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Cytoplasmic ribonucleoprotein
complexes, RNA helicases and
coronavirus infection

Li Wang, Marı́a Guzmán, Isabel Sola, Luis Enjuanes*

and Sonia Zuñiga*

Department of Molecular and Cell Biology. National Center of Biotechnology (CNB-CSIC), Campus
Universidad Autónoma de Madrid, Madrid, Spain
RNA metabolism in the eukaryotic cell includes the formation of

ribonucleoprotein complexes (RNPs) that, depending on their protein

components, have a different function. Cytoplasmic RNPs, such as stress

granules (SGs) or P-bodies (PBs) are quite relevant during infections

modulating viral and cellular RNA expression and as key players in the host

cell antiviral response. RNA helicases are abundant components of RNPs and

could have a significant effect on viral infection. This review focuses in the role

that RNPs and RNA helicases have during coronavirus (CoVs) infection. CoVs

are emerging highly pathogenic viruses with a large single-stranded RNA

genome. During CoV infection, a complex network of RNA-protein

interactions in different RNP structures is established. In general, RNA

helicases and RNPs have an antiviral function, but there is limited knowledge

on whether the viral protein interactions with cell components aremediators of

this antiviral effect or are part of the CoV antiviral counteraction mechanism.

Additional data is needed to elucidate the role of these RNA-protein

interactions during CoV infection and their potential contribution to viral

replication or pathogenesis.
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1 Introduction

Eukaryotic cell RNA is associated with proteins, forming ribonucleoprotein

complexes (RNPs). The subcellular location of mRNAs in RNPs is a powerful

mechanism for the spatial and temporal regulation of RNA processing events in the

cell (1). In addition, by sharing components, different RNPs form a large regulatory

network in cells.
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The cytoplasm contains a number of RNPs that include specific

mRNAs at various stages of post-transcriptional processing,

including stress granules (SGs), processing bodies (PBs),

neuronal bodies and exosome bodies (2). SGs and PBs are the

most studied ones. Neuronal bodies are associated with the

transport of translationally arrested mRNAs along the axon to

dendrites (3, 4). Exosome bodies were proposed as sites for AU-

rich element mediated mRNA decay containing exosome

subunits (5). In the nucleus, the most studied RNPs are the

Cajal bodies (CBs) (6), although the nucleus contains other

RNPs such as nucleolus, nuclear speckles, nuclear stress bodies,

histone locus bodies, paraspeckles and promyelocytic leukemia

(PML) bodies (7–11). In general, these nuclear RNPs are sites of

defined biochemical reactions, by concentrating reaction

components in a confined space, and of gene activation or

repression (12).

RNA helicases belong to an abundant protein family that is

conserved from bacteria to humans, and are associated with all

cellular processes involving RNA (13–16). RNA helicases are

abundant components of cellular RNPs (17, 18). For instance,

during gene expression, RNA helicases catalyze RNPs

rearrangements starting with gene transcription and continuing

with consecutive post-transcriptional steps, such as pre-mRNA

splicing, mRNA export, translation and turnover (19–21).

Both cytoplasmic and nuclear RNPs have been involved in

several disease conditions, including viral infections. This review

is focused in the interplay between cytoplasmic RNPs, RNA

helicases, and coronavirus (CoV) infections.
Frontiers in Virology 02
2 Cytoplasmic ribonucleoprotein
structures

2.1 Classification and function

The most studied cytoplasmic RNPs are SGs and PBs. These

structures are highly dynamic centers of mRNA sorting, storage

and degradation, where the processes of splicing, non-sense

mediated RNA decay (NMD), translation, turnover and RNA

silencing intersect (Figure 1) (22–27). SGs are transient foci

enriched in translation initiation factors and 40S ribosomal

subunits, while PBs are enriched for RNA decay machinery.

