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As the COVID-19 pandemic finishes its second year, progress has been made against

SARS-CoV-2 with vaccine candidates showing efficacy against this latest coronavirus

strain. However, this pandemic presents a unique opportunity to investigate anti-

viral therapies given the likely probability of another outbreak. One possible (and

perhaps unlikely) therapeutic target could be GAPDH (glyceraldehyde-3-phosphate

dehydrogenase). Studies have show that downregulation of GAPDH leads to a decrease

in interferon gamma (IFNγ production (which is an important cytokine response against

coronaviruses and viruses in general). In this light, the previous coronavirus strain

(SARS-CoV) has actually been shown to downregulate GAPDH. Although perhaps better

known for its role in glycolysis, GAPDH also plays a role in gene expression of a varied

set of genes by binding to their mRNA to affect stability and thereby translation Moreover,

GAPDH is also upregulated by nitric oxide (NO), an inhibitor against both SARS-CoV and

SARS-CoV-2. Additionally, GAPDH has also been shown to be a negative transcriptional

regulator of AT1R (angiotensin II receptor 1), which has been shown to bind ACE2 for

eventual endocytosis of the complex implicating GAPDH’s potential role in the kinetics

of coronavirus entry as well in downstream inflammatory signaling resulting from AT1R

activation. Lastly, another important role for GAPDH is its requirement in the assembly of

the GAIT complex that is responsible for termination of translation of IFNγ-responsive

genes that would be critical for the resolution of any inflammatory response. These

observations would imply that sufficient levels of GAPDH are needed for immune

responses to function properly during a coronaviral infection. By examining different

coronavirus studies, this review explores GAPDH’s role as an inhibitor of coronaviruses

(at the viral transcriptional level and also as a modulator of gene expression related to

inflammation), and its signal transduction links to the IFNγ and NO pathways.
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VIRAL TRANSCRIPTION

A number of recent studies have focused on the examination of host proteins in terms of their
potential pro- and antiviral properties against coronaviruses (1–9). Yet, prior to these studies,
the inhibitory role of GAPDH against coronavirus was demonstrated in a study that used the
transmissible gastroenteritis coronavirus [TGEV belongs to the alpha subfamily of coronaviruses;
SARS-CoV-2 which is responsible for the COVID-19 pandemic, and its predecessor, SARS-CoV, are
in the beta family of coronaviruses (10)] to help identify proteins required for RNA transcription
of the coronavirus virome (11). An RNA affinity chromatography pulldown identified hnRNPs
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FIGURE 1 | Quantification of mRNA7 using siRNA (directed against GAPDH,

PABP, hnRNPQ, and EPRS) transfection of 293T cells before TGEV

infection (11).

(heterogeneous ribonucleoproteins), glutamyl-prolyl tRNA
synthetase (EPRS) and poly (A)-binding protein (PABP) as
candidates. As proof of concept, siRNA against those genes along
with a GAPDH (typically thought of as a housekeeping gene)
control was used. Afterwards, the host cells were infected with
equivalent titers of the virus and qPCR for mRNA7 (responsible
for encoding the nucleocapsid (N) protein, that encapsulates
viral RNA and nonstructural proteins or nsp’s) was quantified as
shown in Figure 1. As expected, knockdown of the genes of the
proteins from the pulldown resulted in decreased mRNA7 levels
indicating their requirement for viral transcription.

The unexpected finding concerned the results from the
GAPDH knockdown. By downregulating expression of this gene,
the study found consistent upregulation (a 3-fold increase using
293T cells and a similar 2-fold increase using endothelial Huh-7
cells over controls) of mRNA7.

