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A wide spectrum of drugs have been assessed as latency reversal agents (LRA) to

reactivate HIV-1 from cellular reservoirs and aid in viral eradication strategies. Histone

deacetylase inhibitors (HDACi) have been studied in vitro and in vivo as potential

candidates for HIV-1 latency reversion. Suberoylanilide hydroxamic acid (SAHA) and

romidepsin (RMD) are twoHDACi able to reverse HIV latency, however studies of potential

off-target effects on retroelement expression have been limited. Retroelements constitute

a large portion of the human genome, and some are considered “fossil viruses” as

they constitute remnants of ancient exogenous retroviruses infections. Retroelements

are reactivated during certain disease conditions like cancer or during HIV-1 infection. In

this study, we analyzed differential expression of retroelements using publicly available

RNA-seq datasets (GSE102187 and GSE114883) obtained from uninfected CD4+, and

HIV-1 latently infected CD4+ T-cells treated with HDACi (SAHA and RMD). We found a

total of 712 and 1,380 differentially expressed retroelements in HIV-1 latently infected cells

following a 24-h SAHA and RMD treatment, respectively. Furthermore, we found that 531

retroelement sequences (HERVs and L1) were differentially expressed under both HDACi

treatments, while 1,030 HERV/L1 were exclusively regulated by each drug. Despite

differences in specific HERV loci expression, the overall pattern at the HERV family

level was similar for both treatments. We detected differential expression of full-length

HERV families including HERV-K, HERV-W and HERV-H. Furthermore, we analyzed the

link between differentially expressed retroelements and nearby immune genes. TRAF2

(TNF receptor) and GBP5 (inflammasome activator) were upregulated in HDACi treated

samples and their expression was correlated with nearby HERV (MERV101_9q34.3) and

L1 (L1FLnI_1p22.2k, L1FLnI_1p22.2j, L1FLnI_1p22.2i). Our findings suggest that HDACi

have an off-target effect on the expression of retroelements and on the expression of

immune associated genes in treated CD4+ T-cells. Furthermore, our data highlights the

importance of exploring the interaction between HIV-1 and retroelement expression in

LRA treated samples to understand their role and impact on “shock and kill” strategies

and their potential use as reservoir biomarkers.
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INTRODUCTION

Approximately half of the human genome is composed of
ancient transposable elements (TE), initially termed “selfish
DNA parasites” or “junk DNA.” TEs are divided in two
general groups, DNA transposons and retroelements, and have
shown a role in disease development and viral infection (1–
3). Retroelements are endogenous sequences of eukaryotic
genomes able to replicate through an RNA intermediate (2).
Over 40% of the human genome is composed by retroelement
sequences (2–4). They are divided into long terminal repeat
(LTR) and non-LTR retrotransposons. LTR retrotransposons
are a class of “fossil viruses” originated through exogenous
retrovirus infection of germline million years ago, currently
known as human endogenous retroviruses (HERV) (3, 5). While
HERVs compose about 8% of the human genome, non-LTR
retrotransposons correspond to about 33% of the genome and
are divided into short interspersed nuclear elements (SINE)
and long counterparts (LINE or L1) (2, 3, 6). In contrast to
SINE, L1 are autonomous elements able to replicate and insert
into the human genome (7–9). Both HERV and L1 expression
are associated with human diseases and with viral infections,
such as HIV-1 (10–13). Both HERV and HIV-1 belong to the
Retroviridae family of RNA viruses that replicate through a
DNA intermediate. Their complete genome is composed by gag,
pol and env genes flanked by two LTR regions. In contrast to
HERV, HIV-1 is an exogenous retrovirus, with a similar genetic
structure but capable of infecting human CD4+ T-cells which
can lead to the development of AIDS in absence of antiretroviral
treatment (ART).