SGs and PBs each contain unique marker proteins although

many proteins can be found in both SGs and PBs, such as

eukaryotic translation initiation factor 4E (eIF4E), AU-rich RNA

binding protein tristetraprolin (TTP), argonaute RISC catalytic

component 2 (AGO2), apolipoprotein B mRNA-editing

complex 3 (APOBEC3), poly(rC) binding protein 2 (PCBP2)

and others (23, 28, 29). In fact, apart from having shared protein

components, PBs and SGs dynamically exchange RNP cargo,

often form co-aggregates and have been proposed to serve as

nucleation sites for SGs formation (30, 31). SGs, PBs and other

cytoplasmic foci are highly dynamic structures, although PBs are

quite stable over the time (32). They are in a dynamic steady

state with other RNPs, such as polysomes, in response to the

translational state of the cell (23) (Figure 1).

SGs are 200-400 nm dynamic structures quickly formed

when cells encounter external stresses and translation rates
FIGURE 1

mRNA metabolism in eukaryotic cells. Schematic representation of mRNA locations in cells. mRNAs are found in three major RNPs: polysomes,
PBs and SGs. PBs and SGs are large dynamic centers of mRNA sorting, storage and degradation. RNPs from and to polysomes and from and to
SGs and PBs are in a dynamic equilibrium. Within PBs, RNPs could undergo further remodeling and define a path to follow, including their
return to polysomes. In addition, PBs have been shown to interact and exchange components with SGs. PBs are also related to mRNA quality
control mechanisms, such as NMD pathway. In silencing, non-coding RNAs function as the guide molecules that are incorporated into RNA-
induced silencing complex (RISC) to control the translation and degradation of their target mRNAs within PBs and SGs. Arrows indicate the
different equilibrium between RNPs. Ribosomes (red ovals), SG protein components (blue, orange and purple polygons) and PB protein
components (yellow, green and purple ovals) are also represented.
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decline, and disperse when translation conditions are restored

(33, 34). The most commonly described triggers of SG formation

are oxidative, starvation, heat stresses and infection with

different pathogens. These stimuli activate eukaryotic

translation initiation factor 2 alpha (eIF2a) kinases: heme-

regulated kinase (HRI), general control non-depressible 2

kinase, (GCN2), dsRNA-activated protein kinase R (PKR) and

PKR-like endoplasmic reticulum kinase (PERK). The eIF2a
phosphorylation blocks translation, forcing an accumulation of

the stalled 43S and 48S ribosomal preinitiation complexes.

Inhibition of the function of eukaryotic translation initiation

factors eIF4G or eIF4A (DDX2A) is also linked to SG formation

(35) and some mechanisms of SG formation can proceed in the

absence of eIF2a phosphorylation (36–38). The components of

SGs can be classified into three main groups: core components,

such as stalled initiation complexes; RNA-binding proteins

associated to silencing and transcript stability, such as the

scaffold proteins T-cell-restricted intracellular antigen 1

(TIA-1) or TIA-1-related protein (TIAR), and RNA-binding

proteins associated to mRNA metabolism (23, 39–42). The key

function of SGs is to protect the mRNAs during cell stress,

altering the composition of the RNPs in a reversible manner

(43). Moreover, SGs are generally believed to have an antiviral

activity upon viral infection and many viruses manipulate SGs to

evade host responses (2, 44–47).

PBs act as temporary reservoirs for non-translated mRNAs

which may further enter translation or be degraded. PBs contain

components of the 5’ to 3’ decay machinery, NMD pathway and

RNA-induced silencing machinery (48). This enrichment on

mRNA decay machinery components led to propose that

significant RNA decay occurs within PBs. However, this is

controversial since some activators of mRNA decay pathways

found in PBs are translational regulators also present in SGs (29,

49). PBs are constitutively present in the eukaryotic cells but

increase in size and number when translational arrest occurs,

coincident with SG formation, resulting in physical interactions

among SG and PB structures (23, 30). It has been described that

mRNA degradation occurs in PBs and depends on the existence

of degradation enzymes and mRNA degradation intermediates

(50, 51). Many of the PB components are not restricted to these

foci and are also present in the soluble cytoplasm and nucleus,

suggesting that the different processes might start before the

mRNAs entry into PBs.
2.2 Role of cytoplasmic RNPs in
viral infections

Virus infection activates cell stress responses at many levels

that modulate RNA granules. In general, RNP granules can
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represent an obstacle for virus replication and also serve as

sensors to mount the innate immune response. Therefore,

viruses have evolved different mechanisms to control the

assembly and functions of RNP granules and, in some cases

the components of RNPs are co-opted into novel virus-specific

structures required for virus replication (52).

