKV attachment molecules
such as TAM receptors (104) and/or high expression of
interferon (IFN)-induced antiviral genes RIG-1, IFIH1, ISG15,
etc. (121), as well as high production of type III IFNs, specifically
IFNl1, which protects host cells against ZIKV infection (122).
Moreover, recently, Miranda et al. reported (123) the reduced
expression of tight junction proteins, particularly claudin-4, and
increased paracellular permeability of STBs obtained from ZIKV
infected women, displayed an alternative mechanism of ZIKV
transmission to other placental cells. On the other hand,
compared to STBs, CTBs are ZIKV-permissive, suggesting that
ZIKV replication in CTBs mediates its transmission to the fetus.
However, ZIKV infection of CTBs in the floating villi is highly
unlikely since the outer layer of the villi formed by STBs is in
direct contact with maternal blood, thereby preventing ZIKV
infection of CTBs in the floating villi. Thus, the anchoring villi
are the most likely site of ZIKV infection of CTBs. Guzeloglu-
Kayisli et al. (104) provided strong evidence that decidual cell-
derived factors facilitate placental transmission by amplifying
ZIKV replication in CTBs, the primary cell type in anchoring
villi, which attach directly to the decidua. Collectively, these
findings indicate that ZIKV persistence in immune privileged
sites such as testis, brain and placenta potentiate sexual and
vertical ZIKV transmission (77, 87, 89, 124). Of note,
transmission of ZIKV via blood transfusion has also been
documented, especially in Brazil (125, 126).
ZIKV INFECTION OF DECIDUAL
CELLS IS THE PRIMARY SITE OF
VERTICAL TRANSMISSION

Fetal dissemination of any infectious agent requires transmission
through the placenta attached to the immunologically active
uterine decidua or via hematogenous transmission (1–3). As
mentioned above, STBs are less permissive to ZIKV infection.
Thus, maternal-fetal ZIKV transmission must occur at other
potential placental site(s) at the maternal-fetal interface,
suggesting that decidual cells or EVTs or both are the most
likely site(s) of ZIKV transmission to the fetus. Ex vivo and in
vitro decidual cell cultures demonstrated that decidual cells act as
both a reservoir and source of ZIKV transmission to adjacent
anchoring villi at the maternal-fetal interface, thereby
representing a primary vertical transmission site (Figure 1B)
(104, 118, 127). Guzeloglu-Kayisli et al. (104) reported that
human decidual cell cultures are more permissive to ZIKV
infection, replication, and viral release than human primary
Frontiers in Virology | www.frontiersin.org 6
cultured CTBs. Similarly, cultured human decidual cells
express significantly higher levels of viral entry and bridging
molecules AXL, GAS6 and PROS1 (Figure 1B) than primary
cultures of either CTBs or STBs. In addition, compared to
cultured CTBs and STBs, decidual cells differentially express a
set of genes that are involved in viral replication and/or infection
(104). Similarly, Tabata et al. (116) found high AXL expression in
decidual cells and EVTs obtained from second trimester
placentas, but low levels of AXL expression in villous CTBs
obtained from second and term trimester placentas, suggesting
that AXL expression varies depending on the gestational age and
placental cell types. This study also reported ZIKV infection in
decidual cells, CTBs, EVTs, and Hofbauer cells, supporting ZIKV
transmission from decidual cells to chronic villi and fetal
circulation as the primary vertical transmission route (116).
Moreover, Richard et al. (128) demonstrated that fetal
endothelial cells are permissive to ZIKV infection and display
higher AXL and GAS6 levels, indicating that the ZIKV infects
fetal endothelial cells by using these entry molecules to cross the
placental barrier. Similarly, Zheng et al. (129) reported higher
AXL levels in decidual stromal cells and perivascular cells and
lower levels in decidual dendritic cells and macrophages at the
maternal-fetal interface using Single-Cell RNA sequencing.
Additionally, Guzeloglu-Kayisli et al. (104) found that ZIKV
replication and release is amplified in primary CTB cultures
treated with ZIKV-infected decidual cell supernatants compared
to direct ZIKV infection of these cells, indicating that decidual
cells not only serve as a ZIKV reservoir, but also facilitate ZIKV
infection of CTBs (Figure 1B). Furthermore, Wesblum et al.
found that ZIKV induces expression of distinct innate immune
response genes, particularly those related to anti-viral interferon
signaling in decidua vs. chronic villi explant cultures, suggesting
that this antiviral response paradoxically promotes a rapid and
robust replication of ZIKV in decidual cells (127).
GESTATIONAL AGE DEPENDENCE IN
ZIKV INFECTION OF DECIDUAL CELLS