This would indicate that GAPDH couldn’t serve as a valid
negative control, but furthermore, needed to be considered an
experimental factor with a potentially important contribution to
TGEV transcription. A possible explanation cited by the authors
points to the example of GAPDH binding to the 3′ end of the
cap protein of Hepatitis A virus (belonging to the family of
picornaviruses) and destabilizing the internal ribosomal entry
site (IRES structures are RNA elements that allow the virus to
translate its virome) (12). Additionally, among coronaviruses,
communication occurs between the 5′ and the 3′ ends of the
viral RNA (which incidentally is around 30 kb and sometimes
called a mini-genome due to the relatively large size for a virus)
whereby the 3

′

end directs the RNA synthesis or translation
at the 5

′

end. Since there are no complimentary sequences at
either the 5

′

or the 3
′

ends to allow for direct interaction, the
virus needs to recruit host proteins [such as the aforementioned
ones found in the Galán et al., study] to serve as a bridge
between the two viral genomic ends in order to facilitate
transcription (13). In this light, it should also be noted that
GAPDH is known to bind to AU-rich regions of certain RNA

species (14) resulting in either stabilization or destabilization of
mRNA and/or in regulation of translation (15). Lastly, another
possible explanation is GAPDH has been shown to interact
with an isoform of PABP, PABPN1 (16), which is important
for RNA processing (17) and influenza viral transcription (18).
Additionally, coronavirus gene expression was shown to be
regulated by the interactions of the poly(A) tail, the coronavirus
nucleocapsid and PABP proteins (19) which taken together
compliment another study showing the requirement of PABN for
coronavirus replication (20). These observations seem to point
to the fact that GAPDH (perhaps through its interaction with
PABP) plays a role in coronaviral transcription.

Furthermore, GAPDH levels were shown to decrease
dramatically starting at 6-h post-infection in 293 cells infected
with the SARS-CoV (the strain responsible for the 2003 outbreak)
as compared to controls (21). Coupled with the Galán et al. study,
a decrease in GAPDH levels upon infection would by logic lead
to an expected increase in viral transcription, thereby implicating
GAPDH as an inhibitor of coronaviruses (22). In addition,
another study (23) was also able to demonstrate decreased levels
of GAPDH (along with a decreased IFNβ expression) resulting
from cells infected with the SARS-CoV. Moreover, this study
showed that by specifically mutating the nsp1 gene and then re-
infecting 293T cells, GAPDH levels remained unaffected which
was simultaneously accompanied by a more robust anti-viral
IFNβ response as compared to infection with a virus containing a
wildtype nsp1 gene. Additionally, the study also observed a much
more robust expression of ISG15 and ISG56 [which are involved
in critical antiviral responses downstream of IFN I signaling (24)]
infected with the virus with this mutant nsp1. The observation
of a simultaneous decrease in both GAPDH and IFN I levels
after SARS-CoV infection has been observed by other groups
(25, 26) which would point to the nsp1 gene being a critical factor
contributing to coronavirus virulence (27). Similarly, it has been
shown that GAPDH is also dysregulated during SARS-CoV-2
infection. Logically, it would make evolutionary sense that SARS-
CoV-2, whose genome is ∼90% identical to that of the SARS-
CoV strain (28), to turn down the host’s anti-viral response while
simultaneously trying to make viral replication more efficient.

IFNγ PATHWAY

The overall explanation for the decreased GAPDH expression
is that the coronaviruses turn down expression of the host’s
endogenous genes non-specifically (26). However, there are
reasons as to why the downregulation of GAPDHmight be more
consequential for the host cell’s anti-viral response. For example,
the IFNγ pathway is one such response key to host defenses in
general [for review, see (29)] including against coronaviruses.
This can be seen in experiments where pre-treatment with IFNγ

dramatically reduced TGEV viral replication (30, 31).
Aside from animal studies, it has been shown that patients

who presented with acute respiratory distress syndrome (ARDS)
due to a severe case of SARS-CoV infection had a decreased
IFN (both alpha and gamma) response, which included the lack
of accompanying downstream cascades of IFN-inducible genes,
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in contrast to patients with milder cases (32). This is mirrored
in the current COVID-19 pandemic where studies have found
IFNγ levels to be downregulated in patients suffering from more
severe cases of COVID-19 infection based on recent clinical data
(33, 34). Another study showed that after stimulation with SARS-
CoV peptides, IFNγ was the predominant cytokine secreted by
memory T cells in patients (35). Taken together, these studies
indicate that IFNγ responses are a crucial anti-viral mechanism
for the host that become compromised in patients with more
severe coronavirus infections.