Mammalian orthoreovirus (MRV), a dsRNA virus, induces

SGs at an early stage of the infection, correlating with reduced

translation of both cellular and viral mRNAs and increased

phosphorylation of eIF2a (53). Poliovirus inhibits SGs assembly

at the late stages of infection, by a mechanism involving cleavage

of SG protein Ras GTPase-activating protein-binding protein 1

(G3BP1), which is mediated by the viral 3C protease (54). In

addition, TIA-1-containing granules persisted even at late stage

of poliovirus infection, but those RNPs are remnants of normal

SGs that do not correlate with translational repression (55, 56).

Unlike MRV and poliovirus, Influenza A virus (IAV) prevents

SG formation at all stages of the infection, by a mechanism

depending on NS1 protein expression, since SGs inhibit IAV

replication (57).

As an example of viral co-opting of RNP components, RNAs

from flaviviruses, such as West Nile virus and Dengue virus,

bind TIA-1 and sequester many PB components near or within

perinuclear viral replication centers while the number of PBs was

decreased (58). Human immunodeficiency virus (HIV)-1 TAT

protein interacts with the PB component DDX3 to facilitate viral

mRNA translation (59), and HIV-1 TAT protein is antagonized

by antiviral factors APOBEC3 and Moloney leukemia virus 10

(MOV10), that are PB constituents (60–63).

CoVs are single-stranded RNA viruses with large genomes of

around 30 Kb, which life cycle occurs in the cytoplasm of the

infected cell. CoV RNA synthesis, including replication and

transcription, is a complex process involving host cell

membrane rearrangements, viral and cellular proteins (64, 65).

Regarding the role of cytoplasmic RNPs in CoV infection, it has

been shown that mouse hepatitis virus (MHV) replication

induces host translational shutoff and mRNA decay, with

concomitant formation of SGs and PBs (66). Porcine

transmissible gastroenteritis virus (TGEV) triggers SG

formation and interferes with PB formation, correlating with

viral replication and transcription (67). Severe and acute

respiratory syndrome (SARS)-CoV, SARS-CoV-2 and avian

infectious bronchitis virus (IBV) nucleocapsid (N) proteins

have been found to interact with the SG component G3BP1,

and this has been proposed as a mechanism to avoid SG

formation (68–72). In addition, porcine epidemic diarrhea

virus (PEDV) promotes G3BP1 cleavage by caspase-8 (73) and

Middle East respiratory syndrome (MERS)-CoV 4a accessory

protein interferes with SG formation by inhibiting the activation

of PKR binding to dsRNA, thereby inhibiting the formation of
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SGs and ensuring viral protein translation and efficient virus

replication (74, 75). It has been recently reported that SARS-

CoV-2, HCoV-229E and HCoV-OC43 cause PB disassembly.

