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Preservation of sperm significantly contributes to the advancement of assisted

reproductive technologies, genetic conservation and improvement e�orts,

and precision breeding of livestock. This review distills knowledge from

the existing information and emerging patterns in the field of buck sperm

cryopreservation. The primary focus is on the challenges and opportunities

associated with improving extender formulations and freezing techniques in

order to enhance the vitality of sperm after thawing and to increase the

potential for conception. This review assesses the e�cacy and limitations of

conventional extenders derived from egg yolk or soybean lecithin, and the

adverse impacts of seminal plasma enzymes on sperm quality during the

processes of chilling and cryopreservation. Significant progress has been made

in the fields of molecular biology namely lipidomics, proteomics, metabolomics,

DNA methylation providing valuable knowledge regarding the unique reactions

of sperm to cryopreservation. The utilization of the “omics” technologies has

shown intricate molecular transformation that occur in sperm during freezing

and thawing. Moreover, detection of molecular biomarkers that indicate the

quality of sperm and their ability to withstand freezing provides opportunities

to choose the best sperm samples for cryopreservation. This, in turn, enhances

the results of artificial insemination and genetic conservation endeavors. This

review emphasizes the necessity for adopting a comprehensive approach that

combines molecular and cellular knowledge with practical methods in the field

of sperm cryopreservation to ensure production of goats as major food animals

in the global scale.
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1 Introduction

Goats, among the first domesticated animals, have coexisted with humans for
thousands of years (1). They are globally distributed due to their adaptability to various
climates (2). Primarily valued for meat, milk, fiber, and skin, goats are especially
crucial where land is scarce (3). They are present on all continents except Antarctica,
demonstrating their adaptability (4). Their importance to small-scale farmers, particularly
those in rural areas with limited resources, is significant due to their small size and
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adaptability. Global goat population has surpassed one billion,
doubling in the past 30 years due to increased use by smallholder
farmers (5, 6). Advances in genetics have improved goat farming
efficiency, focusing on meat and milk production (7). Sustainable
farming must integrate productivity, animal health, and food
security through public-private partnerships and research (8).
Therefore, enhancing these practices can significantly benefit
sustainable farming. As such, goats are vital globally, and
addressing challenges is crucial for improving nutrition and
economic stability through food animals (9).

Buck fertility is the ability of a male goat to produce viable
sperm capable of successful fertilization, which is essential for
goat reproduction and affects herd productivity as well as genetic
progress. Male fertility in artificial insemination programs is linked
to sperm fertilizing capability and genetics. Alpine bucks are
recognized for their superior traits such as better semen volume,
concentration, and motility, making them ideal for breeding
programs (10). Even bucks that pass fertility tests may exhibit
subfertility (11), which necessitates detailed sperm structure and
function analysis. Bucks also induce estrus in does, enhancing
overall herd productivity (12). Artificial insemination with frozen
semen has improved performance in Alpine goats, showcasing
the importance of superior genetics (13). Selecting high-quality
bucks is crucial for improving fertility (14). Artificial insemination
with frozen-thawed semen has been successful in maintaining
viable sperm and achieving good conception rates (15). It has also
been effective in enhancing breeding outcomes in synchronized
goats (16). Nutritional and environmental factors, such as seasonal
variations and heat stress, significantly impact buck fertility. Proper
nutrition with balanced protein and energy supports testicular size
and sperm production (17) while heat stress can lead to DNA
damage and altered gene expression, and reducing fertility (18, 19).
Managing these factors and including in the buck soundness exam
are critically important for maintaining fertility and productivity.

