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Zika virus (ZIKV) is an arthropod-borne virus (arbovirus) from the Flaviviridae family,

first isolated from the Rhesus monkey in 1947 in Uganda. ZIKV is transmitted by

mosquito bites, but vertical and sexual transmissions have also been reported. ZIKV

infection during pregnancy causes malformation in the developing fetus, especially

central nervous system (CNS) damages, with a noticed microcephaly, making ZIKV be

recognized as a teratogenic agent and the responsible for congenital Zika syndrome

(CZS). However, it is still a short time since CZS was first reported. Consequently, ZIKV

pathogenesis is not entirely elucidated, especially considering that affected children are

still under neurodevelopment. Here, we will explore the current knowledge about ZIKV

teratogenesis focusing on neurological clinical findings in humans, mechanisms, and

experimental models used to understand ZIKV pathophysiology.
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INTRODUCTION

Although ZIKV infection is asymptomatic in most cases, the common signs and symptoms are
fever, rash, arthralgia, and conjunctival hyperemia (1). It is noteworthy that ZIKV infection has
also been related to more severe clinical outcomes, especially considering neurological signs,
both in CNS and peripheral nervous systems, such as meningoencephalitis, acute myelitis, and
Guillain-Barré syndrome (2).

In 2015, Brazil had a significant increase in the number of cases of newborns with microcephaly.
In 2016, key works proved that ZIKV infection during pregnancy was responsible for the
malformation in the developing fetus, especially leading to structural and neurological defects
(3, 4). In vivo and in vitro approaches were decisive to demonstrate that ZIKV can cross the
placental barrier affecting fetal development and has a tropism for neural progenitor cells (NPCs),
showing a causal relationship between ZIKV and microcephaly (5, 6). Later on, and based on
clinical investigation, other symptoms were associated with ZIKV pathogenesis during fetus
neurodevelopment, such as brain calcifications, hydrocephalus, ventriculomegaly, lissencephaly,
holoprosencephaly, seizures, and neurosensorial deficits (7). ZIKV was first identified as a possible
teratogenic agent in Brazil in 2015, calling the clinical picture of newborns as Congenital Zika
Syndrome (CZS). Studies suggest that fetal abnormalities induced by ZIKV may occur in all
trimesters of pregnancy. However, the manifestations with the most significant negative impact
are associated with infections in the first and second trimester (8), and depending on that
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period, ZIKV vertical infection can cause limitations of
intrauterine growth, spontaneous abortion, and microcephaly.

Considering the information above mentioned, and being
established a relationship between the increased number of
microcephaly cases in newborns caused by ZIKV infection, the
WHO declared in 2016 ZIKV infection during pregnancy as a
public health emergency. ZIKV represents a threat on a global
scale since there are no drugs and vaccines available to treat or
prevent the infection (9).

The pathogenesis of ZIKV is still not fully understood. Here,
we will overview ZIKV teratogenesis focusing on neurological
clinical findings in humans, mechanisms, and experimental
models used to understand ZIKV pathophysiology.

NEUROLOGICAL CLINICAL FINDINGS IN
HUMAN

After the outbreak in Brazil, many studies have associated
ZIKV with neurological diseases in newborns whose mothers
contracted the virus during pregnancy. Additionally, ZIKV RNA
was identified in babies with microcephaly brain tissue (4).
In microscopic examinations of a fetal brain infected with
ZIKV, apoptotic neurons were observed, mainly post-migratory
neurons with intermediate differentiation (10).

The harmful effects of congenital viruses on pregnancy and
fetal outcomes are partly because of impaired trophoblastic
function, as the placenta is a kind of selective barrier due
to multiple immune and cellular structures (11). Profound
pathological changes were observed in placentas infected by
ZIKV, like abnormal fetal capillaries, trophoblastic apoptosis,
increased fetal nucleated erythrocytes, which indicates a
biological malfunction (12). ZIKV can infect the placenta
through blood-placenta transmission leading to microcephaly
and a severe loss of intracranial volume (13, 14). A neuroimaging
report showed a cranial bone collapse in babies born from
mothers suspected of having ZIKV during pregnancy (15).
Magnetic resonance identified a spectrum of anomalies that
include marked cortical thinning with an abnormal gyratory
pattern, increased fluid spaces (ventricular and extra-axial),
hypoplasia or absence of corpus callosum, and hypoplasia in the
cerebellar vermis (16).

Postmortem CNS analysis from newborns who died within
48 h after birth from ischemia-associated consequences showed
that ZIKV infects neuroglial progenitor cells. Calcifications
and destructive lesions were also found, supporting changes in
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the brain, delayed cerebral atrophy, and transient convulsive
activities (17–20).