In this light, it has been shown that proper IFNγ secretion
actually requires sufficient levels of GAPDH. By stimulating
macrophages with the addition of MPO (myeloperoxidase)
to recapitulate inflammation, the study found that reducing
GAPDH expression through RNAi resulted in a surprising
66% reduction in IFNγ secretion as compared to controls
(36). This finding was further corroborated by another study
that demonstrated that using an inhibitor of GAPDH, 3-
bromopyruvic acid, blocked IFNγ synthesis (37). One possible
explanation could be that nuclear GAPDH translocation (due to
nitric oxide signaling which is discussed later) can increase CREB
activity (38), which studies have shown to upregulate IFNγ at the
transcriptional level (39, 40).

It should also be noted that further downstream, IFNγ

has been shown to downregulate the ACE2 receptor, the host
cell’s receptor to which the SARS coronaviruses attach (41).
Pretreatment of Vero E6 cells with IFNγ (or IL4) significantly
reduced infectious rates of the SARS-CoV through decreased
ACE2 expression. Interestingly, while IL4 was able to recapitulate
the effect of IFNγ, pretreatment with IFNα had no effect on
ACE2 levels indicating interferon species preference. However,
a recent finding showed that ACE2 was upregulated following
treatment with either IFNα2 and IFNγ (42) thereby igniting
a debate whether increased expression of the ACE2 receptor
is advantageous for the virus or tissue-protective for the host
(43). Another possibility could be a temporal aspect of ACE2

expression as it relates to interferon signaling which would
need further experimentation. Incidentally, it may be worth
mentioning that a broad set of cells are capable of being infected
with SARS-CoV-2 virus (44) including monocytes.

Furthermore, there are other studies showing GAPDH’s role
in the activation of the immune system (45), stabilization
of colony stimulating factor 1 in macrophages (46), its
extracellular secretion upon exposure to pathogens and binding
to plasminogen and fibrinogen (47) as well as having other
immunomodulatory roles (48) including stimulation of Type
I Interferons (49). While this review hints at some of
the contributions GAPDH likely plays in the host’s anti-
viral mechanisms, the exact contribution of GAPDH to the
pathogenesis of the current SARS-CoV-2 virus needs to be
examined specifically (e.g., in vitro siRNA experiment similar to
the Galán et al., paper using the SARS-CoV-2 virus instead).

GAIT COMPLEX

Another possible downstream consequence of GAPDH
downregulation by coronaviruses can be found in the GAIT
complex (interferon gamma inhibitor of translation) which
consists of a quaternary complex of proteins that bind to a
specific secondary stem-loop RNA structure (called the GAIT
element) to terminate translation of inflammatory genes. In
monocytes (e.g., macrophages, neutrophils, etc.), the GAIT
element resides on IFNγ-responsive genes (e.g., VEGFa, CCL22,
ceruloplasmin, etc.) which constitute the downstream cascade of
a host cell’s IFNγ response (50). Interestingly, the GAIT complex
was also recently shown to assemble in epithelial cells (51).

The order of binding is sequential with GAPDH binding
last (after EPRS, NSAP1, and L13a) in order to terminate the
translation of these crucial pro-inflammatory genes as shown in
Figure 2 (52). As an example of the importance of the GAIT
complex in downregulating IFNγ-responsive genes, studies have

FIGURE 2 | Order of assembly of the GAIT complex at specific stem-loop RNA structures (called the GAIT element) in IFNγ responsive genes (52). With the presence

of IFNγ, EPRS and NSAP1 assemble initially while L13a and GAPDH are the last proteins to assemble to enable binding to the the GAIT element present on the

mRNA in order to terminate translation of the specific downstream genes.
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shown that one such gene, ceruloplasmin, is crucial in order to
elicit an inflammatory response in monocytes during infection.
Ceruloplasmin synthesis can create an inhospitable environment
for invasive pathogens due to its ferroxidase activity (53), while
being crucial to elicit an inflammatory response, ceruloplasmin
would then need to be downregulated in order to resolve
the inflammatory process. This would require an intact GAIT
complex that would presumably need sufficient levels of GAPDH
in order to terminate the translation of this protein (and other
pro-inflammatory proteins that are IFNγ-responsive).

