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Background: Bovine respiratory disease (BRD) is a prevalent and costly condition 
in the cattle industry, impacting long-term productivity, antibioticusage, and 
global food safety. Thus, identifying reliable biomarkers for BRD is crucial for 
early diagnosis, effective treatment, and monitoring therapeutic outcomes.

Methods: This study identified differentially expressed genes (DEGs) associated 
with BRD by analyzing a blood RNA-seq expression dataset associated with BRD, 
and conducted a Kyoto Encyclopedia of Genes and Genomes (KEGG) approach 
enrichment and Gene Ontology (GO) annotation analysis on these DEGs. Meanwhile, 
the key modules related to BRD were screened by weighted gene co-expression 
network analysis (WGCNA), and the genes in the module were intersected with 
DEGs. Subequently, least absolute shrinkage and selection operator (LASSO) and 
random forest (RF) analysis were employed to identify potential biomarkers. Finally, 
gene set enrichment analysis (GSEA) was performed to explore the potential 
mechanisms of the identified biomarkers, and their diagnostic significance was 
assessed using receiver operator characteristic (ROC) curve analysis and real-time 
fluorescent quantitative PCR (RT-qPCR). In addition, immune cell infiltration in 
BRD was evaluated using the CIBERSORT algorithm and the correlation between 
biomarkers and immune cell infiltration was analyzed.

Results: The results showed that a total of 1,097 DEG were screened. GO and 
KEGG analysis showed that DEGs was mainly enriched in inflammatory response, 
defense response, Complement and coagulation cascades and Antigen processing 
and presentation pathways. WGCNA analysis determined that the cyan module 
had the highest correlation with BRD. A total of 833 overlapping genes were 
identified through Venn analysis of the differential and WGCNA results. Lasso and 
RF analyses identified five potential biomarkers for BRD. RT-qPCR testing and data 
set analysis showed that the expression levels of these five potential biomarkers 
in nasal mucus and blood of BRD cattle were significantly higher than those of 
healthy cattle. In addition, ROC curve analysis showed that potential biomarkers had 
high diagnostic value. GSEA analysis revealed that potential biomarkers are mainly 
involved in Neutrophil extracellular trap formation, Complement and coagulation 
cascades, T cell receptor signaling pathway, B cell receptor signaling pathway, Fc 
gamma R-mediated phagocytosis and IL-17 signaling pathway. The results from 
the CIBERSORT algorithm demonstrated a significant difference in immune cell 
composition between the BRD group and the healthy group, indicating that the 
diagnostic biomarkers were closely associated with immune cells.

Conclusion: This study identified ADGRG3, CDKN1A, CA4, GGT5, and SLC26A8 
as potential diagnostic markers for BRD, providing significant insights for the 
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development of new immunotherapy targets and improving disease prevention 
and treatment strategies.

KEYWORDS

bovine respiratory disease, lifetime productivity, potential biomarkers, immune 
infiltration, CIBERSORT

1 Introduction

Bovine respiratory disease (BRD), also known as calf pneumonia, 
is the main cause of calf morbidity and death, resulting in huge 
economic losses and damage to animal welfare (1–3). BRD is caused 
by a variety of factors and is associated with infection of cattle with 
bacterial (Mycoplasma bovis, Mannheimia haemolytica, Pasteurella 
multocida, Haemophilus) and viral Bovine respiratory syncytial virus 
(BRSV), Bovine herpesvirus type 1 (BHV-1), Bovine viral diarrhea 
virus (BVDV), Bovine Parainfluenza Virus type 3 (PI-3), and Bovine 
Coronavirus (BCoV) pathogens, which occur when cattle exhibit an 
inadequate response (1, 4, 5). Among them, BRSV is the main cause 
of BRD in calves (≤1 year old). BRSV infection can inhibit the 
immune defense mechanism of the host, resulting in replication, 
inhalation and colonization of M. haemolytica in the upper respiratory 
system of cattle, and the host infection of the virus does not show 
obvious symptoms (6).