Cryobiology examines the limits of life under freezing
conditions and how organisms can be preserved for revival. The
critical method of cryopreservation involves preserving biological
materials, including organelles, for long periods of time at low
temperatures. This technique is essential in fields such as artificial
insemination, organ transplantation, and long-term cell storage
(20–22). Cryoprotectants prevent formation and damaging effects
of ice crystals on molecular and cellular anatomy of sperm
during freezing and thawing (23), with natural examples seen
in species such as frogs that produce cryoprotectants to survive
winter (24, 25). Alaska wood frogs, for instance, synthesize higher
amounts of cryoprotectants to survive freeze-thaw cycles (26).
Cryopreservation is also used as a conservation tool for endangered
species such as the Louisiana pine snake, where sperm viability
post-thaw has been studied (27). Cryopreservation is also utilized
for microbial organisms in teaching, research, and industry (28).
Sperm cryopreservation allows superior donor genetics to be used
in artificial insemination programs (29), with slow freezing and
vitrification as common methods. New cryoprotectants such as
trehalose enhance cell preservation (23, 30). Age affects sperm
quality during cryopreservation, with older bulls showing reduced
motility and oxidative damage (31). Cryoprotectants combined
with antioxidants preserve sperm integrity (32–34), and advanced

computational tools help improve post-thaw sperm quality (35, 36).
Studying the presence of gene products and protein expression
in cryopreserved sperm provides insights into fertility pathways
and the potential effects of cryopreservation on gene expression
after fertilization (37, 38). Supplementing extenders with trehalose
improves buck sperm freeze-thawing tolerance (39, 40), and shows
promise for improving sperm cryosurvival in bulls, bucks, and rams
(41, 42).

2 Extenders for cryopreservation of
mammalian sperm

Semen extenders are vital for sperm preservation, supporting
fertilization by maintaining sperm metabolism, regulating pH,
preventing bacterial contamination, and reducing cryogenic
damage (43, 44). They regulate pH (45), serve as an energy
source (46), provide antioxidant support (47), contain antibiotics
to prevent contamination (48), and help mitigate freezing shock
(49). Extenders are used for both short-term chilling and long-
term cryopreservation (50), with common ingredients such as
egg yolk, skimmed milk (51), and plant-based alternatives like
soybean lecithin (52). Egg yolk extenders form complexes with
Bovine Seminal Plasma proteins (BSP proteins) to preserve sperm
motility (53) while skimmed milk regulates pH and chelates heavy
metals (54). Honey, due to its hyperosmotic properties, enhances
sperm motility and reduces abnormalities (55, 56). Fish oil,
incorporated into extenders, improves semen performance during
freeze-thawing and artificial insemination (43). Soybean lecithin is
a sanitary alternative, protecting against freezing shock (57).

Cryopreservation stimulates Reactive Oxygen Species
(ROS) generation, such as superoxide anions (O−

2 ), hydrogen
peroxide (H2O2), and hydroxyl radicals (OH•) that trigger lipid
peroxidation (58, 59) and cause irreversible damage to sperm
membranes, mitochondria, and DNA. Superoxide dismutase
(SOD), a defense enzyme, catalyzes the conversion of O−

2 to
H2O2 and O2 to avert mitochondrial dysfunction and premature
capacitation (60). Yet, in the event of no neutralization, H2O2 is
implicated in the Fenton reaction, forming highly reactive OH• in
the presence of Fe2+ that initiate lipid peroxidation by targeting
polyunsaturated fatty acids (PUFAs) such as docosahexaenoic
acid (DHA) in sperm membranes, resulting in loss of membrane
integrity, impaired motility, and DNA fragmentation (61, 62).

At the molecular level, antioxidants such as Epididimal
Glutathione Peroxidase 5 (GPx5) play a critical role in detoxifying
reactive intermediates and protecting DNA, lipids, and proteins
from oxidative damage (63). At the cellular level, enzymatic
antioxidants (e.g., SOD, catalase) and non-enzymatic antioxidants
(e.g., vitamins C and E) help preserve mitochondrial function,
essential for ATP production and motility (64, 65). To counter
the accumulation of H2O2 two of the main intracellular protective
enzymes, catalase (CAT) and glutathione peroxidase (GPx), are able
to degrade H2O2 into water and O2 (66) or utilize glutathione
(GSH) to reduce both H2O2 and lipid hydroperoxides (LOOH),
thus successfully targeting the peroxidation chain reaction. SOD
is the first line of defense against ROS, specifically O−