Over 37 million people are currently living with HIV-1 and
about 27.5 million are on treatment worldwide (14). Since HIV-
1 was discovered as the causative agent of AIDS, ART has
been implemented to control the infection in people living
with HIV (15). ART controls the viral load and suppresses
HIV-1 to undetectable levels in blood (16). However, the main
challenge for an HIV-1 cure is based on the ability of the virus
to establish latency in T-cells that can last for decades (17, 18).
The persistence of the viral cellular reservoir is ensured through
clonal expansion of infected cells and the HIV-1 genome persists
within the body even after prolonged periods of undetectable
viral load (18). ART cessation leads to viraemia rebound and a
lifelong treatment to keep the virus under control is required.
The greatest barrier for HIV-1 eradication and cure consists
in identifying and eliminating those persistently infected CD4
T-cells (19).

Several studies have proposed strategies to cure HIV-1 by
eliminating HIV-1 reservoirs, such as the “shock and kill”
strategy using latency reversal agents (LRA) (20–25). These drugs
induce an HIV-1 reactivation from the persistently infected cell
reservoirs (shock) followed by an intensified ART treatment
(kill). LRAs induce production of viral RNA and proteins in
latently infected cells, allowing the immune system to recognize
them. Suberoylanilide hydroxamic acid (SAHA, also known as
vorinostat) and romidepsin (RMD, also known as FK228) are
histone deacetylase inhibitors (HDACi), a class of LRA. They
increase the levels of histone acetylation (26–29). Addition

of acetyl groups in histones causes chromatin relaxation,
which makes promoter regions accessible to the transcription
machinery and transcription factors, inducing gene expression
(29–31). Both agents have been approved by the United States
Food and Drug Administration (FDA) for cutaneous T-cell
lymphoma treatment (32, 33). They have also been assessed in
vitro and in clinical trials to eliminate HIV-1 through latency
reversion and viral reactivation (24, 34–36). SAHA and RMD
are able to inhibit histone deacetylase (HDAC) enzymes, binding
covalently at its active site or chelating Zn2+ ions. HDAC are
classified into four classes (classes I to IV), but only classes I,
II and IV are Zn2+-dependent enzymes and are inhibited by
SAHA and RMD (26, 37). In contrast to SAHA, RMD is a
potent inhibitor to class I HDACs, which has been reported
as responsible in part for maintaining HIV in latency. This
makes RMD an attractive option for HIV-1 “shock and kill”
treatment (38–41).

An important off-target effect of the shock and kill strategy is
to induce expression of endogenous genes, including HERVs (42,
43). Uninfected primary CD4+ T-cells treated with SAHA show
upregulation of HERV-9 and LTR12 as well as downregulation
of ERVL (43). In addition, HERV expression also can be
stimulated by HIV-1 infection in CD4+ T-cells, which is able
to induce specific immune responses (12). Therefore, in this
study, we characterized the differential expression of HERV
and L1 elements in RNA-seq datasets from primary CD4+ T-
cells (HIV-negative and HIV-1-latently infected) treated either
with SAHA or RMD. We used Telescope, a bioinformatic
pipeline with the ability to assign transcripts to specific genomic
locations and quantify the expression of transposable elements
(44). Our findings show that HDACi modulate retroelement
and immune gene expression, suggesting that “shock and
kill” strategy mediated by SAHA and RMD treatment induces
genes expression, which could be used as biomarkers during
LRA treatment.

METHODS

RNA-Seq Datasets
Herein, we analyzed RNA-seq datasets from the White
et al. and the Beliakova-Bethell et al. (43, 45) studies,
available in the Gene Expression Omnibus (GEO) databases
under the accession numbers GSE102187 (available at: https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE102187) and
GSE114883 (available at: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE114883), respectively.