In the case of SARS-CoV-2, this process may be mediated by

N protein (76).
3 RNA helicases

3.1 Classification and function

RNA helicases share conserved helicase domains, all containing

ATP binding motifs, providing the basis for helicases classification

(Figure 2). Most cellular RNA helicases belong to the SF2

superfamily and only a few of them, the up-frameshift suppressor

1(Upf1)-like helicases (i.e., UPF1, also known as RENT1, and

MOV10 helicase), belong to SF1. In contrast, many viral RNA

helicases, such as CoV nsp13, belong to SF1 superfamily (77). The

SF1 and SF2 helicases contain seven to nine conserved motifs that

constitute the helicase core. In addition, SF2 RNA helicases,

generally referred to as DExD/H box RNA helicases, are divided

in five different subgroups (Figure 2): DEAD box (for the conserved

amino acid residues Asp-Glu-Ala-Asp), DEAH (for the conserved

amino acid residues Asp-Glu-Ala-His)/RHA, Ski2 (Superkiller-like

2)-like, retinoic acid-inducible gene I (RIG-I)-like, and Viral DExH

proteins, named after one of the consensus amino acid sequence

motifs (16, 78–80). The DEAD box (DDX) helicases are the largest

subgroup within SF2, most of them involved in RNA metabolism,

from transcription to degradation and in establishment of larger

RNA-protein complexes, such as ribosomes (81, 82).
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3.2 Role of RNA helicases in
CoVs infection

Cellular DDX RNA helicases play essential roles in a broad

array of biological processes and serve multiple roles at the virus-

host interface (83–86). Specifically, DDX RNA helicases are

hijacked by CoVs and participate in essential DDX-mediated viral

replication steps (87). During CoV infection, these RNA helicases

interact with viral proteins, as described below (Table 1). In

addition, many of them interact with viral RNA (88–90)

(Table 1), raising the possibility that these RNA helicase-CoV

protein interactions are mediated by RNA.

DDX1, interacts with the nsp14 protein both from SARS-CoV

and IBV, suggesting that this interactionmay be conserved for other

CoVs. DDX1-nsp14 interaction contributes to efficient CoV RNA

replication in cell cultures (91). DDX1 also interacts with the nsp14

protein from TGEV, inducing interferon (IFN) production (92) and

suggesting that nsp14 would be the viral component sensed by

DDX1-DDX21-DHX36 cytoplasmic sensor, described in dendritic

cells (93). Supporting CoV interaction with the DDX1-DDX21-

DHX36 complex, N proteins of SARS-CoV-2 and IBV interact with

DDX21, although the consequences of this interaction are still

unclear (71, 94). In addition, phosphorylation of MHV N protein

allows the recruitment of DDX1 to the CoV replication

transcription complex (RTC), increasing the synthesis of longer

viral RNAs, suggesting that this is one of the viral strategies to

support the transition from discontinuous to continuous

transcription (95).

The interaction between DDX3X and N proteins from

SARS-CoV, SARS-CoV-2, or IBV was described (71, 96). Since
FIGURE 2

The classification of RNA helicases. All RNA helicases are classified into five superfamilies (SF) 1-5. SF1 and SF2 are sub-divided into distinct
families and groups. SF1 is divided into Upf1-like family. SF2 is divided into five families. SF2 RNA helicase, DEAD box, DEAH/RHA, Ski2-like, RIG-
I-like and Viral DExH, are collectively referred to as the DExD/H box of RNA helicases. The type of RNA helicases mentioned in this review, such
as MOV10, UPF1, CoV helicase (nsp13), DEAD box and DEAH-box is indicated.
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DDX3X is involved in the activation of the innate immune

response at different levels (97–99), it was suggested that N

protein can modulate the immune response by binding to

DDX3X and inhibiting these antiviral pathways, as

demonstrated for other viruses (100). SARS-CoV nsp13

interacts with DDX5 and inhibition of DDX5 results in the

suppression of viral replication. A proviral function for DDX5

has been suggested, maybe acting as nsp13 co-activator during

RNA synthesis (101). In addition, since DDX5 is involved in

nuclear factor kappa-light-chain-enhancer of activated B cells

(NF-kB) response, the binding between nsp13 and DDX5 can

also have the role of evading host inflammatory response (102).

Interestingly, DDX5 interacts with other DEAD box helicases,

such as DDX3X and its close homolog DDX17. The

phosphorylation-dependent interaction between DDX5 and

DDX3X was proposed as a combined mechanism of action for

DEAD box helicases involved in RNP remodeling and splicing,

by forming a complex that functions in shuttling RNP export

from the nucleus to the cytoplasm (103, 104).