Survey data provided by the National Animal Health Monitoring 
System (NAHMS) indicated that 16.2% of feedlot cattle were affected 
by BRD (7). In beef farms and calves from birth to weaning, the 
prevalence of BRD is about 20% (8). In addition, BRD is responsible 
not only for the deaths of 1/4 pre-weaned dairy calf and half of post-
weaning dairy calf, but also for about half of the deaths of beef cattle 
on farms (2, 3, 9). Taking into account the differences in the 
environment and management of calves on farms, the researchers 
speculated that the proportion of cattle with BRD may be much higher 
than the data assessed by NAHMS. BRD-induced deaths represent a 
direct loss, whereas the greater economic impact arises from reduced 
production performance due to repeated treatments and lung lesions 
(10–12). Studies have found that beef cattle with BRD result in reduced 
growth rates as well as lower carcass quality at slaughter (12–14). Dairy 
cows suffering from BRD will lead to an increase in the age of first 
calving, a decrease in first birth and survival rate, a decrease in 
lactation yield and a decrease in the life span of dairy cows (13, 15, 16). 
In the United States, the annual economic loss caused by BRD affecting 
cattle production performance may exceed 2 billion US dollars (17).

At present, the standard method of BRD on-site detection is a 
scoring system based on visual clinical diagnosis (VCD), which depends 
on the observation of rectal temperature, respiratory rate, cough, nasal 
secretions and so on (18, 19). However, most clinical symptoms have 
low sensitivity and specificity for the assessment of BRD, and calves 
with subclinical BRD cannot be identified (18, 20, 21). Furthermore, 
different examiners have different diagnostic results of the disease, 
resulting in economic losses and extensive use of antibiotics (22, 23). It 
is reported that in the dairy cow population, the diagnostic sensitivity 
of the VCD scoring system is 77–100%, and the screening sensitivity is 
46–77%, indicating that about 23% of the infected or suspected infected 
animals have not been detected. In addition, the average specificity of 
this method was 46–92%, indicating that 8–54% of healthy cattle 
received unnecessary treatment (24–26). Therefore, it is very important 

to reveal the molecular mechanism of BRD and identify the biomarkers 
of BRD in order to reduce the incidence and the use of antibiotics.

With the rapid development of gene chip and high-throughput 
sequencing technology, the use of bioinformatics analysis methods to 
explore potential biomarkers and their complex mechanisms of 
disease has been widely used. Based on the GSE162156 dataset, this 
study used a comprehensive strategy of differential expression analysis, 
co-expression analysis, machine learning analysis and RT-qPCR 
detection to screen and identify potential biomarkers associated with 
BRD. In addition, we investigated the correlation between potential 
biomarkers and infiltrating immune cells using the CIBERSORT 
algorithm, providing insights to better understand the molecular 
immune mechanisms underlying BRD and the development of its 
immune-targeted therapies.

2 Materials and methods

2.1 Sample collection and cytological 
testing

Nasal mucus and blood samples were collected from three healthy 
dairy cows and three sick dairy cows in a large-scale breeding farm. 
RNA was extracted and reverse transcribed into cDNA for RT-qPCR 
to detect changes in the expression of target genes. In addition, 
changes in neutrophils in nasal mucus cells of healthy and sick cattle 
were identified based on Giemsa staining. All the experiments were 
conducted in strict accordance with the recommendations in the 
guidelines for Animal Protection and Utilization of Tianjin Academy 
of Agricultural Sciences and approved by the Animal Welfare 
Committee of Tianjin Academy of Agricultural Sciences.

2.2 Data processing

In this study, the GSE162156 dataset and GSE150706 dataset were 
downloaded from the GEO database. We selected 18 BRD samples 
and 18 healthy samples from the GSE162156 dataset for analysis, and 
11 BRD samples and 15 health samples from the GSE150706 dataset 
for verification (27). First, FastQC was used to perform quality 
statistics on the raw data in fastq format, MultiQc was used to integrate 
the FastQC results, trim_galore was utilized to remove the data with 
low quality values, and the reads that contained a percentage of N 
greater than 5% as well as those that contained joints were removed. 
Second, the cattle reference genome sequence file and annotation file 
were downloaded from the Ensembl website,1 and hisat2 was used to 

1 https://mart.ensembl.org/index.html
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build an index and align the data. Finally, featureCounts was used to 
count reads and obtain the original expression matrix.