2 radicals.
It catalyzes the dismutation of O−

2 into H2O2 and molecular
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oxygen, thereby reducing the potential for cellular damage caused
by these radicals (67). Adding SOD to semen extenders enhances
sperm quality across species in a concentration-dependent manner.
In bulls, 100–200 IU/mL SOD improves post-thaw motility and
viability (68). In rams, 1–2 mM/mL SOD enhances sperm quality
in both frozen and chilled semen (69). In boars, 150–300 IU/mL
SOD, alone or with catalase, increase motility, viability, and
embryo production while reducing ROS (70). CAT complements
the action of SOD by converting H2O2, a byproduct of O−

2

dismutation, into water and oxygen. This enzymatic activity is
vital in preventing oxidative damage to sperm membranes and
DNA. Research indicates that CAT, along with SOD, is crucial for
maintaining sperm motility and viability under oxidative stress
conditions (71). Adding CAT to semen extenders improves sperm
quality in a concentration-dependent manner across species. In
bulls, 100–200 IU/mL CAT in tris-egg yolk extenders enhances
sperm viability post-thaw, while no significant effect is observed in
citrate-egg yolk extenders (72). In boars, 400 U/mL CAT has been
reported to improve total sperm motility, while 200–400 U/mL
reduces H2O2 levels (73). In rams, 50mM trehalose alone or in
combination with 400 µg CAT has been reported to improve post-
thaw sperm motility (74). In humans, 200–400 IU/mL CAT has
been reported to reduce ROS levels and protect sperm viability,
motility, mitochondrial membrane potential, and DNA integrity
during cryopreservation (75). Following this, CAT and GPx further
detoxify H2O2, converting it into water and oxygen. CAT is
particularly effective at high concentrations of H2O2, while GPx
utilizes glutathione to reduce H2O2 and lipid hydroperoxides, thus
preventing lipid peroxidation (76). Adding GPx to semen extenders
enhances sperm quality in a species- and concentration-dependent
manner. In stallions, 1–5 IU/mL GPx improves acrosome integrity
post-thaw but has no significant effect on motility parameters (77).
During chilled storage, supplementation with 15 IU/mLGPx, along
with SOD and CAT, preserves motility and viability while reducing
caspase-3 activation and DNA fragmentation (78). In bulls, 1.0mM
GPx in a nano lecithin-based extender improves plasma membrane
integrity, reduces lipid peroxidation, and enhances blastocyst
formation in vitro (47). The interplay between these enzymes
is crucial for maintaining cellular redox balance, especially in
spermatozoa, which are particularly susceptible to oxidative stress
due to their high polyunsaturated fatty acid content in membranes
(79). Collectively, these enzymes work synergistically to preserve
the sperm’s redox balance while preventing oxidative damage
and maintaining acrosomal integrity, mitochondrial activity, and
fertilization ability (80, 81). Since cryopreservation significantly
depletes endogenous antioxidant activity, potent antioxidant
supplementation in extenders could provide a breakthrough in
improving buck sperm cryosurvival and post-thaw fertilization
potential (82, 83).

Vitamins C and E have also been shown to donate some
electrons and provide powerful antioxidant effects by neutralizing
free radicals. Selenium and zinc are equally essential as vitamins
in maintaining the antioxidant defense system and facilitating the
action of enzymatic antioxidants. Such minerals act as coenzymes
in biochemical cascade reactions of multiple metabolic enzymatic
reactions and play a significant role in the overall antioxidant
defense system. Beta-carotene and lycopene are also parts of

this family, providing strong antioxidant activity in protecting
lipids from peroxidation. In addition, flavonoids, which are largely
available in fruits and vegetables, possess antioxidant properties
and lead to reduced oxidative stress (84). Adding antioxidants
to semen extenders enhances post-thaw sperm quality in a
species- and concentration-dependent manner. In stallions, α-
tocopherol (0.5–2mM) reduces lipid peroxidation, while ascorbic
acid (0.9–1.8 g/L) improves membrane integrity and stability (85).
In Bhadawari bulls, vitamin E (5mM) and vitamin C (5mM)
individually improve post-thaw sperm parameters, with their
combination (5mM + 5mM) providing the highest protection
against oxidative stress and cold shock (86). In rams, 0.3mM
α-Tocopherol significantly improves post-thaw motility, viability,
normal sperm percentage, and functional integrity, while low-dose
vitamin C (0.1mM) also enhances sperm quality but leads to more
secondary abnormalities (87).