As discussed, SARS-CoV downregulates GAPDH expression
upon infection such that one could imagine a scenario that
lacking sufficient levels of this crucial (i.e., last step) protein,
the complex is unable to terminate anti-inflammatory responses
in monocytes thereby leading to an unabated inflammatory
response. In addition to downregulating GAPDH at the
transcriptional level, one study has demonstrated that the TGEV
coronavirus genome contains a stem-loop structure at the 3’ end
that is capable of binding EPRS and functions as a true GAIT
element in its ability to affect transcription of IFNγ-responsive
genes as evidenced in the study (54). This would imply that this
“decoy” GAIT element likely sequesters the GAPDH protein (in
forming in the GAIT complex) thereby removing this protein
from the available pool to perform other physiological functions.
By examining the nucleotide sequence of the current SARS-CoV-
2 virus, the database (https://www.ncbi.nlm.nih.gov/nuccore/
NC_045512.2) lists three putative stem-loop structures at the
3′ end that could be potential GAIT elements: 29609..29644,
29629..29657, 29675..29903, and 29728..29768.

In addition to its role in controlling downstream IFNγ-
responsive genes, it should also be noted that GAPDH can
also bind to TNFα mRNA in macrophages to suppress
translation until proper signaling (e.g., LPS stimulation) leads
to malonylation of a critical residue releasing GAPDH to allow
translation (55). This mechanism confirms an earlier study
highlighting GAPDH’s role in TNFα expression (56). Besides
regulating TNFα, a preclinical mouse model of ARDS showed
that pre-injecting GAPDH decreased levels of IL6 and resulted in
a survival rate of 80% as opposed to a 100% mortality in control
mice (57).

ANGIOTENSIN PATHWAY

Already mentioned in this review is GAPDH’s regulation of
IFNγ. However, GAPDH is also a transcriptional regulator of a
varied set of genes [for review, see (15)] that includes IFNγ and
AT1R, the angiotensin II type 1 receptor. One function of AT1R
is to bind to ACE2 (the host receptor for both the SARS-COV
and SARS-Cov-2 viruses) leading to endocytosis of the complex
into the cell (58, 59). GAPDH binds at the 3′ end of the AT1R
mRNA acting as a negative transcriptional regulator. As such,
knockdown of GAPDH resulted in a 2.5-fold upregulation of
AT1R in HEK293 cells (60). Since we know from previous studies
like Kamitani et al. that coronaviruses downregulate GAPDH, it
would be expected that AT1R levels would be expected to increase
upon infection. So, how would an increase of AT1R exactly

help/be advantageous for coronaviruses? Changing the amount
of expressed AT1R will likely affect the kinetics of ACE2 (some
of which will be bound to the virus in SARS-CoV-2 patients)
endocytosis and viral entry. It should also be noted that increased
AT1R expression has been shown to result in inflammation and
fibrosis (61).

NITRIC OXIDE PATHWAY

It is apparent that coronaviruses seem to have acquired multiple
mechanisms to disable our immune system rendering some of us
more susceptible to the onslaught of the virus. Having a glycolytic
enzyme that is responsible for different (and vital) functions may
be logical in an evolutionary perspective, but, at the same time,
it can be a potential weakness that seems to be exploited by
coronaviruses. As such, if GAPDH does prove to play a crucial
role in the coronavirus life cycle and its subsequent pathogenesis,
this protein could then be exploited as a therapeutic target. There
are studies that have demonstrated different ways to raise cellular
GAPDH concentrations (62) including stimulating nitric oxide
(NO) synthesis-perhaps by using pharmaceutical therapies like

FIGURE 3 | Quantification of SARS-CoV viral particles at various time points

post-infection in Vero E6 cells treated with SNAP (NO inhibitor, filled circles) or

NAP (control, empty circles) (82).

FIGURE 4 | Northern blot of murine endothelial cells incubated for 18 h with

various combinations of cytokines. Lane A, media alone; Lane B, IFNγ alone;

Lane C, TNFα alone; Lane D, TNFα + L-NMMA (inhibitor of NO synthesis);