2.3 Identification of DEGs

In this study, BRD samples and healthy samples were analyzed for 
differential expression using the limma package of R software, and 
differentially expressed genes were screened using p < 0.05 and|log2 
fold change (FC)| ≥1 as criteria (28, 29). Volcano mapping of 
differential genes using the ggplot2 package (30–32). The Pheatmap 
package was used to generate a heatmap of the top 200 upregulated 
and downregulated differentially expressed genes (33, 34).

2.4 Functional enrichment analysis of 
differential genes

GO and KEGG analyses of differential genes using the 
clusterProfiler package in R software were used to explore the 
biological functions of differential genes (35, 36). Significant 
enrichment in the GO terms and KEGG pathway was considered 
when p < 0.05.

2.5 Weighted gene co-expression network 
analysis

WGCNA is a systematic biological method, which is usually used 
to identify and screen disease markers in organisms. In this study, 
based on the scale-free topology criterion, the weighted gene 
co-expression network was analyzed by using WGCNA package in R 
software (37). Firstly, we checked the integrity of the data using the 
goodSamplesGenes function of the WGCNA package. Second, the 
pickSoftThreshold function was used to select the optimal soft 
threshold. The adjacency matrix is constructed by calculating Pearson 
correlation coefficient, and the adjacency matrix is transformed into 
topological overlap matrix (TOM). Then, the samples are clustered 
hierarchically based on the dissimilarity degree of TOM matrix, and 
all genes are divided into modules. The minimum number of genes in 
each module was limited to 30, and a merging threshold of 0.25 was 
used to merge similar modules. Finally, based on the gene significance 
(GS) value and module member (MM) value to measure the 
relationship between gene modules and BRD, and finally determine 
the key modules.

2.6 PPI network construction

We identified common genes DGEs and key module genes by 
Venn analysis. Subsequently, the protein–protein interaction (PPI) 
network was constructed for these identified genes using the STRING 
website,2 and the results were visualized using Cytoscape software.

2 https://cn.string-db.org/

2.7 Identification of potential biomarkers

LASSO is a regression analysis algorithm that combines variable 
selection and regularization, which can improve the prediction accuracy 
(38). RF is a machine learning algorithm based on decision tree theory, 
which is widely used in sample training and prediction (39). In this study, 
the glmnet package of R software was used to perform LASSO analysis 
on the common genes identified previously (40). First, intersection 
validation was performed to set the alpha value to 1 and n folds to 10. 
Subsequently, the dataset is divided into a training set and a validation 
set, the LASSO model is trained on the training set, and then the 
performance of the model is evaluated on the validation set. RF analysis 
of common genes was performed using the randomForest package of R 
software (41). The dataset was divided into a training set (70% of the 
data) and a test set (30% of the data). The parameter ntree was set to 180, 
and the “importance” function was used to obtain potential biomarkers 
with high importance. Venn analysis was used to find common genes 
between LASSO and RF results, defined as potential biomarkers.

2.8 ROC assessment and RT-qPCR assay

In this study, we  first evaluated the differential expression of 
potential biomarkers in BRD samples and healthy samples in 
GSE162156 data sets. Then, the ROC curve of potential biomarkers was 
drawn by using the “pROC” package of R software, and the area under 
the curve (AUC) was calculated to determine the accuracy of potential 
biomarkers as a diagnostic gene (42, 43). The closer the AUC value is to 
1, the greater the diagnostic value is (44–46). In addition, the 
GSE150706 dataset was used to verify the expression level and 
diagnostic value of potential biomarkers in BRD samples and healthy 
samples. Finally, total RNA was extracted from bovine blood and nasal 
mucus samples using TRIZOL reagent (Invitrogen, United States). The 
first-strand cDNA was prepared using PrimeScriptII First-Strand 
cDNA Synthesis Kit (Takara, Dalian, China). RT-qPCR was performed 
on a LightCycler® 96 instrument (Roche, Germany) using a 
All-in-One™ qRT-PCR mixture (Genocopoeia, Guangzhou, China) to 
detect the expression level of mRNA. In the RT-qPCR experiment of 
nasal mucus and blood samples, GAPDH mRNA was used as the basic 
level of endogenous control, and the relative expression level of the gene 
was calculated using the 2 CT−∆∆  method. When p < 0.05, it was 
considered to be statistically significant. All primer information used 
and RT-qPCR program information are listed in Supplementary Table 10.