Besides vertical transmission, neurological symptoms were
also reported in adults after ZIKV infection. In adults, ZIKV
infection has been associated with conditions of transverse
myelitis, peripheral neuropathy, andmeningoencephalitis (2, 21).
An imaging study showed a reduced volume of gray matter in
specific motor cortical regions compared with controls, leading
to a life-term impact on the CNS (22). Acute myelitis was
described 7 days after ZIKV infection in a teenager in Guadalupe.
A spinal magnetic resonance imaging showed an increase in
the thoracic and cervical spinal cord. ZIKV RNA was found in
serum, urine, and cerebrospinal fluid (CSF) on the second day
of neurological complaints. The presence of ZIKV in the CSF
reinforces that ZIKV is neurotropic (23). Besides CNS, ocular
abnormalities have also been reported as part of the effects of
CZS and anomalies of the optic nerve, focal pigmentary gait, and
chorioretinal atrophy (24, 25).

Based on current knowledge about the pathogenesis of
ZIKV and the other defects that the infection causes in fetal
development, ZIKV should be considered a TORCH pathogen
(Toxoplasmosis, Other (syphilis, varicella-zoster, parvovirus
B19), Rubella, Cytomegalovirus, and Herpes) (26). The
similarities between congenital disorders considered TORCH
and ZIKV are striking and say about their neurotropism
(27). Malformations induced by TORCH and ZIKV pathogen
depend on the gestational age of the fetal infection, being
more severe as the earlier occurs during pregnancy, like in
the first trimester of gestation. As the pregnancy progresses,
the risk of congenital malformations that result from virus
infections decreases and becomes low during and after the
second trimester.

MECHANISM OF TERATOGENESIS
CAUSED BY ZIKV INFECTION

Studying the SARS-CoV-2′s pathogenesis mechanisms could
help understand the symptoms caused by its illness, find drugs
to combat the infection, and select potential targets for vaccines.

ZIKV is composed of a single positive-sense RNA strand,
with ∼10 kb, protected by a capsid and an envelope of lipids
and proteins. Its genome codifies three structural proteins, pre-
Membrane (prM), Envelope (E), and Capsid (C), and seven non-
structural proteins (NS1, NS2A, NS2B, NS3, NS4a, NS4b, NS5).

ZIKV can enter Neural Progenitor Cells (NPCs) (and other
cells of CNS) using mainly AXL receptor (AXL Receptor
Tyrosine Kinase) in the cell surface (6). Once ZIKV enters
the cell, its RNA is rapidly translated by local ribosomes
into a polyprotein that encodes structural and non-structural
proteins, which become part of the virions and play a role in
viral replication. The virus modifies the cellular endoplasmic
reticulum (ER), forming “replication factories” where viral
replication and production of viral proteins occurs, inducing
ER stress and unfolded protein response (UPR), which inhibits
protein synthesis and activates ER-associated degradation
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FIGURE 1 | ZIKV adsorbs to the cell surface receptor AXL to enter CNS cells. When the viral replication machinery is active, ZIKV produces non-structural proteins

(NS). The NS2B and NS3 help to inhibit antiviral response by regulating type 1 IFN pathways. The NS5 protein inhibits human STAT2, which indirectly suppresses IFN-I

production, favoring viral proliferation. NS4A and NS4B act in the apoptosis pathway and growth arrest, inhibiting the AKT-mTOR pathway and increasing

mitochondrial stress, activating the p53 intrinsic apoptosis pathway. Additionally, NS4B activates pro-apoptotic proteins such as Bcl-2-associated protein X (BAX),

causing cytochrome C release and activating caspase pathways.

(ERAD). Lastly, the viral genomes assemble with the new virions
particles and are secreted through the Golgi apparatus.

Besides forming the replication machinery, non-structural
proteins help to inhibit the antiviral response. NS5, NS2B,
and NS3 regulate type 1 IFN pathways, NS5 protein inhibits
human STAT2 suppressing IFN-I production and favoring viral
proliferation (28) (Figure 1). Further, NS4A and NS4B have
an important function related to apoptosis and growth arrest
since they act together to inhibit the AKT-mTOR pathway (29),
which causes mitochondrial elongation, and extends production
of ATP (Adenosine Triphosphate) by oxidative phosphorylation
resulting in a rise in reactive oxygen species by glial cells,
increasing mitochondrial stress (30, 31). Increased cellular stress
could activate the p53 intrinsic apoptosis pathway (32). So,
proapoptotic proteins such as Bcl-2-associated protein X (BAX)
cause the release of cytochrome C by mitochondria, which
activates caspase pathways (33). Moreover, ZIKV’s NS4B protein
can directly recruit BAX from the cytosol into the mitochondria
activating this apoptotic pathway (34) (Figure 1).