DDX6, a helicase located in SGs and PBs, is downregulated

during PEDV infection to reduce endoplasmic reticulum (ER)

stress, facilitating viral replication (105). The accumulation of

DDX6 is decreased by HCoV-OC43 infection, while it does not

change with HCoV-229E or SARS-CoV-2 infection (76). DDX6

interacts with RIG-I to increase antiviral signaling and IFN

induction (106). However, the potential effect of DDX6 innate

immunity modulation during PEDV infection was not analyzed

as IFN incompetent Vero cells were used.

There is also recent evidence of other RNA helicases being

involved in the immune response during SARS-CoV-2 infection.

DHX16 has been described as a novel sensor for SARS-CoV-2

replication, triggering IFN response (107). The levels of DHX9
Frontiers in Virology 05
expression in effector TCD8+ cells have been correlated with

better COVID-19 outcome (108).
3.3 MOV10

MOV10 protein is a UPF1-like RNA helicase (109, 110).

MOV10 helicase has more than 1060 interactors, according to

BioGRID database (111), some of them linking MOV10 to RNA

metabolism pathways such as the NMD pathway or the siRNA

gene silencing pathway. In fact, depletion of MOV10 mRNA by

using siRNAs interferes with RNAi activity (110, 112). In

addition, MOV10 is an IFN-stimulated gene (ISG) (113) and

MOV10 protein is involved in IFN induction after viral

infection (114).

Both proviral and antiviral functions have been reported for

MOV10. As a proviral factor, it is required for hepatitis delta

virus (HDV) replication but not for the translation of its mRNA

(115) and facilitates enterovirus replication (116). As an antiviral

factor it inhibits: (i) HIV-1 and other retroviruses replication at

multiple steps (63), (ii) nuclear import of influenza virus

nucleoprotein (117), (iii) porcine reproductive and respiratory

syndrome virus (PRRSV) replication by avoiding nucleocapsid

protein trafficking to the nucleus (118), (iv) hepatitis C virus

(HCV) and Dengue virus replication by a partly unknown

mechanisms (119, 120), and (v) bunyavirus replication by

blocking several nucleoprotein functions (121). In the case of

hepatitis B virus (HBV), contradictory data has been reported

for both, its proviral (122) and antiviral activities (123).

The role of MOV10 during CoV replication has recently

been analyzed by our group. The interaction between

endogenous MOV10 and N protein during infection was
TABLE 1 RNA helicases involved in CoV infection.

HELICASE (a) RNPs (b) CoV INTERACTING WITH (c) ROLE

DDX1 SGs IBV, MHV, SARS-CoV, TGEV Nsp14, N, RNA Proviral

Antiviral. Part of dsRNA sensor
DDX1-DDX21-DHX36

DDX3X (DDX3) SGs, PBs IBV, SARS-CoV, SARS-CoV-2 N, RNA Antiviral

DDX5 SARS-CoV Nsp13, RNA Proviral

DDX6 SGs, PBs HCoV-229E, HCoV-OC43, PEDV, SARS-CoV-2 RNA Antiviral

DDX21 SGs IBV, SARS-CoV-2 N Unknown

DHX16 SARS-CoV-2 RNA Antiviral. RNA sensor

DHX9 (DDX9) SGs SARS-CoV-2 n.d. Unknown

MOV10 SGs, PBs HCoV-229E, MERS-CoV, SARS-CoV, SARS-CoV-2, TGEV N, RNA Antiviral

UPF1 PBs MHV, SARS-CoV-2 RNA Antiviral
(a) Alternative names in brackets, in agreement with the Human Genome Organization (HUGO) Gene Nomenclature Committee (HGNC, https://www.genenames.org).
(b) RNPs, Cytoplasmic ribonucleoprotein complexes.
(c) CoV components. Nsp, non-structural protein; N, nucleocapsid protein; n.d., non-determined.
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demonstrated for porcine TGEV virus, and both mild (HCoV-

229E) and highly pathogenic CoVs (SARS-CoV, MERS-CoV

and SARS-CoV-2) (124). This interaction was also reported by

other authors, outside the infection context using N protein

overexpression (71, 94, 125). During MERS-CoV infection, both

MOV10 and N protein co-localized in cytoplasmic RNPs, not

related with CoV RTCs, that may eventually contain also other

cellular proteins, such as TIAR, AGO2 or UPF1 (124) (Figure 3).