2.9 Gene set enrichment analysis

GSEA is often used to analyze and explain changes in pathways 
and biological processes in expressive data sets (47). In this study, 
GSEA analysis of a single potential biomarkers was carried out by 
using the clusterProfiler package of R software to further determine 
the potential function of the potential biomarkers associated with BRD.

2.10 CIBERSORT

CIBERSORT is a machine learning algorithm that can analyze the 
proportion of immune cells in tissue samples (48). In this study, the 
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“CiberSort” package of R software was used to analyze the data of the 
BRD group and the healthy group. The analysis resulted in an 
expression matrix of 22 immune cell infiltrations, and a bar graph was 
used to quantify the percentage of each immune cell type in the sample 
(49). In addition, based on the matrix of immune cell infiltration 
obtained by the CIBERSORT algorithm, the Spearman function was 
used to calculate the correlation coefficient between the gene expression 
value (x) and the proportion of various immune cell types (y) (50).

2.11 Statistical analysis

In this study, nonparametric test or t test was used to analyze the 
statistical significance of gene expression in BRD samples and healthy 
samples (51, 52). Statistical analysis is carried out using the “ggpubr” 
package of R software, and the “ggplot2” package is used to generate 
images (30–32, 53). Figure 1 provides the workflow for this study analysis.

3 Results

3.1 Identification of differentially expressed 
genes

According to the screening criteria, we  identified 1,097 
differentially expressed genes in GSE162156 data set, including 

653 up-regulated genes and 444 down-regulated genes (Figure 2A 
and Supplementary Tables 1, 2). Figure  2B shows the heat 
map of the first 200 differential genes up-regulated and 200 
down-regulated.

3.2 Functional enrichment analysis of 
differentially expressed genes

In this study, GO and KEGG pathways were analyzed to study the 
biological function of DEGs. The results of biological process analysis 
showed that the differential genes were mainly enriched in 
inflammatory response, defense response and negative regulation of 
immune effector process (Figure 3A and Supplementary Table 3). Cell 
component analysis showed that the differential genes were enriched 
in extracellular space, plasma membrane region, membrane raft and 
membrane micro domain (Figure 3A and Supplementary Table 3). 
Molecular function analysis showed that the differential genes were 
enriched in calcium ion binding, antioxidant activity and G protein-
coupled receptor activity (Figure 3A and Supplementary Table 3). 
KEGG analysis showed that the differential genes were mainly 
enriched in complement and coagulation cascades, cytokine–
cytokine receptor interaction, calcium signaling pathway, chemokine 
signaling pathway, focal adhesion, PI3K-Akt signaling pathway and 
antigen processing and presentation (Figure 3B and Supplementary  
Table 3).

FIGURE 1

The analysis flow chart of this study.
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FIGURE 2

Differential expression analysis between BRD and healthy groups. (A) Volcanic map of differentially expressed genes. The screening threshold was set 
at p < 0.05, |log FC| >1. (B) The heat map of differentially expressed genes.

FIGURE 3

Functional enrichment analysis of DEGs. (A) The GO analysis results of DEGs, list the top 10 most important enrichment pathways in BP, CC and MF 
analyses. (B) KEGG analysis of DEGs list the top 25 most important enrichment pathways in the results.
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FIGURE 4

WGCNA analysis and identification of candidate potential biomarkers in BRD group and healthy group. (A) Determine the WGCNA soft threshold power 
(left) and average connectivity (right). (B) Clustering tree diagram for WGCNA. (C) Heat map of the relationship between modules and traits. (D) The 
gene in turquoise module and the Venn analysis results of DEGs. (E) Construction of overlapping gene PPI network.

3.3 Weighted gene co-expression network 
analysis

In this study, a scale-free co-expression network was 
constructed using WGCNA to determine the modules most 
related to BRD. When R2 = 0.8, the soft threshold power is 
determined to be  9 (Figure  4A). The clustering tree of BRD 
group and healthy group was generated by WGCNA analysis 
(Figure 4B), and 13 gene co-expression modules were obtained 
(Figure  4C and Supplementary Table  4). Among them, the 
turquoise module, which contains 2,441 genes, showed the most 
significant correlation with BRD (R = 0.93, p = 3 × 10−16). Venn 
analysis showed that 833 genes in the turquoise module overlap 
with the DEGs gene, and these overlapping genes will be further 
used for analysis and identification (Figure  4D). Figure  4E 
shows that a PPI interaction network of overlapping genes was 
constructed using the joint analysis of the STRING website and 

Cytoscape software, clarifying the regulatory relationship 
between these genes.