In the White et al. (43) study, peripheral blood mononuclear
cells (PBMCs) were collected from 4 healthy donors. Naive CD4+

T-cells were isolated and exposed to SAHA (10µM) dissolved in
dimethyl sulfoxide (DMSO) or untreated (DMSO solvent only)
over a 24-h period. After this, RNA was extracted from cells
and their untreated paired counterparts for deep sequencing.
In the Beliakova-Bethell et al. study, PBMCs were obtained
from four HIV-seronegative donors. Primary CD4+ T-cells were
isolated and used to generate an in vitro model of latent HIV-
1 infection (45). Briefly, while a portion of the CD4+ T cells
(“bystander”) are cultivated without stimulation or infection for
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5 days, another portion of cells are stained with the viable dye
e-Fluor 670, infected with full-length HIVNL4−3 (4–6 h) and
stimulated on αCD3+ αCD28−coated plates. For establishment
of latent infection in the bystander cells, after 4 days of culture,
infected cells are mixed in with bystander cells and stimulated
with IL-2 and IL-15. At day 7 of culture the e-Fluor negative
bystander cells are recovered by cell sorting. Then, on day 10,
the in vitro HIV-1 latency model is treated with SAHA (1µM),
RMD (15nM), or their solvent (DMSO) for 24 h. In parallel,
mock-infected cells were also cultured and treated. RNA was
isolated from cells and following ribosomal RNA depletion was
used to generate RNA libraries and sequenced using an Illumina
HiSeq platform.

Bioinformatic Analyses
Sequence Read Archive (SRA) files from GEO were downloaded
and converted into FASTQ with parallel-fastq-dump (https://
github.com/rvalieris/parallel-fastq-dump). Host gene
quantification was performed using Salmon v1.3.0 against
transcript sequences from gencode v.33 plus the HIV-1
genome (K03455) as Ref. (46). Results were then merged
using the tximport package in R. Additionally, reads were
mapped with Bowtie2 to the human genome (hg38) with
parameters—very-sensitive-local-k 100—score-min L, 0, 1.6
for multi-mappings and the resulted mappings were used as
input for Telescope to accurately quantify retroelements with
a single locus resolution annotation (retro.hg38.v1, available
on https://github.com/mlbendall/telescope_annotation_db/
tree/master/builds) (44, 47). Both Telescope and Salmon
outputs were used to estimate retrotransposons differentially
expressed in HDACi treated vs. untreated CD4+ T-cells using
DESeq2 using the Wald test (48). The results were visualized by
Principal Component Analysis (PCA) to check for differences
between samples and group of samples using DESeq2 package
(Supplementary Figure 1). Retrotransposons with adjusted p
< 0.05 and absolute (log2FoldChange) > 1.5 were considered
differentially expressed and visualized in Volcano plots with
the Bioconductor Enhanced Volcano (https://github.com/
kevinblighe/EnhancedVolcano) and by the ggplot2 R package. In
addition, Venn plots were constructed using the Venn diagram
R package to show all relationships between sets of data from
differentially expressed retroelements.

The five most upregulated and downregulated HERVs and
L1 for each analysis were defined and shown in horizontal
bar plots. The most expressed retroelements were also localized
in chromosome loci and their genetic distance as well as
their DNA strand orientation (sense and anti-sense) were
defined using integrative genomics viewer (IGV) software and
retroelement annotations (retro.hg38.v1) (49). Nearby most
differentially expressed retroelement was shown in bar plot and
a representative genome map was constructed using Inkscape
software. Furthermore, HERV families were defined according
to the retro.hg38.v1 annotation, the number of HERV loci of
same family were computed and HERV family percentage was
calculated and shown in pie charts.

Neighboring host genes from retroelements were
defined using Telescope meta annotations (https://raw.
githubusercontent.com/LIniguez/Telescope_MetaAnnotations/

main/TE_annotation.v2.0.tsv) and filtered using the list of
differentially expressed retroelements in R. Over-representation
analysis (ORA) was then performed withWebGestal (available at
http://webgestalt.org/) using gene ontology biological processes
as a functional database. Genes related to immune responses
were then selected and their expression was analyzed to nearby
retroelement expression by fitting linear model in R.

