
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Vet. Sci.
Sec. Animal Nutrition and Metabolism
Volume 12 - 2025 | doi: 10.3389/fvets.2025.1587004
This article is part of the Research TopicSustainable Nutritional Strategies for Improving Health Status, Egg and Meat Quality in PoultryView all 3 articles
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Dietary protein plays a crucial role in poultry nutrition, influencing nitrogen metabolism, renal function, and immune responses. This study investigated the effects of dietary protein source (plant-based vs. animal-based) and level (14.5%, 18.5%, and 22.5%) on serum biochemical parameters, renal metabolic markers, inflammatory cytokines, and gene expression in Jiangnan White goslings from day 1 to day 30 of age. A 2×3 factorial design was employed with 504 goslings randomly assigned to six groups, each comprising six replicates with 14 goslings per replicate. The results showed that dietary protein level significantly influenced serum uric acid (UA), creatinine (Cr), urea nitrogen (UN), and xanthine oxidase (XOD) activity, with goslings fed a high-protein diet (22.5%) exhibiting the highest levels (P < 0.05). Increased dietary protein also led to significantly elevated renal UA concentrations and XOD activity, particularly at 22 and 30 days (P < 0.05). In contrast, dietary protein source had limited influence on metabolic parameters, with only a transient difference in serum UA and Cr observed at 10 days of age (P < 0.05), and no significant effects on other serum or renal markers (P > 0.05). Additionally, renal inflammatory cytokines (IL-1β, IL-8, TNF-β) were significantly influenced by protein level, whereas XDH, BCL-2, and GLUT-9 mRNA expression remained unchanged (P > 0.05). No significant interactions between protein source and level were observed for most metabolic parameters, except for Cr and TNF-β. These findings suggest that total protein intake, rather than protein source, is the primary regulator of nitrogen metabolism and renal health in goslings. Optimization of protein levels is essential to balance growth performance and metabolic homeostasis.
Keywords: Goslings, protein level, Protein source, Uric Acid, Xanthine Oxidase, Renal function, inflammatory cytokines
Received: 03 Mar 2025; Accepted: 15 Apr 2025.
Copyright: © 2025 Chen, Yang, Li, Su, Yang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Zhiyue Wang, Yangzhou University, Yangzhou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.