3.4 Identification of potential biomarkers 
based on machine learning algorithm

In this study, two machine learning algorithms were utilized 
to screen key biodiagnostic marker genes for BRD from 833 
candidate potential biomarkers. The results showed that 20 
possible marker genes were identified by LASSO regression 
algorithm and 37 by random forest method (Figures 5A–D and 
Supplementary Tables 5, 6). We performed Venn analysis on the 
results of both algorithms and finally identified five potential 
biomarkers, including ADGRG3, CDKN1A, CA4, GGT5 and 
SLC26A8 (Figure 5E).

https://doi.org/10.3389/fvets.2025.1556676
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3.5 Analysis of expression level of potential 
biomarkers in BRD and evaluation of its 
diagnostic value

In this study, box plot was used to determine the expression 
level of five potential biomarkers in BRD group and healthy group. 
The results showed that the expression levels of ADGRG3, 
CDKN1A, CA4, GGT5 and SLC26A8 genes in BRD group were 
significantly higher than those in healthy group (Figure 6A), and 
this result was also verified in external data sets GSE150706 
(Figure 6B and Supplementary Table 7). Then, the accuracy and 
specificity of five potential biomarkers as diagnostic genes for BRD 
were determined by ROC curve analysis. The results showed that 
in the training dataset GSE162156 and the validation dataset 
GSE150706, the AUC values of the five potential biomarkers were 
all greater than 0.95, and the true positive rate (TPR) of the 
ordinate (representing sensitivity) and the false positive rate (FPR) 
of the abscissa (representing specificity) were both close to 1 
(Supplementary Figure 3). Theory shows that the closer the AUC 
value is to 1, the larger the area under the curve, indicating that 
the higher the accuracy of the prediction model. In addition, 
RT-qPCR testing of nasal mucus and blood samples from healthy 
and sick cattle showed that the expression level of potential 
biomarkers was significantly increased in nasal mucus and blood 
of cattle with BRD (Figures  6C,D). The results show that the 
screened potential biomarkers are of high value in the 
diagnosis of BRD.

3.6 GSEA analysis of the potential 
biomarkers

We studied the specific role of potential biomarkers by GSEA. The 
results showed that in the training dataset GSE162156, genes showing 
positive correlation with potential biomarkers were mainly enriched in 
NOD-like receptor signaling pathway, neutrophil extracellular trap 
formation, necroptosis, complement and coagulation cascades, T cell 
receptor signaling pathway, B cell receptor signaling pathway, lysosome, Fc 
gamma R-mediated phagocytosis, Th1 and Th2 cell differentiation and 
IL-17 signaling pathway (Figure 7 and Supplementary Table 8).

3.7 Immune cell infiltration analysis

In this study, CIBERSORT algorithm was used to analyze the changes 
of the proportion of immune cells in BRD samples and healthy samples 
(Supplementary Table 9). The results showed that the expressions of B 
cells memory, T cells CD8 and T cells CD4 naive were higher in healthy 
samples, while B cells naive, monocytes and neutrophils were higher in 
BRD samples (Figure 8A). Cytological microscopy also showed that the 
cells in the nasal mucus of healthy cattle were normal nasal mucosa 
epithelial cells (NECs) with complete shape, clear and independent 
nuclei. In the inflammatory group, the proportion of polymorphonuclear 
leukocytes (PMNs) was higher, and there were fewer normal NECs. The 
relative heat map of immune cells showed that T cells CD8 was positively 
correlated with T cells regulatory (Tregs) and B cells memory, and 

FIGURE 5

To identify the key potential biomarkers of BRD. (A) LASSO regression parameter diagram. (B) LASSO regression coefficient diagram. (C,D) Results of 
random forest analysis. (E) The overlapping genes in the results of LASSO regression analysis and random forest analysis were determined.
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FIGURE 6