RESULTS

Retroelement Expression in Primary CD4+

T-Cells From Healthy Donors Treated With
SAHA
To determine if LRA treatment can modulate retrotransposons
expression in non-HIV-1 infected T CD4+ cells, we used
Telescope to investigate the transcriptional modulation of
retroelements in naïve CD4+ T-cells from four healthy HIV-
1-negative donors treated with SAHA over a 24-h period
(White et al. dataset). We found a total of 1,547 differentially
expressed retroelements between untreated and treated samples
at the 24-h time period, of which 722 corresponded to HERV
sequences (303 upregulated and 419 downregulated) and 825
to L1 (285 upregulated and 540 downregulated) (Figure 1A).
Next, we also checked if HERV expression at the family level
could be affected by LRA treatment. Then, we categorized all
differentially expressed HERVs according to their annotation.
We found 17 different HERV families regulated by SAHA
treatment (Figure 1B). The five most upregulated HERV loci
were ERV3 (ERV316A3, 6p25.2c and 14q24.2b loci), HERVW
(HERV9, 3p24.3 locus), MER4 (MER4, 14q24.2b locus) and
ERVL (ERVLE, 17q24.2b locus) families (Figure 1C). The
top downregulated HERV loci corresponded to the HERVH
(HERVH, 6q23.2c locus) and HERVF (HERVFH21, Xq11.2a and
Xq11.2b loci) families (Figure 1C). All the HERV sequences
described above harbor open reading frames (ORF), allowing
for potential protein coding. Proteins over 50 amino acids in
length are listed for each HERV loci (Supplementary Table 1).
Additionally, the most up- and downregulated L1 sequences
were localized in chromosomes 1, 2, 3, 9, 12, 13 and 15
(Figure 1D).

We validated those differently expressed HERV loci in
healthy cells treated with SAHA using the datasets from mock-
infected CD4+ T-cell datasets also treated with SAHA and
published by Beliakova-Bethell et al. (45). We found 172
upregulated and 235 downregulated retroelements expressed
in both datasets (Supplementary Figure 2A). In this dataset,
we found that HERVF (HERVFH21, Xq11.2a and Xq11.2b
loci), HERVH (HERVH, 6q23.2c locus), ERV3 (ERV316A3,
14q24.2b locus), HERVW (HERV9, 3p24.3 locus) and MER4
(MER4, 14q24.2b locus) were also differently expressed in
mock-infected cells, overlapping with the White et al. dataset
(Supplementary Figure 2B).

Next, we analyzed nearby retroelement expression and their
DNA strand orientation from most up- and downregulated
HERV and L1 loci (Figure 1C), assessing whether genetic
distance and DNA strand orientation between retroelements
were able to influence their expression in the samples (Figure 2).
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FIGURE 1 | Differentially expressed retroelements in naïve CD4+ T-cells treated with SAHA. (A) Volcano plot shows a total of 1,547 differentially expressed

retroelements. (B) The percentage of HERV families found on samples are shown. (C,D) The most upregulated and downregulated retroelements expressed are

shown, respectively. In the x-axis the log2fold change values are plotted. The red and green colors highlight the HERV and L1 downregulated and upregulated loci,

respectively (C,D).

ERV316A3_6p25.2c (anti-sense) and ERV316A3_6q25.2e (anti-
sense), ERV316A3_14q24.2b (anti-sense) and MER4_14q24.2b
(sense), as well as LINE-1 loci L1FLnI_15q13.3a (sense) and
L1FLnI_15q13.3c (anti-sense) are localized at 544, 27 and 22 kb
apart, respectively. We did not find a relation in expression
between these retroelement pairs when considering DNA strand
orientation or genetic distance (Figure 2). Thus, their expression
may occur independently from neighboring retroelements. In
contrast, HERVFH21_Xq11.2a (sense) andHERVFH21_Xq11.2b
(sense), both downregulated HERVs in SAHA-treated samples,
showed a short genetic distance (∼260 bp) and the same
DNA strand orientation. This suggests that chromatin structure
can modulate equally nearby retroelements located at a short
genetic distance.