Thesemechanisms also protect the lipid-rich spermmembrane,
composed of polyunsaturated fatty acids, from oxidative damage
caused by lipid peroxidation, thereby ensuring the integrity
and functionality of sperm (88). Commercial extenders such as
Triladyl R©, Ovipro R©, AndroMed R©, and Steridyl R© are widely used,
with plant-based extenders minimizing contamination risk (89–
91). Nanoparticles improve sperm cryopreservation by mitigating
oxidative stress through their antioxidant properties, scavenging
ROS, and stabilizing cell membranes (92, 93). Metal-based
nanoparticles, such as zinc oxide (ZnO) and selenium oxide
(SeO), enhance sperm motility, plasma membrane integrity, and
DNA stability while reducing oxidative damage markers such as
malondialdehyde (94, 95).

Lipid-based nanoparticles further improve post-thaw sperm
quality by providing a protective barrier and stabilizing cellular
membranes (96). Additionally, nanoparticles facilitate sperm
purification and advanced techniques such as chromatin protection
and selective sperm population enrichment, supporting innovative
reproductive applications (97, 98). Liposomes, as phospholipid
bilayer vesicles, enhance sperm cryopreservation by encapsulating
antioxidants and cryoprotectants, thereby reducing oxidative
stress, stabilizing plasma membranes, and improving post-thaw
sperm viability (92, 99). They also offer alternatives to animal-
derived extenders such as egg yolk, addressing biosecurity and
ethical concerns, while liposome-based formulations with trehalose
further improve the rheological properties of cryopreservation
media (100, 101). These multifaceted roles position liposomes as
a key innovation in reproductive biotechnology, enhancing sperm
functionality across species (102, 103).

Success of sperm cryopreservation is significantly influenced
by genetic variations, as molecular markers have been linked to
semen freezability. For instance, in boars, specific genetic markers
have been associated with variations in post-thaw semen quality,
underscoring the role of genetics in cryopreservation outcomes
(104). The composition of sperm membranes is also critical, as
changes during cryopreservation, such as the loss of membrane
sterols, can compromise sperm structural integrity and fertilizing
potential (105–107). The use of cryoprotectants during freezing
helps minimize cryoinjury and cold damage, improving motility
after thawing (108). Molecular markers such as heat shock proteins
70 (HSP70) and peroxiredoxin 6 (PRDX6) have been proposed as
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indicators of sperm freezability, with higher levels correlating with
improved semen quality and fertility (109, 110).

Metabolomic approaches revealed seminal plasma metabolites
associated with sperm cryo-tolerance, offering potential for
optimizing cryopreservation techniques (111). Sperm morphology,
particularly flagellum size, has been linked to freezability,
with larger flagella being associated with reduced cryosurvival
(112). Cryopreservation impacts sperm cellular anatomy and
physiology, including changes in sperm characteristics and mRNA
downregulation, which are vital for fertilization and early embryo
development (95, 113). Additionally, the utilization of supervised
learning methods has been suggested for characterizing sperm
population structures related to freezability, providing insights
into the factors influencing sperm cryo-survival (114). Supervised
learning, a branch of artificial intelligence, relies on training
algorithms with labeled data to detect patterns and predict
outcomes from new datasets. Techniques such as deep learning
models, such as convolutional neural networks (CNNs), have been
applied to sperm analysis, providing more accurate and consistent
evaluations of morphology and motility compared to traditional
methods (115–117). Furthermore, Artificial intelligence-powered
systems enable rapid analysis of large datasets, facilitating
predictions of sperm fertilization potential and identifying factors
affecting sperm cryo-survivability (114, 118, 119). In sperm
cryopreservation, supervised learning algorithms predict post-thaw
motility and viability by leveraging large datasets, which helps
refine freezing protocols and improve success rates in artificial
insemination (116, 120).