The risk of vertical transmission exists throughout pregnancy,
whereas the greatest risk of severe fetal abnormalities is strongly
associated with ZIKV infection in the 1st and 2nd trimester (46–
48). Consistent with this clinical information, higher ZIKV
replication is detected in decidual cells obtained from first
trimester placentas compared to decidual cells from term
placentas (104). However, the biological mechanism(s) utilized
by ZIKV to cross to the placenta and the cause of the inverse
relationship between the gestational age of ZIKV infection and
its severity remain unclear. As potential mechanism(s)
responsible for gestational age dependent ZIKV infection, we
reported that: 1) decidual cells isolated from first trimester
placentas exhibit higher viral entry/attachment molecules AXL,
GAS6, and PROS1 than term decidual cells, indicating a higher
risk of ZIKV infection in early pregnancy and greater subsequent
detrimental ZIKV effects on the fetus (104); 2) decidual cells
obtained from term placentas display a strong anti-viral response
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to ZIKV infection that correlates with lower ZIKV replication in
term vs. first trimester decidual cell cultures (104); and 3) mid-
gestation decidua expresses higher IFNa and IFNl levels
compared with early decidua, indicating an inverse correlation
between IFN levels and ZIKV susceptibility during gestation
(127). In addition to these mechanisms, dynamic changes in the
immune cell populations at the maternal-fetal interface during
pregnancy could alter ZIKV susceptivity (130, 131). For example,
decidual NK cell numbers reach a maximum during the first
trimester but decline near term. Conversely, lower T cell number
are present in the first trimester than at term (39).
POTENTIAL THERAPEUTIC OPTIONS
AGAINST ZIKV INFECTION

Unfortunately, no approved effective treatment or vaccine
currently exist against ZIKV infection. Since recent ZIKV
outbreaks resulted in significant adverse health effects, several
investigations focused on development of drugs and vaccines to
treat or prevent in utero ZIKV transmission. As examples, a
plasmid-based DNA vaccine (132, 133) or modified recombinant
measles virus vaccine backbone (NCT02996890) or mRNA-
based vaccine (134) or inactivated whole ZIKV vaccine (135)
candidates have been developed and tested to prevent ZIKV
infection. In several vaccine studies, viral prM and E proteins
have been intensively targeted since both prM and E in the ZIKV
surface are accepted as the primary antigenic target (136).
Moreover, many monoclonal antibodies targeting ZIKV
proteins have been described in detail (137, 138). However, the
main concern related to therapeutic potential for clinical
applications is viral escape due to the high mutation rates of
ZIKV genome.

To provide a potential treatment against the detrimental
effects of ZIKV infection, several different strategies have been
employed aimed at blocking viral replication or inhibiting viral
protein synthesis. Several FDA-approved drugs have been
investigated for their potential rapid response to the ZIKV
outbreak since their mechanisms and safety as well as their
pharmacokinetic and pharmacodynamic profiles of these drugs
are well documented. Predictably, screening these drugs for their
effectiveness against ZIKV infection should rapidly advance their
approval for clinical use than newly identified drugs. Some FDA-
approved candidate drugs against ZIKV infection are given in
Frontiers in Virology | www.frontiersin.org 7
Table 1. As examples, Sofosbuvir, an FDA-approved drug used
for the treatment of chronic hepatitis C virus infection, was
investigated as a potential inhibitor of ZIKV RNA-dependent
RNA polymerase (145). Although Sofosbuvir inhibited ZIKV
infection in human hepatocellular carcinoma (Huh-7) and
placental choriocarcinoma cells, no inhibitory effect was
observed in Vero or A549 cells (139, 140), indicating cell type
dependent anti-ZIKV activity. Recently, Mesci et al. (141)
reported in vitro and in vivo protective effects of Sofosbuvir
against ZIKV by demonstrating inhibition of ZIKV replication
and ZIKV-induced apoptosis in human neuronal progenitor cell
cultures as well as reduction of ZIKV titers in the serum of
Sofosbuvir administered pregnant SCID immunodeficient mice.

Nitazoxanide was investigated as another potential treatment
against ZIKV by inhibiting the viral protease complexes NS2B-
NS3 that play essential roles during viral polyprotein processing
(146). Nitazoxanide is a potent antiparasitic drug used to treat
anaerobic bacterial and protozoal infections and possesses broad
spectrum activity against many viruses (147). The FDA approved
Nitazoxanide for treatment of diarrhea and enteritis in adults
and in children ≥12-months (148–151). Nitazoxanide ingested
with food is absorbed from the gastrointestinal tract and
hydrolyzed in plasma to form its active metabolite, tizoxanide
with serum levels attaining up to 10 mg/mL (152). Clinical trials
revealed its efficacy against rotavirus and norovirus
gastroenteritis in children and adults (153, 154). Moreover,
Nitazoxanide therapy against influenza is currently a phase III
clinical trial (NCT02612922). Its broad range of anti-viral
activity (147, 154–157) suggests that Nitazoxanide induces a
cell-specific effect rather than a viral-specific effect. However, the
mechanism(s) mediating antiviral activity of Nitazoxanide and/
or tizoxanide is/are not completely elucidated. The anti-viral
activities of Nitazoxanide and its bioactive metabolite tizoxanide
against ZIKV were first tested in Vero and A549 cells. Both
agents significantly inhibited ZIKV infection in these cell types
(158). Subsequently, Li et al. (146) demonstrated that
Nitazoxanide inhibited ZIKV infection by decreasing viral
replication and viral protein expression in human placental
epithelial cells, human neuronal progenitor cells and human
pluripotent stem cell line. Thereafter, De Souza et al. (142) found
that Nitazoxanide reduced ZIKV viral loads up to 2 logs in
primary cultured chorionic cells obtained from human term
placentas and in a human cervical epithelial cell line. Recently,
Guzeloglu-Kayisli et al. (104) evaluated the anti-ZIKV activity of
tizoxanide in primary cultures of HESCs obtained from cycling
TABLE 1 | Summary of candidate anti-ZIKV drugs and their mechanisms.