Functional analyses indicated that MOV10 has antiviral activity

during MERS-CoV and SARS-CoV-2 infection, but not during

HCoV-229E infection, suggesting a relationship with CoV

pathogenesis that will be further explored (124). In agreement

with other previously described MOV10 interactions with

cellular proteins, MOV10 interaction with CoV N protein was

RNA-dependent (124). Interestingly, MOV10 interaction with

SARS-CoV-2 RNA was recently described (88, 90, 126–128) and

it was conserved for other human CoVs (127). This issue opens

the possibility of N protein having an active role in the MOV10

antiviral activity or of its non-specific recruitment to MOV10

RNPs, mediated by its binding to viral RNAs. In contrast with

other viral infections, MOV10 helicase activity was required for

antiviral function during MERS-CoV infection (124). The

binding of MOV10 and CoV N protein was conserved

independently of MOV10 antiviral activity, i.e., with a MOV10

mutant without helicase activity, or in HCoV-229E infection

(124), suggesting that N binding to MOV10 is not related with

MOV10 antiviral function. In addition, CoV N protein has been
Frontiers in Virology 06
proposed to subvert SGs or counteract NMD pathway to

facilitate viral replication (129, 130). Therefore, additional

experimental evidence is needed to determine whether N

protein may have an active role in the formation or function

of MOV10 RNPs.
4 Conclusion and future
perspectives

RNA-protein interactions leading to RNPs formation

represent one of the mechanisms for post-transcriptional

regulation of protein expression. Viruses interact with host

cell RNPs to facilitate viral replication and to counteract

antiviral responses. In the case of CoVs, cytoplasmic RNPs

have, in general, an antiviral effect. Therefore, CoVs have

developed mechanisms to antagonize RNPs formation

or function.

The interaction between CoVs and cellular RNA helicases

is a clear example of the complex network of interactions that

may have different contributions to the outcome of the

infection. Some RNA helicases, as DDX1, are recruited to

CoVs RTCs to facilitate viral RNA synthesis, having a

proviral function. On the other hand, RNA helicases have

also an antiviral function mediated by their role in the innate

immune response to the infection or by forming RNPs. These

issues are frequently related, as RNPs components, both RNAs
frontiersin.org
FIGURE 3

Proposed model of MOV10 antiviral function during MERS-CoV infection. Schematic representation of an infected cell, including nucleus (dark
blue) and cytoplasm (light blue). CoV replication and transcription leads to the synthesis of a nested set of viral RNAs, both viral genome (gRNA)
and subgenomic mRNAs (sgmRNAs). N protein is translated from the subgenomic RNA and binds to viral RNAs. The RNA-dependent interaction
between N protein and MOV10 may lead to the accumulation of viral RNAs and N protein in cytoplasmic RNPs, inhibiting viral translation.
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and proteins, may have a direct effect on the expression of

innate immune factors.

There is limited knowledge on the interactions and functions

of RNA helicases or RNPs in CoV infection, especially in the

infection context. Recent omics approaches may help to

decipher the composition and function of RNPs during CoV

infection. However, some of the interactions occur between

cellular proteins and essential viral factors, which cannot be

modified to directly analyze the impact on infection. In addition,

RNPs components often have a functional redundancy or are

shared between different RNPs with different functions.

Moreover, RNPs are dynamic and could be dependent on the

cell type or infection stage. Therefore, it would be challenging to

unravel these virus-host interaction networks and how they

contribute to viral replication and pathogenesis.
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