Cryopreservation significantly impacts sperm physiology,
including motility, viability, capacitation, acrosome reaction, and
fertilization potential in mammals. Motility is critical for sperm
function in the female reproductive tract, and it can decrease
from 90 to 95% pre-cryopreservation to around 75% post-thaw in
bulls (121). This process also compromises acrosome integrity and
reduces fertilization success due to impaired acrosome reactions
humans and alpacas (122, 123). Cryopreservation induces oxidative
stress, DNA damage, and changes in gene expression, which reduce
embryo quality and development (124, 125). These changes can
influence gene expression that may compromise the quality and
developmental potential of embryos fertilized with cryopreserved
sperm. The negative impact can potentially be due to modifications
in sperm proteins induced by the cryopreservation process as
well (126). Furthermore, the use of cryopreserved sperm can
reduce fertilization rates and blastocyst formation in in vitro

fertilization (IVF) and intracytoplasmic sperm injection (ICSI)
procedures (127).

Premature capacitation and increased DNA fragmentation
are linked to oxidative damage and mitochondrial dysfunction
(128, 129). Structural integrity of the sperm plasma membrane
is significantly compromised during the freeze-thaw cycles,
primarily due to osmotic stress, which causes mechanical strain
and destabilization of the membrane. Although cryoprotectants
such as glycerol provide partial protection against these damages
by reducing ice crystal formation and osmotic imbalances, they
are not entirely effective in preserving the full functionality and
structural integrity of the membranes (130–133). Additionally,
cryopreservation alters sperm’s epigenetic landscape, including

DNA methylation, potentially affecting gene regulation in
embryos (134). These disruptions highlight the need for
improved cryopreservation protocols to maintain sperm
function and embryo development in Assisted Reproductive
Technologies (ARTs).

3 Extenders for cryopreservation of
buck sperm

Spermatogenesis is a complex and essential process for sexual
reproduction, where diploid spermatogonia undergo proliferative
divisions and differentiate into mature haploid spermatozoa
through meiotic phases and sperm cell maturation (135). This
transformation occurs within the seminiferous epithelium in
regulated cycles in the buck testes. Initially, round spermatids are
formed and then elongated along Sertoli cells to produce elongated
spermatids. This process results from coordinated interactions
among Sertoli cells, type A and B spermatogonia, and primary
spermatocytes, which eventually develop into haploid spermatids.
Spermatogenesis in bucks typically spans 47.7 days, culminating
in the release of elongated spermatids into the seminiferous
tubules, where histones are replaced by protamines (136). Buck
sperm exhibit unique molecular characteristics, including distinct
lipid compositions and proteomic profiles, which influence
cryopreservation outcomes, motility, and viability (111, 137, 138).
The sperm morphology, particularly the dimensions of the head
and midpiece, differs from those of other mammals (Table 1)
(139, 140). Regulation of gene expression during spermatogenesis is
controlled by transcriptional, post-transcriptional, and epigenetic
mechanisms, which are essential for sperm maturation and
function (141).

Cryopreservation-induced sperm damage extends beyond
oxidative stress and membrane destabilization, significantly
compromising DNA integrity through multiple mechanisms.
The primary causes of DNA fragmentation in buck sperm
include species-specific genetic characteristics, osmotic stress, and
apoptotic-like pathways, differing in severity from human and
cattle sperm (142, 143). Buck sperm is particularly vulnerable
due to its high PUFA content, which makes it more susceptible
to lipid peroxidation-derived aldehydes such as malondialdehyde
(MDA), further exacerbating DNA fragmentation (144, 145).
Additionally, buck sperm chromatin is less compact and retains
more histones than human and bovine sperm, increasing its
susceptibility to shearing forces during freezing-thawing (146, 147).
Osmotic stress during cryopreservation induces torsional strain
on DNA, leading to increased single- and double-strand breaks
(148, 149). Moreover, mitochondrial apoptotic pathways may be
triggered, where excessive ROS accumulation activates caspases
and endonucleases, further degrading DNA—an effect more
pronounced in bucks due to their higher metabolic activity and
mitochondrial ROS production (150, 151). These vulnerabilities
necessitate cryoprotectant strategies focused on DNA preservation,
incorporating antioxidants such as GSH, vitamin E, polyphenols,
seleno-organic molecules, and flavanoids which have been shown
to mitigate cryo-induced genetic damage (152–156). Given these
unique susceptibilities, buck sperm cryopreservation requires