Lane E, IFNγ + TNFα; Lane F, IFNγ + TNFα + L-NMMA (85).
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inhaled NO (63). Physiologically, the nitric oxide synthetase
(NOS) family of proteins that includes iNOS (inducible),
eNOS (expressed in endothelial cells), and nNOS (expressed in
neuronal cells) is responsible for the production of NO. More
specifically, eNOS has been shown to be responsible for overall
endothelial homeostasis whose dysfunction leads to pathologies
like vascular inflammation and atherosclerosis (64). In COVID-
19 patients suffering from ARDS, eNOS levels were significantly
lower as compared to COVID-19 patients not suffering from
ARDS (65). It has been proposed that in COVID-19 patients,
inflammation associated with ARDS leads to the uncoupling of
the eNOS activity which then leads to an imbalance in pulmonary
vasoconstriction/vasodilation signaling pathways (66–68) as well
as changes in the lung parenchyma. Lastly, the NO normally
produced from eNOS activity helps vasodilate the blood vessels
thus helping to prevent thrombus formation. This helps to
explain the overall increased coagulopathy in COVID-19 patients
with lower eNOS activity (69). In this light, a recent study has
shown inhaled NO as being an effective respiratory strategy for
COVID-19 patients (70).

Similarly, iNOS activity (responsible for antiviral activity)
has also been shown to have a role in the pathology of
SARS-CoV-2 infections. iNOS helps immune cells respond to
pathogens and can be induced by lipopolysaccharides and
cytokines (71). In infected cells, NO has been shown to nitrosylate
the SARS-CoV-2 proteases (responsible for postranslational
processing of viral proteins)—papain-like protease (PLPRO) and

chymotrypsin (MPRO)—as possible mechanisms that lead to an
inhibition of SARS-CoV-2 (72, 73). Another possible mechanism
includes nitrosylation of host proteins, namely cathepsins CatB
and CatL, that have been shown to have a role in SARS-CoV-2
entry (74, 75). As such, it has been proposed that lower amounts
of NO from reduced eNOS and/or iNOS activity impacts the
pathology of COVID-19 infections in patients (76) which would
suggest that NO could serve as a therapeutic target (77–80).

Overall, the use of NOdramatically slows down the replication
of SARS-CoV in vitro (81, 82) as seen in Figure 3 which now
have recently been corroborated using the SARS-CoV-2 strain
also (83). Previously, it was shown that inhibitors of NO blunted
the anti-viral activity of IFNγ in macrophages as evidenced by
the restoration of viral replication in cells infected with vaccinia,
ectromelia or herpes simplex-1 (84) using these inhibitors.

In order to induce NO synthesis, the Akerström et al. study
also demonstrated that cells required incubation with IFNγ

and IL1b. Other studies have shown upregulation of NO using
requiring exposure to both IFNγ and TNFα in endothelial
cells (85) as shown in Figure 4 or simply to IFNγ alone in
neurons (86), and macrophages (87–90). Overall, iNOS levels
were shown to peak between 12 and 24 h accompanied by a
dramatic upregulation of GAPDH. Treatment with L-NMMA
(N5-[imino(methylamino)methyl]-L-ornithine, an inhibitor of
NO synthesis) was shown to decrease both iNOS and
GAPDH levels substantially (85). Taken together, these results
indicate that NO production has a downstream stimulatory

FIGURE 5 | Summary diagram depicting important GAPDH’s inhibitory role against coronaviruses: (1) Since GAPDH is a negative transcriptional regulator of AT1R

(60), by downregulating GAPDH, the increased AT1R trafficked to the plasma membrane by logic would upregulate inflammation pathways and aid viral host entry

(58, 59). (2) SARS-CoV has been shown to actively downregulate GAPDH which has downstream effects on IFNγ production as well as likely the ability to turn off the

downstream inflammatory genes of IFNγ-responsive genes (21, 23). (3) GAPDH knockdown results in increased TGEV mRNA which implicates GAPDH as an inhibitor

at the transcriptional level (11). (4) GAPDH forms a key component of the GAIT complex (50) responsible for termination of pro-inflammatory IFNγ-responsive genes

that are necessary in order to resolve the inflammatory process. (5) Additionally, GAPDH was shown to be necessary for IFNγ production in macrophages (36). (6)

IFNγ production then leads to an increase in NO production (82, 85). (7) This increase in NO has been shown to increase GAPDH levels (85) thereby completing what

appears to be a feedback loop between GAPDH, IFNγ, and NO. Lastly, GAPDH has been shown to play a role in NO secretion (95). Blue arrows indicate stimulatory

effect while red bar-headed lines indicate inhibitory effect.
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effect on GAPDH levels, an observation that has since been
confirmed (91).