The expression level of potential biomarkers was detected. (A) The GSE162156 dataset analyzed potential biomarkers expression levels. (B) The 
GSE150706 dataset analyzed potential biomarkers expression levels. (C) RT-qPCR was used to detect the expression level of potential biomarkers in 
bovine nasal mucus samples. (D) RT-qPCR was used to detect the expression level of potential biomarkers in bovine blood samples.

negatively correlated with B cells naive, neutrophils, T cells CD4 memory 
activated and Monocytes. B cells memory was positively correlated with 
T cells CD4 naive and negatively correlated with B cells naive, neutrophils 
and monocytes. T cells CD4 naive was negatively correlated with B cells 
naive and monocytes, while T cells regulatory (Tregs) was negatively 
correlated with neutrophils and T cells CD4 memory activated. 
Monocytes was positively correlated with B cells naive, macrophages M0 
and T cells CD4 memory activated, T cells gamma delta was positively 
correlated with T cells follicular helper  and T cells CD4 memory 
activated, and B cells naive was positively correlated with neutrophils 
(Figure 8B). The difference analysis of immunocyte infiltration between 
BRD samples and healthy samples is shown in Figure 8C. Compared with 
the healthy group, the levels of neutrophils, monocytes, T cells CD4 
memory activated, plasma cells and B cells naive in BRD group were 
higher, while the levels of B cells memory, T cells CD8, T cells CD4 naive, 
T cells regulatory (Tregs) and NK cells resting were lower. In short, there 
was a significant difference in immune cell infiltration between BRD 
group and control group.

3.8 Relationship of biomarkers with 
infiltrating immune cells

In this study, we  analyzed the relationship between potential 
biomarkers and infiltrating immune cells. The results showed that the 

expression of ADGRG3 (Figure 9A), CDKN1A (Figure 9B), CA4 
(Figure 9C), GGT5 (Figure 9D) and SLC26A8 (Figure 9E) genes was 
positively correlated with the levels of B cells naive, neutrophils, 
monocytes and T cells CD4 memory activated, and negatively 
correlated with the expression of NK cells resting, T cells regulatory 
(Tregs), T cells CD4 naive, T cells CD8 and B cells memory (Figure 9). 
In addition, the expression of CDKN1A gene was positively correlated 
with the level of T cells CD4 memory resting (Figure  9B), the 
expression of GGT5 gene was positively correlated with the level of 
macrophages M0 and T cells gamma delta (Figure  9D), and the 
expression of SLC26A8 gene was positively correlated with the level 
of macrophages M0, T cells gamma delta and T cells follicular helper 
(Figure 9E).

4 Discussion

BRD is a respiratory disease caused by bacteria and viruses, which 
can cause huge economic losses to beef cattle and dairy cattle. 
Therefore, accurate diagnosis is essential for initiating appropriate 
treatment. RNA-Seq-based transcriptomics can reveal the 
comprehensive mechanisms of the host response to infection and 
identify disease-associated genetic markers and their enrichment 
pathways through differential gene expression analysis (54–57). 
Studies have shown differential expression of genes associated with 
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innate immunity in peripheral blood leukocytes of cattle 
experimentally or naturally infected with BRD (51, 58, 59). Similarly, 
differentially expressed genes were continuously enriched in pathways 
related to innate immunity in bovine bronchial lymphoid tissue 
infected with a single BRD pathogen (60, 61). In addition, before cattle 
were finally diagnosed with BRD and showed clinical symptoms, 
researchers had detected the differential expression of genes involved 
in the regulation of inflammation, and the changes in the expression 
of these genes were related to the severity of the disease (56, 57, 62). 
The results show that the identification of disease biomarkers by 
difference analysis is of great significance for early disease diagnosis 
and finding new treatment methods.

Blood transcriptomics can detect the level of gene expression in 
various systems of the body, provide new insights for the identification 
of system molecular biomarkers, and become a method for early 
diagnosis of complex infectious diseases (62, 63). In this study, DEGs 
in the blood of cattle with BRD and healthy cattle was analyzed, and 
the key modules related to BRD were obtained based on WGCNA 
analysis (Figures  2, 4 and Supplementary Tables 2, 4). Then, five 
potential biomarkers (ADGRG3, CDKN1A, CA4, GGT5, and 
SLC26A8) associated with BRD were identified through LASSO 