Retroelement Expression in HIV Latent
CD4+ T-Cells Treated With SAHA and RMD
Since HDACi have been used as latency reversal agents in HIV-
1 cure strategies, we assessed the impact of SAHA and RMD on

retroelement expression in CD4+ T cells from an HIV-1 latency
model. In this model, central memory CD4+ T-cells latently
infected with HIV-1 were treated with SAHA (1µM) or RMD
(15nM) for 24 h. Both HDAC inhibitors have been evaluated in

clinical trials as latency reversal agents used in “shock and kill”
strategies to eliminate HIV-1 reservoirs.

We found 712 (265 upregulated and 447 downregulated) and

1,380 (679 upregulated and 701 downregulated) differentially

expressed retroelements in response to SAHA and RMD
treatment, respectively (Figures 3A–C). The effect of SAHA and

RMD on the profile of retroelement expression was different even
though both drugs belong to the HDACi family (Figures 3C–E).
While 531 HERV and L1 sequences were found differentially
expressed in both treatments, a total of 1,030 HERV and
L1 were specifically regulated by each drug (Figure 3C). We
found that the level of HIV expression induced by both
HDACi was limited and non-significant compared to DMSO
alone (Supplementary Figure 4). We also aimed to analyze
the impact of HIV-1 infection in these samples, comparing
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FIGURE 2 | Retroelement expression and their DNA strand orientation. Normalized expression for top up- and down-regulated retroelements are shown in bar plots

according to treatment (DMSO, light red; SAHA, light blue). The localization on the human chromosome, DNA strand orientation (sense, right arrow; antisense, left

arrow) and the genetic distances are shown for each retroelement.

differently expressed retroelements in mock-infected CD4+ T-
cells and HIV latent cells treated with SAHA and RMD.
However, we did not find any differently expressed retroelements,
suggesting that HIV-1 infection alone is not able to contribute to
differential retroelement expression in cells treated with HDACi
(Supplementary Figure 3).

Overall, at the family level, the HERV expression profile
in HIV-1 latent cells treated with SAHA or RMD is similar
(Figures 4A,B). This shows that both HDACi can regulate the
expression of the same HERV families, such as full-length
HERV genome families (HERV-K, HERV-W and HERV-H). In
contrast, the most differentially expressed HERV elements in
the SAHA treatment belong to PRIMA (PRIMA41, 20q13.33),
ERV3 (ERV316A3, 16q21a and 9q33.1 loci), ERVL (ERVLB4,
8p21.1c and ERVLE 9q34.2), HERVL (HERVL40, 1p31.1c and
ERVL, 11p14.3), HUERS (HUERSP3B, 9p13.3b) and MER4
(MER61, 2q31.1a and MER41_11q21) families (Figures 3D,
4C). With respect to RMD treatment, the most differentially
expressed HERV elements belong to ERV3 (ERV316A3, 1p36.13
and ERV316A3, 9q33.1), ERVL (ERVLB4, 8p21.1c and ERVLE,
15q13.3b and 17q24.2b loci), HERVH (HERVH, 13q32.2),
HERVL (HERVL18, 5q12.1), HUERS (HUERSP3B, 9p13.3b),
MER4 (MER4B, Yq11.21) and PAB (PABLA, Yp11.2) families
(Figures 3E, 4D). Additionally, these top differentially expressed

HERV loci also show ORFs, with potential protein coding
capacity (Supplementary Table 2). These findings show that,
although there are not notably differences in the general HERV
family expression profile between SAHA and RMD treatment, we
found that the PRIMA family in the SAHA treatment and the
HERVH and PAB families in the RMD treatment are specifically
most regulated by each of these HIV-1 latency reversal agents
(Figures 3, 4). This shows that some specific phenotypes may
arise from the distinct treatments and highlights the importance
of analyzing retroelement differential expression at the locus-
specific resolution level.