It is believed that the immune response elicited by the
infection plays a role in this growth arrest. In NPCs, IFN-
independent Interferon Stimulated Genes (ISG) activations,
such as IRF3 (Interferon Regulatory Factor 3) or NF-?B
(Nuclear Factor kappa B), were observed, while no TLR3
(toll-like receptor 3) responses were activated (35). Nevertheless,
in brain organoids, in the late stage of development, TLR3
was overexpressed after ZIKV infection. TLR3 activation
was correlated with 41 genes expression linked to neuronal
development, suggesting a perturbation in neurogenesis.
Moreover, since these genetic hubs are regulators of axon
guidance processes, anti-apoptotic and cell-cycle pathways,
they can mediate microcephaly phenotype as revealed in brain
organoid models (36).

The mechanisms described here revealed how ZIKV causes
apoptosis, cell cycle-growth arrest and induces premature
differentiation, leading to microcephaly and other birth
disorders. However, the link between molecular mechanisms
and phenotypic clinical findings must be better understood to
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clarify why some fetuses are affected by ZIKV and others do not
or why they have different grades of disease severity. Not only
that but elucidating ZIKV pathogenesis will be beneficial for
drug discovery to prevent CZS and vaccine development against
ZIKV infection.

EXPERIMENTAL IN VITRO MODELS:
BRAIN CELLS

Understanding associated teratogenic mechanisms and
molecular pathways referred to as CZS are also related to
understanding human development. Mouse models have
provided important information on the subject, as most protein-
coding genes are shared with humans (37, 38), but there are
relevant restrictions, especially when considering eye and brain
development (37) and gene expression patterns along with
development (39) which present significant discrepancies when
compared with humans. Furthermore, rodents need to have
their antiviral defenses knocked down with dampened interferon
responses to allow the viral infection (40, 41), which may raise
questions about the use of this model.

Advances in producing and applying induced pluripotent
stem cell (iPSC) technology have provided essential tools for
disease modeling in vitro (42, 43). Through the application
of different protocols of differentiation, neural progenitors,
neurons, glia cells, and brain organoids derived from iPSC have
been helpful for investigations on ZIKV infection (44).

NEURAL PROGENITOR CELLS (NPCS)

Reports about ZIKV infection have shown that the Neural
Progenitor Cells (NPCs) are sensible and permissive to the virus
(45, 46). These reports, concomitant with the investigation of
the association of prenatal ZIKV infection and microcephaly,
and other malformations, revealed that ZIKV is a potential
teratogen agent, culminating in physical or functional congenital
disabilities from abnormal fetal development (47).

Until the new circulating strain called ZIKVBR, in 2015, there
was no association between the virus and neurological symptoms
or brain damage in humans (48). Up to 12 weeks postconception,
thematernal blood and tissue face the fetal membranes within the
placenta due to the restructured maternal circulation (49), which
allows the ZIKVBR to target the NPCs after crossing the placenta,
inducing cell apoptosis and autophagy (5). The Brazilian ZIKV
strain was revealed as more aggressive and more harmful to the
neurogenesis when compared to the first isolated ZIKV strain,
the MR766 (5, 8, 29).

The differentiation of NPCs reaches the development process
and populates the growing brain with neurons during prenatal
development (50). Modeling the neurodifferentiation process
by NPCs iPSC-derived helped to elucidate the mechanisms
underlying ZIKV pathogenesis. ZIKV prejudices brain
development, impairing cell division, proliferation and inducing
apoptosis, leading to potentially disastrous consequences for
CNS development (51, 52). Human neural stem cells (NSCs)
isolated between 18 and 22 weeks of gestational age after

conception unveil the suppression of host AKT-mTOR signaling
by the cooperation of proteins NS4A and NS4B, upregulating
autophagy for viral replication (29). The importance of
autophagy relies on homeostasis control, being an efficient
mechanism to limit pathogen infection. An AKT-mTOR
signaling pathway is critical for cortical development (53)
and AKT constitutive activation or loss of function is related to
disorders as megalencephaly andmicrocephaly, respectively (54).