analysis and RF analysis, and the expression level of potential 
biomarkers was analyzed using dataset verification and RT-qPCR 
detection. Studies have shown that ADGRG3 is highly expressed in 
eosinophils, neutrophils and mast cells, which participates in 
macrophage inflammation induced by high-fat diet in obese mice and 
plays a key role in the occurrence and development of asthma (64–67). 
Correlation studies of ADGRs reveals that ADGRG3, ADGRA1, 
ADGRF1, CD4T cells and CD8 cells were involved in the tumor-
related inflammatory response of uterine corpus endometrial 
carcinoma (UCEC) patients, and affected the clinical prognosis of 
UCEC patients (68). CDKN1A is involved in the regulation of cell 
replication, senescence, apoptosis and other processes, and is highly 
expressed in activated mast cells, eosinophils, neutrophils and 
memory CD4T cells (69, 70). In nodular granuloma, high expression 
of CDKN1A leads to reduced apoptosis and persistent inflammation 
(71). In addition, in glial cells induced by lipopolysaccharide (LPS), 
targeted interference with the expression of CDKN1A is related to the 
decreased activity of NF-kappaB (72). Similarly, knockout of 
CDKN1A expression reduced lung inflammation in mice induced by 
smoking, LPS and N-formyl-methionyl-leucyl-phenylalanine (fMLP) 
(73). CA4 is a zinc metalloenzyme involved in maintaining the 

FIGURE 7

Results of GSEA enrichment analysis of genes positively associated with (A) ADGRG3, (B) CDKN1A, (C) CA4, (D) GGT5 and (E) SLC26A8L in the 
GSE162156 dataset.
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FIGURE 8

Immune cell infiltration analysis. (A) The bar chart shows the proportion of immune cells in different samples. (B) Identification of bovine nasal mucus 
samples by Giemsa staining. (C) The correlation heat map between immune cells. (D) The violin chart shows the difference in immune infiltration 
between BRD samples and healthy samples.

dynamic balance of carbon dioxide and bicarbonate (74). Asthma is a 
chronic inflammation characterized by eosinophil proliferation and 
cell activation. Studies have shown that eosinophils express CA4 after 
exposure to IL-5 or allergens, and CA4 is involved in the regulation of 
lung transcriptional groups associated with allergic respiratory 
inflammation (75). GGT5 is a kind of cell surface protein, which is 
widely expressed in tissues and is mainly involved in biological 
processes such as inflammation, angiogenesis and immune response 
(76, 77). In the study of the expression of GGT5 in gastric cancer and 
its correlation with immune cell infiltration, it was found that GGT5 
was highly expressed in gastric cancer, and its expression level was 
positively correlated with the infiltration of dendritic cells, 
macrophages and natural killer cells, and negatively correlated with 
the infiltration of Th17 (77). Screening of disease markers for colitis 
in mice using a machine-learning approach revealed that the 
expression levels of SLC26A8, MMP9, PTGDS, and CD160 were 
significantly elevated in colitis tissues, whereas the expression level of 
TLR5 was significantly reduced (78). Sepsis is a life-threatening 
systemic inflammatory response, and septic shock is the most serious 
complication of sepsis (79, 80). The marker genes of septic shock in 
children and their relationship with immune cells were studied by 

bioinformatics methods. SLC26A8, S100A9, KIF1B, S100A12 and 
UPP1 were identified as the early diagnostic marker genes of septic 
shock in children, and these marker genes may be involved in the 
infiltration of immune cells (81).