Additionally, NO production can also lead to a nitrosylated
form of GAPDH, thereby allowing translocation to the nucleus
to perform non-glycolytic functions such as RNA export (92).
Incidentally, NO has also been shown to increase expression of
Herc6, an E3 ubiquitin ligase (91) in rat retinal ganglion cells.
In mouse studies, Herc6 has been shown to stimulate the IFNγ

promoter [likely through its actions on IRF3 (93) as well as
through participation in the conjugation of ISG15 to viral targets
for degradation (94)]. It should be noted that there appears
to be a feedback loop whereby GAPDH can increase iNOS
activity (95) by inserting a heme group into the iNOS protein.
Lastly, a recent study showed that deficiency in both iNOS and
another protein (IRG1, immune-responsive gene 1) resulted in
a decreased IFNγ response and an inability to control pathogen
replication (96). These observations point to an interrelationship
between GAPDH, IFNγ production, and NO signaling which is
summarized in Figure 5.

RELATED COVID-19 CLINICAL
OBSERVATIONS

Lastly, how might the immunological consequences of GAPDH
being downregulated by SARS-CoV (and likely SARS-Cov-2) be
reflected in some of the current clinical presentations which we
see in the COVID-19 pandemic? Statistics show that the earliest
brunt of the mortality (before the vaccine rollout) was on elderly
patients (97). This could reflect (or at least partly) the fact that
GAPDH levels markedly decrease with age (98, 99). According to
the Yamaguchi et al. study, decreasing GAPDH levels as observed
among older patients would imply decreased IFNγ production
which would impair the patient’s immune system’s ability. This
was highlighted in a recent study demonstrating that adults are
more susceptible to SARSCoV-2 due to decreased IFNγ levels
(100). It is also noteworthy that both NO (101) and interferon
(102) production decrease with age.

Another group of studies (103, 104) also showed that
females are far more likely to survive COVID-19 infection
than males (by a ratio of 2:1). This was also seen in patients
that were infected with Middle East Respiratory Syndrome-
MERS coronavirus (105). A recent transcriptomic analysis of our
immune system showed little differences between genders with
the exception of macrophages which show sexual dimorphism
(i.e., stronger immune response in females) after activation
of the innate immune system and particularly after interferon
stimulation (106). This would fit into the hypothesis that the

lack of interferon response likely contributes to the pathology
of coronaviruses.

In terms of comorbidities, it’s logical to see how a multi-
faceted protein like GAPDH might explain the COVID-19
statistics of those that are suffering from underlying conditions
like diabetes. Reducing GAPDH levels, as we have seen
coronaviruses do, would decrease the amount of GAPDH
available for serving vital roles in these patients (whose systems
are already being taxed) that depend on its vital glycolytic
function to help maintain optimal health (107). Perhaps, one can
think of this as being analogous to two-hit hypothesis (108) in
cancer whereby the virus becomes the second hit, and the source
of morbidity being the first hit (“health dysfunction”) because as
the virus decreases GAPDH levels, the cells in these patients are
likely struggling to maintain adequate homeostatic levels leading
to a physiological tug-of-war.

CONCLUSIONS

In addition to nitric oxide, another therapeutic compound,
dexamethasone (a corticosteroid), which has been shown to
increase GAPDH levels (109, 110), has also proven effective
against SARS-CoV-2 (111). Lastly, if the feedback loop in
Figure 5 is correct, measuring a patient’s relative GAPDH levels
may be useful for clinicians since differences in expression levels
can be further amplified even further in signaling pathways
downstream. The fact that many of the studies reviewed
here centered on monocytes (macrophages in particular)
underscores the importance of the innate immune system against
coronaviruses. While some of the findings reviewed here center
on SARS-CoV-2 directly, other results come from other members
of this family of viruses given the lack of information on
this latest coronavirus strain. Pieced together, they point to
the GAPDH/IFNγ/NO pathways as potential therapeutic targets
against coronaviruses that should be examined in greater detail.
By knowing these molecular steps, anti-viral strategies like NO
therapy could perhaps be better utilized to fight this current (and
future) pandemic(s).
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