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Understanding and studying human diseases caused by pathogens require tools other than the
natural host, as many diseases are lethal to humans. To understand the mechanism(s) involved
in pathogenesis caused either by genetics or microbes including viruses, it is important to have
model systems where disease can be induced by altering genes or host-pathogen interactions and
where the functional consequences can bemonitored closely. Among the human pathogens, viruses
are known to cause debilitating outbreaks resulting in significant morbidity and mortality due to
the emerging and/or reemerging outbreaks (1–3). Many virus species are associated with human
diseases ranging from hemorrhagic, gastroenteric, pharyngeal to neuroinvasion (4–10). Thus,
understanding the virus biology and their ability to establish infection and induce pathogenesis
in human host remains a priority. However, studying pathogenic viruses require appropriate
host species other than humans to model diseases development and progression. For centuries,
researchers have used animal models inoculated with viruses for the purpose of monitoring and
manipulating disease progression. In this way, animal models have contributed significantly to not
only understanding disease development, but also to defining vaccine efficacy, and to drug and
treatment development (11–14). However, the availability of larger animals (both inbreed and out
breed), cost and ethical concerns pushed the field to identify alternate model systems to study virus-
host interactions. More recently, 2D cell culture and 3D organoid models have become increasingly
prominent and refined disease models for dissecting the molecular mechanisms underlying viral
induced pathogenesis (14–17). Each model has strengths and weaknesses and understanding how
these relate to disease phenotypes is key to interpreting the results obtained from these systems.

ANIMAL MODELS FOR VIRAL DISEASES

One of the most common approaches to study virus infection and the associated disease
development is to use small and large animal models that recapitulate human diseases. For
example, studies on virus-host interaction and pathogenesis were modeled using rodent, rabbits,
dogs, horses, Ferrets, and non-human (18–22). The major advantage of using the animal model
is the presence of immune system which mimics the effect of immune response during disease
development. Furthermore, in some animal models the immune system could be manipulated
in ways that makes it possible to ascertain the contribution of specific immune components to
disease outcome (23, 24). Mice, rats, Ferrets and non-human primates are also used to study
pathogenesis induced by viruses, bacteria, and parasites as well as in vaccine efficacy studies
(22, 25–27), but cross-model interpretations are limited by the fact that these animal models may
not represent similar disease pathogenesis due to inter species variation and genetic background.
For instance, requirements of species-specific entry receptors for HBV, SARS-CoV-2, HIV, and
other process are key for infection and disease development (28, 29). Additionally, animal models
are oftentimes infected with a species-specific counter part of a human pathogen (e.g., SIV vs. HIV)
that corresponds to the receptors and proteins necessary for transmission and disease development
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in that host. These differences in physiology necessitated
the development of transgenic animals with human
specific cell types that will serve as target cell for human
pathogens with appropriate receptors (23, 24). Significant
progress has been made in this area of research; however,
there are several restrictions, including the presence of
species specific innate immune factors that hampered the
infection, spread, and transmission within these animals
(21, 30). More importantly, the downstream and secondary
effects caused by viruses, viral proteins and its byproducts
can’t be fully studied using these models. Additionally,
animal models, either small or large, are expensive, labor
intensive, and subject to the consideration of ethical issues,
especially for work involving non-human primates and
humanized mice.

IN VITRO CELL CULTURE MODEL TO

STUDY VIRAL INFECTION

Cell culture models have become increasingly valuable research
tools and studies using 2D single cell lineages infected
with pathogens have significantly expanded our understanding
the biology of pathogens. For example, single cell-based
culture models provided a unique opportunity to study how
viruses (HCV, hemorrhagic fever viruses, HIV) induce cellular
dysregulation and pathogenic effects in specific cell types (16,
17, 31). Specific studies using primary cell based 2D cultures
offered a great avenue to understand the changes at the cellular
level and more precisely at the cellular level (17). These studies
furthered our attempts to identify the specific target cell types
involved in disease development, the requirements of cell-
specific receptors, gene control, and the ability of pathogens
to manipulate host cellular genes and signaling pathways.
However, in the body, cells function as part of a network
of cells and a lack of holistic to integrate additional cells in
2D cultures, including other cell types within a specific organ,
reduce the physiologic relevance and significance of this system.
Additionally, the innate defense responses induced by other cell
types in the surrounding microenvironment is lacking in 2D
cell culture models. Thus, developing 3D organoid models that
mimic in vivo conditions for studying normal development and

differentiation and disease pathologies has become a priority.
Several approaches have been taken to create these models
ranging from co-culturing multiple cells within a tissue culture
well to development of 3D organoids that represent different
organ systems to study respiratory and neurotropic viruses (26,
32, 33).

Organoids using supporting materials such as Matrigel
and other scaffolding elements lead to 3D organoids where
cells differentiate and mature into various cell types within
a specific organ. Several 3D organoid models have been
successfully established including models of brain and/or
cerebral, intestine/colon and retina. Importantly, 3D organoids
have great potential for modeling viral diseases including Zika,
Influenza, HIV-, and others (34, 35). More recently organ specific
human tissues and tissue-based organoids (lung, heart, and
brain) are used to study influenza, SARS-CoV-2, Zika, and
Dengue virus infection and pathogenesis (36–38). Though the
organoid and tissue models provide a great in vitro alternate
model that is quick and in expensive, there are certain limitations
associated with them as well. For instance, maintaining these
cultures for a longer period to study chronic viral diseases is
an issue. This is due to lack vascularization in this model, that
will prevent the flow of nutrients to the core region of the
3D-organoid structures.

Studying host-pathogen including infectious viruses that
cause morbidity and mortality in humans is a challenging and
constantly evolving area of research. The recent emergence and
reemergence of pathogenic viruses force the scientific community
to find alternate in vitro and in vivo systems that will provide
a suitable platform to model viral pathogenesis and disease
development. As indicated above, there are several models that
have both pros and cons, however, a great deal of progress
has been made to model several viral diseases. With constant
addition and/or reinvention, these models can be tweaked to
mimic physiological relevance of the host, that will help us to
study viral diseases and develop therapeutics and vaccines.
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