In this study, the signal transduction pathways related to 
potential biomarkers were analyzed by GSEA, and it was found 
that the genes positively related to potential biomarkers were 
mainly enriched in NOD-like receptor signaling pathway, 
neutrophil extracellular trap formation, necroptosis, complement 
and coagulation cascades, T cell receptor signaling pathway, B cell 
receptor signaling pathway, lysosome, Fc gamma R-mediated 
phagocytosis, Th1 and Th2 cell differentiation and IL-17 signaling 
pathway (Figure  7 and Supplementary Table  8). When the 
organism is invaded by pathogens, NOD-like receptor signaling 
pathway is activated and produces innate immune response, which 
in turn drives the activation of NF-κB and MAPK, the production 
of cytokines and apoptosis (82). Neutrophil extracellular traps 
(NETs) is a reticular structure composed of DNA histone 
complexes and proteins released by activated neutrophils, which 
can capture viruses, bacteria and fungi and play a key role in 
neutrophil innate immune response and non-infectious diseases 
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(83–86). T cells play an important role in the adaptive immune 
system against foreign invasion, with T cell receptor (TCR) 
signaling being essential for their development and function (87, 
88). B cells can bind specific antigens through their B cell receptors 
(BCR) and present these antigens to T cells, which in turn triggers 
T cell immune response (89). Necroptosis is accompanied by the 
release of damage-associated molecular model (DAMP) and 
cytokines, which triggers the pro-inflammatory response, which is 
a backup cellular defense mechanism (90). Dysfunctional 
necroptosis can lead to neuroinflammation, chronic intestinal 
inflammation, and inflammatory skin diseases (91–95). Th2 cells 
promote the release of IL-13, IL-4 and IL-5 and mediate humoral 
immunity, while Th1 cells activated by IL-12 secrete IFN-γ and 
mediate cellular immunity. When the imbalance between Th1 cells 
and Th2 cells is considered to be  the immunological basis of 
allergic rhinitis (96). IL-17 is a landmark cytokine secreted by 
Th17 cells, which is necessary for the body to defend against 
extracellular fungal and bacterial infections, and is also one of the 
pathogenesis of many autoimmune inflammatory diseases (97). 
The above studies show that the five potential biomarkers identified 
in this study play an active role in chronic inflammation and 
persistent inflammation.

BRD, also known as “transport fever,” is believed to immunosuppress 
calves due to various factors during transportation, which allows the 
respiratory tract to be invaded by numerous of foreign pathogens. In this 
study, bioinformatics algorithm was used to analyze the correlation 
between immune cell infiltration and characteristic genes in cattle with 
BRD and healthy cattle. The results showed that compared with healthy 
cattle, the expression of B cells naive, monocytes and neutrophils in cattle 
with BRD increased, while the expression of B cells memory, T cells CD8, 
T cells CD4 naive, T cells regulatory (Tregs) and NK cells resting 
decreased (Figure 8). Neutrophils are highly phagocytes and are one of 
the first cell types to be recruited to the site of infection. They play an 
important role in protecting the host from bacterial infection, eliminating 
pathogens and tissue remodeling (98). Neutrophils are associated with 
the pathogenesis of many inflammatory diseases, especially respiratory 
diseases (99). Studies suggest that neutrophils may contribute to excessive 
inflammation and tissue damage observed in cattle with BRD induced by 
transport stress, coexisting with disease and injury in the respiratory tract 
(100). In addition, the researchers analyzed the effect of transport on calf 
peripheral blood lymphocyte subsets by flow cytometry and found that 
the percentage of all T lymphocyte subsets decreased significantly 
immediately after transport (101). Meanwhile, the BRD related potential 
biomarkers identified in this study was positively correlated with the 

FIGURE 9

Lollipop plots of the correlation between (A) ADGRG3, (B) CDKN1A, (C) CA4, (D) GGT5, and (E) SLC26A8 and immune cells. In the picture, there is a 
negative correlation on the left and a positive correlation on the right. The larger the dot, the higher the correlation.
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levels of B cells naive, neutrophils, monocytes and T cells CD4 memory 
activated, and negatively correlated with the expression of NK cells 
resting, T cells regulatory (Tregs), T cells CD4 naive, T cells CD8 and B 
cells memory (Figure  9). Studies have shown that CD4T cells are 
considered necessary for the elimination of BHV-1 virus, and CD4T cells 
and CD8T cells play a key role in the immune response to BRSV virus 
infection. In general, these results show that the animal’s own immune 
response plays an important role in determining the susceptibility and 
severity of BRD, and the evaluation of blood immune parameters is very 
important for early detection of BRD.

5 Conclusion

In this study, we employed bioinformatics analysis and machine 
learning algorithms to identify the ADGRG3, CDKN1A, CA4, GGT5, 
and SLC26A8 as potential biomarkers for the diagnosis and treatment 
of BRD. We also found that the expression of these biomarkers was 
closely correlated with the levels of various infiltrating immune cells. 
The results of this study explain the pathogenesis of BRD from the 
perspective of immune infiltration, which helps to better understand 
the immune response of BRD and provide reference for the early 
diagnosis and targeted drug research of BRD.
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