Retroelements and Immune Gene
Expression in HIV Latent CD4+ T-cells
As retroelements are potentially able to control the expression
of host nearby genes (or genes impacting HERVs) and also
induce immune responses, we performed an exploratory
analysis to find differentially expressed retroelements close
to immune response-related genes. We found 64 immune
genes by the vicinity of differentially expressed retroelements
(Supplementary Table 3). We then analyzed the relationship
between retroelement and nearby immune gene expression
upon HDACi treatment. We selected eight immune genes that
present a key role on an HIV infection context (ESR1, GBP5,
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FIGURE 3 | Differentially expressed retroelements in the HIV latency model reactivated with HDACi. Volcano plot displays differentially expressed retroelements

following RMD (A) or SAHA (B) treatment. The Venn plot shows the overlapping and unique retroelements loci regulated by each HDACi. (C) Horizonal bar plot shows

most differentially expressed HERV and L1 loci following RMD (D) or SAHA (E) treatment. Log2fold change values are plotted in the x-axis. Red and green colors

highlight down- and up-regulated HERV and L1 elements, respectively.
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IFI16, TRAF2, TRIM5, RUNX1, THEMIS and TNFAIP3).
TRAF2 and GBP5 were upregulated in the samples treated
with HDACi (Supplementary Figures 5, 6) and correlated
with HERV (MERV101_9q34.3) and L1 (L1FLnI_1p22.2k,
L1FLnI_1p22.2j, L1FLnI_1p22.2i) expression (Figure 5).
This suggests that HDACi may modulate immune gene
and retroelement expression as well as affect immune
responses in HIV latent CD4+ T-cells treated with SAHA
or RMD.

DISCUSSION

Different drugs have been reported to reverse HIV-1 latency
such as HDACi, but they may also have off-target effects (43,
45, 50, 51), including effects on retroelement expression (42, 43),
which can potentially lead to cellular dysfunction (5, 10, 52, 53).
Therefore, in this study we analyzed HERV and L1 differential
expression at the single locus resolution level using Telescope
bioinformatic pipeline in RNA-seq datasets from uninfected and

FIGURE 4 | Profile of HERV families expressed in the HIV latency model reactivated with HDACi. The pie chart shows detected HERV loci percentages for each HERV

family after RMD (A) or SAHA (B) treatment. The most differentially expressed HERV loci (top10) in RMD (C) and SAHA (D) treatments were categorized into their

respective HERV families.
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FIGURE 5 | Relationship between retroelement and nearby immune gene expression. The association between TRAF2 (A) and GBP5 (B–D) expression with their

respective nearby retroelement expression is shown. Pearson’s correlation coefficients and their associated p-values are displayed as well as linear equation in each

plot.

Frontiers in Virology | www.frontiersin.org 8 October 2021 | Volume 1 | Article 756635

https://www.frontiersin.org/journals/virology
https://www.frontiersin.org
https://www.frontiersin.org/journals/virology#articles


Curty et al. Retroelements in HDACi-Treated T-Cells

HIV-1 latently infected CD4+ T-cells, treated with SAHA and
RMD, two widely used HDACi. We performed PCA to check for
transcriptional differences between individual samples and group
of samples. The results showed a variation of about 12% between
donors and of around 85% between groups (DMSO, SAHA and
RMD) (Supplementary Figure 1). Thus, despite inherent genetic
differences between donors, data from each donor in each group
are homogeneous, showing similar differential gene expression.