Inductive pathways and signaling shared between two
surrounding embryonic structures may influence brain
development by paracrine effects (55), like brain and face
integrated development. As that craniofacial disproportion is
related to ZIKV congenital infection (3), another work used
cranial neural crest cells (CNCCs) signaling molecules. This
approach provided evidence that the addition of leukemia
inhibitory factor (LIF) or vascular endothelial growth factor
(VEGF) cytokines in equivalent levels as the one produced
during ZIKV infection results in precocious neurogenesis.
This precocious neurogenesis contributes to a microcephaly
phenotype, as migration and proliferation deregulated timing
may affect brain size (56).

NEURONS

In vitro neurons have also contributed to the effort to
understand ZIKV infection effects over the CNS. ZIKV can
infect mature neurons that express AXL receptors causing
neurological disorders (30). Recent findings exhibited impaired
neurogenesis and synaptogenesis process over neurons derived
from iPSCs infected by the Brazilian ZIKV strain (57). Studies
revealed a global downregulation of synaptic proteins, such as
postsynaptic density protein SHANK2 (58, 59), and proteins
associated with presynaptic precursors and presynaptic active
zone, as VAMP2 (Vesicle-associated Membrane Protein 2) and
complexin 2, Piccolo, Basson, and the Soluble NSF Attachment
Receptor (SNARE) proteins (60–62). Those findings highlighted
the vulnerability of the synaptic formation to the virus, leading to
synaptic loss and contributing to mental and motor disabilities.

In another study, researchers analyzed miRNA profiles of
primary mouse neurons after ZIKV infection. They showed that
ZIKV causes a global downregulation of miRNAs with only a
few upregulated miRNAs. On the other hand, ZIKV infection
induces upregulation of antiviral, inflammatory, and apoptotic
genes (63).

GLIA CELLS

Besides the destructive effect on neuronal structures, the
pathogen also compromises glia cells functioning in the fetus,
negatively impacting brain development. Astrocytes extending
into the subarachnoid space were identified in affected brain
region slices from a 32-week fetus infected with the virus (4).
This period comprises extensive neurogenesis and gliogenesis,
suggesting a significant contribution of the astrocyte impaired
growth, contributing to microcephaly (64).
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Human microglia cell line (CHME3), human astrocytes, and
NPCs were challenged with the African ZIKV strain HD78788
for the study of AXL receptor role in ZIKV infection, reporting
it as a crucial receptor for the virus infection on human glial
cells by promoting viral entry after binding ZIKV-Gas6 complex,
also damping innate immune responses in glial cells (65). AXL
belongs to a group of tyrosine kinases receptors related to innate
immunity regulation and mediates phagocytosis of apoptotic
cells (66).

Underlying entry factors, like AXL, have been studied to
elucidate flavivirus mechanisms of infection (67). Although
signaling mechanisms that promote the disease outcome are
still not well understood, further investigations should unveil
mechanisms that could be the basis for developing suitable
therapeutic strategies.

BRAIN ORGANOIDS

Brain organoids are a three-dimensional structure derived
from human iPSC. Brain organoids can be differentiated
in various regions from the brain, as hindbrain, midbrain,
and forebrain neuron subtypes (68–71). These tools have
been a breakthrough in studying neurodegenerative and
neurodevelopmental disorders, allowing the modeling of several
conditions such as autism and microcephaly (71–73).

Brain organoids have also proved advantageous to study the
mechanisms involved in ZIKV pathogenesis. Important findings
from ZIKV infection using brain organoids were possible due to
the model’s physiological relevance and its capacity to mimic the
developing fetal brain. ZIKV infection reduces the neuronal cell
layer in human brain organoids (52).

Cerebral organoids generated from H9 hESCs (Human
Embryonic Stem Cells) were treated with MR766 ZIKV
to investigate the role of TLR3 (toll-like receptor 3), an
innate immune receptor, in the ZIKV infection, unveiling
the TLR3 upregulation after infection on organoids. This
upregulation causes dysregulation of neurogenesis, apoptosis,

and organoid shrinkage, contributing to impaired neurogenesis
and microcephaly (36). TLR3 has also been linked with negative
activation of axogenesis (74).

In another study, Brazilian and African ZIKV strains
were used to infect three-dimensional neural cell cultures,
neurospheres, and cerebral organoids generated from hiPSCs.
Brazilian ZIKV infected neurospheres presented significantly
more morphological abnormalities than African ZIKV infected
at 96 h post-infection (5). Cortical plate thickness and dividing
cells reduction on ventricular zone were more significant
in organoids infected by Brazilian ZIKV strain, as was the
increased number of apoptotic cells. Decreased number of dorsal
forebrain progenitors cells was verified in both ZIKV infections.
Those findings verify the capacity of cerebral organoids to
support analysis of different parts of the brain and highlight
neurodevelopmental disorders mechanisms.
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