Drugs Known mechanism Anti-Zika activity tested cell types Reference

Sofosbuvir RNA polymerase inhibitor . human hepatocellular carcinoma (Huh-7) (139, 140)
. human neuronal progenitor cell cultures (141)

Nitazoxanide protease complexes inhibitor . chorionic cells and cervical epithelial cell line (142)
. human endometrial cells, decidual cells and cytotrophoblasts (104)

Atovaquone RNA synthesis inhibitor . JEG3, chronic villous (143)
Efavirenz Nucleoside inhibitor . human neuroblastoma cells, astrocytes, Vero (144)
Tipranavir Protease inhibitor . human neuroblastoma cells, astrocytes, Vero (144)
Dasabuvir RNA polymerase inhibitor . human neuroblastoma cells, astrocytes, Vero (144)
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endometrium, decidual cells obtained from first trimester and
term placentas, as well as in primary cultures of CTBs from term
placentas and found that tizoxanide significantly reduces ZIKV
replication in all these cell types. Cao et al. (158) demonstrated
that pre-treatment with either Nitazoxanide or tizoxanide failed
to inhibit ZIKV replication in Vero cell line, but adding either
drug post-infection exerted an anti-ZIKV effect, suggesting that
both drugs inhibit infection after viral attachment. Taken
together, these results provide solid evidence supporting the
potential use of Nitazoxanide or tizoxanide to prevent ZIKV
infection and associated fetal abnormalities.

Additionally, Yamamoto et al. (159) screened a library of
1017 FDA-approved drugs targeting ZIKV E protein and
identified Atovaquone as an effective drug against ZIKV
infection in both mammalian Vero and mosquito-derived C6/
36 cells in vitro. Atovaquone is a well-known anti-malaria and
anti-parasitic drug (143) and is a coenzyme Q analogue that
inhibits the mitochondrial cytochrome complex III and
pyrimidine synthesis (160). The anti-viral effect of Atovaquone
against ZIKV infection was tested in JEG3 trophoblast cells as
well as ex vivo chorionic villous explants, suggesting that
Atovaquone may protect placental transmission of ZIKV and
could be a potential candidate against ZIKV during pregnancy
(160). Similarly, Stefanik et al. also (144) identified potential anti-
ZIKV candidates by screening FDA-approved drugs that interact
with ZIKV NS3 and NS5 proteins and found that only three
drugs: Efavirenz, an antiretroviral drug against HIV, Tipranavir,
a HIV protease inhibitor, and Dasabuvir, a RNA polymerase
inhibitor against Hepatitis C virus, inhibited ZIKV titers in Vero
cells as well as in primary human brain cortical astrocytes and a
neuroblastoma cell line (144).
CONCLUSION REMARKS

This review discusses in detail the putative mechanism(s) responsible
for ZIKV infection at the maternal-fetal interface. Specifically, it
Frontiers in Virology | www.frontiersin.org 8
reveals the role of immunologically active decidual cells, which are
highly permissive to ZIKV infection and likely act as both a reservoir
and source of ZIKV transmission to adjacent anchoring villi at the
maternal-fetal interface. Moreover, the trimester-dependent
responses of decidual cells to ZIKV infection could elucidate the
clinically important questions such as why pregnant women are
highly susceptible to ZIKV infection and why the subsequent effects
are more detrimental in the first trimester than in late pregnancy.
Finally, this review discusses the anti-ZIKV effects of FDA-approved
candidate drugs that were demonstrated to inhibit ZIKV replication
and dissemination. Accordingly, these drugs represent potential
therapeutic candidate(s) that block perinatal ZIKV transmission,
thereby averting its harmful effects on the fetus.

In conclusion, both current and previous pandemics
demonstrated that viral infections pose a major risk during
pregnancy because of their detrimental effects on the fetus and
adverse pregnancy outcomes. Therefore, determination of viral
tropisms and host factors at the maternal-fetal interface are
crucial to improve understanding the mechanism(s) and/or route
(s) employed by emerging viruses. Predictably, prevention of viral
infections during pregnancy will be more rapidly accomplished by
screening of anti-viral effects of FDA-approved drugs that were
previously verified as to their modes of action, safety, and
pharmacokinetic and pharmacodynamic profiles.
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