Our findings from uninfected CD4+ T-cells treated with
SAHA showed a total of 722 HERV and 825 L1 loci differentially
expressed, categorized in 17 HERV families, such as the ERV3,
HERVW, MER4, ERVL, HERVH and HERVF families. These
data are in agreement with a previously published study,
which showed that HERVW (HERV-9 or LTR12) and ERVL
families were differentially expressed (43). We also validated
the differentially expressed HERV loci using a dataset of
uninfected CD4+ T-cell treated with SAHA (45).We found a 56%
congruence between datasets, which represents 407 differential
HERV expressed in both datasets, such as HERVF, HERVH,
ERV3, HERVW and MER4 families. The contrast between
datasets may be explained by a difference in the concentration
of SAHA used between studies (10µM in the White et al.
study vs. 1µM in the Beliakova-Bethell et al. study), as well
as differences between the CD4+ T-cell subset analyzed and
the culture protocol (43, 45). While the Beliakova-Bethell et al.
study analyzed a central memory CD4+ T-cell model of HIV
latency, using uninfected CD4+ T-cells (mock-infected) and in
vitro HIV-infected (latent HIV cell), the White et al. study used
naive CD4+ T-cells (uninfected) treated with SAHA or DMSO.
In addition, mock-infected cells from the Beliakova-Bethell et
al. study were cultured and stimulated with anti-CD3/CD28
antibodies and also incubated with IL-2 and IL-15 before SAHA
and DMSO treatment, which is likely to explain the difference
in retroelements expression between these two datasets and
emphasizes the importance of culture conditions in differential
TE expression analyses.

SAHA regulates gene expression by HDAC inhibition (54,
55). HDACs are involved in epigenetic regulation, removing the
acetyl groups from histones. Their inhibition become chromatin
more relaxed, permitting transcriptional activation (56, 57). In
humans, there are 18 HDAC enzymes divided in four classes (I
– IV) (58). Classes I, II and IV HDACs are zinc-binding enzymes
and inhibited by SAHA, inducing gene transcription. In addition,
retroelement promoters and their DNA orientation may also
regulate nearby gene expression, such as neighbor HERVs and L1
(3, 59, 60). We found two neighboring HERVs downregulated in
the same DNA strand orientation [HERVFH21_Xq11.2a (sense)
and HERVFH21_Xq11.2b (sense)], localized in ∼260 bp of
genetic distance in an intergenic region. This piece of data
suggests that chromatin structure can modulate equally nearby
retroelements located at a short genetic distance and highlights
the importance of chromatin structure and genome accessibility
on HERV promoters and regulation of nearby gene expression.

SAHA and RMD are both approved by the FDA for cutaneous
T-cell lymphoma treatment and have been assessed in clinical
trials to reverse HIV latency (34–36, 61–63). Viral latency is
the main challenge for an HIV-1 cure. HIV-1 latently infected

cells can evade the immune response, establishing viral cellular
reservoir that last for years (64–67). ART cessation leads
to viraemia rebounds even after prolonged period of viral
undetectable levels (18). Several studies have proposed strategies
for HIV-1 cure by eliminating HIV-1 reservoirs, such as the
“shock and kill” strategy, using LRA (20–25). Therefore, for
assessing latency reversal in context of HIV-1 infection, we also
analyzed the expression of retroelements (HERV and L1) in HIV-
1 latent CD4+ T-cells treated with HDACi. We found 712 and
1,380 differentially expressed retroelements in response to SAHA
and RMD treatment, respectively. Five hundred and thirty-one
of retroelements were found differentially expressed in both
treatments, while 1,030 were differently regulated according to
type of treatment. In addition, it is known that HIV-1 infection
is able to induce HERV expression by its viral proteins, such
as Tat protein (68). Therefore, we also compared differentially
expressed retroelements between HIV-1 latent CD4+ T-cells
and mock-infected CD4+ T-cells treated with SAHA and RMD.
However, we did not find any differently expressed HERV or L1
under this comparison. These data agree with Beliakova-Bethell
et al. study, which found only six and eleven host genes differently
expressed between mock-infected and HIV-1 latency cells treated
with SAHA and RMD, respectively (45). It also is important to
highlight that the frequency of latently infected cells in the in vitro
model was low (8–20%), thus any difference in their response to
HDACi between a mock-infected cell and a HIV latently infected
cell would unlikely be detectable, unless it was very robust. This
agrees with the idea that the effect of HIV reactivation at altering
gene expression pathways induced by HDACi is minimal and
that gene modulations were similar in mock-infected cells and
the model of HIV latency (uninfected vs. infected). These data
further shows that HIV-1 reactivation in the latent cell model was
unable of independently regulate the expression of retroelements
in CD4+ T-cells treated with SAHA or RMD, suggesting that
retroelement expression is mostly regulated by HDACi.

The comparison between SAHA and RMD treatment in HIV-
1 latently infected CD4+ T-cells shows no different expression
profiles of general HERV families. Both drugs were able to
regulate full-length HERV genomes, such as those of the HERV-
K, HERV-W and HERV-H families, as well as partial HERV
genomes which are able to encode viral proteins, such as those
of the PRIMA4, HERVF, ERV3 and MER4 families. The full-
length HERV element is about 9.5 kb in length, showing two long
terminal repeats (LTRs) and three essential viral genes (gag, pol,
and env) which encode four viral proteins (Env, PR, RT and Gag).
Both partial and full-length HERV genomes are able to modulate
cellular pathways and stimulate immune responses (5, 10, 69).
On the other hand, comparison of the top ten most differentially
expressed HERVs by SAHA and RMD showed that the PRIMA
family was mostly regulated by SAHA treatment and the HERVH
and PAB families were mostly regulated by RMD treatment. This
suggests that eachHIV shock-and-kill strategy regulates exclusive
components that may provide specific biological phenotypes in
each treated cell.

Retroelements are also able to control the expression of nearby
host genes and also induce immune responses (3, 5, 10, 59, 60,
69). Herein, we found 64 immune genes nearby differentially
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expressed retroelements, including eight immune genes with
known key roles on HIV-1 infection (ESR1, GBP5, IFI16,
TRAF2, TRIM5, RUNX1, THEMIS and TNFAIP3). TNF receptor
associated factor 2 (TRAF2) and guanylate binding protein 5
(GBP5) proteins were upregulated in the samples treated with
HDACi and correlated with HERV (MERV101_9q34.3) and L1
(L1FLnI_1p22.2k, L1FLnI_1p22.2j, L1FLnI_1p22.2i) expression
localized in intergenic region. TRAF2 is a member of the TNF
receptor associated factor (TRAF) protein family and mediate
the signal transduction from members of the TNF receptor
superfamily (70). TRAF2 is required for TNF-alpha-mediated
activation of NF-κB and MAPK8/JNK (71, 72). Also, HIV-1 Nef
is able to activate TRAF2, thus mediating activation of NF-κB
and increasing HIV-1 replication in macrophages (73). GBP5
belongs to the guanylate binding protein family, which is an
interferon-inducible subfamily of guanosine triphosphatases. It
is able to enhance endogenous IFN expression by interacting
with the NF-κB complex, stimulating its signaling and inducing
antiviral responses (74, 75). Several studies have associated
HERV expression with NF-κB activation (68, 76–78). In addition,
HIV-1 Tat protein can induce HERV expression through
regulating the NF-AT and NF-κB pathways (79), suggesting
an interplay between HIV-1 and HERV expression through
cellular pathways.

In summary, our findings show that off-target effects of HDAC
inhibitors, such as SAHA and RMD, may induce retroelement
gene expression and also modulate host genes in treated CD4+

T-cells. In addition, several studies have shown that HERV
expression is able to induce antibodies and cytotoxic immune
responses, leading to cellular death (10, 80–82). Its potential roles
as immunotherapeutic and as a biomarker have been discussed
for different type of diseases, including HIV-1 infection (10, 12,
80, 82). Thus, our findings suggest that retroelements expression
might constitute a biomarker for “shock-and-kill” clinical trials

using HDAC inhibitors. In addition, the data presented here
highlight the importance of exploring the interaction of HIV-1
and HERV interaction from trial subjects for understanding its
impact on “shock and kill” treatments.
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