Frontiers in Veterinary Science 04 frontiersin.org

https://doi.org/10.3389/fvets.2025.1554771
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


B
o
d
u
e
t
a
l.

1
0
.3
3
8
9
/fv

e
ts.2

0
2
5
.1
5
5
4
7
7
1

TABLE 1 Organismal diversity and similarity.

Organisms Buck (Capra hircus) Bull (Bos taurus) Ram (Ovis aries) Pig (Sus scrofa) Horse (Equus
caballus)

Human (Homo
sapiens)

References

Chromosome numbers 60 (29 pairs autonomous and
2 sex chromosomes)

60 (29 pairs autonomous and
2 sex chromosomes)

54 (26 pairs autonomous
and 2 sex chromosomes)

38 (18 pairs autonomous
and 2 sex chromosomes)

64 (31 pairs autonomous
and 2 sex chromosomes)

46 (22 pairs autonomous
and 2 sex chromosomes)

(205–210)

Genes

- Genome size (gb) 2.9 2.8 2.7 2.5 2.5 3.1

(205–210)

- Genes and
pseudogenes (count)

28,908 37,073 35,057 30,334 33,146 59,652

- All transcripts (count) 48,672 80,267 92,176 78,200 77,102 185,363

- mRNAs (count) 42,674 64,928 76,688 63,562 60,887 136,181

- CDSs (count) 42,836 65,084 76,701 63,562 60,900 136,194

- Protein coding (count) 20,755 21,677 21,300 20,790 21,129 20,080

Puberty 4–6 months 8–12 months 4–6 months 5–6 months 12–24 months 9–14 years (211–215)

Spermatogenesis (days) 47.7 61 45-49 41 57 74 (216–218)

Seminiferous epithelium cycle
(days)

10.6 13.5 10.4 12 12.2 16 (217, 219, 220)

Ejaculate volume (mL) 0.5–1.5 (average) 5–8 (average) 0.5–2 85–200 50–130 2–5 (212, 221–225)

Sperm/ejaculate 2–4× 109/mL (average) 1–1.5× 109/mL (average) 2–4× 109/mL (average) 200–400× 106/mL
(average)

200–400× 106/mL
(average)

15–200× 106/mL
(average)

(226–231)

Head

- Area (µm2) 29.8–29.9 38.05–38.15 34.90–34.95 34.8–34.9 11.43 9.25–9.27

(139, 232, 233)
- Perimeter (µm) 22.1–22.2 25.7–25.8 23.65–23.75 23.9–23.95 13.76 11.75–11.85

- Width (µm) 4.25–4.35 4.65–4.75 4.8–4.9 4.55–4.65 2.79 2.55–2.75

- Length (µm) 8.15–8.25 9.45–9.55 8.55–8.65 8.8–8.9 5.35 4.2–4.3

Middle piece (µm) 12.6–12.8 13.25–13.95 14.03 16.20–16.25 10.08–10.22 1.62–2.63 (140, 234–237)

Tail (µm) 50.3–50.7 61.1–61.7 No information 62.4–68.4 48.52–49.08 36.18–49.75 (140, 234, 236, 238)

Nucleus

- Area (µm2) 25.52 33.80 31.3–31.7 27.1–27.4 No Information ∼12–15a

(139, 239, 240)
- Perimeter (µm) 20.75 24.35 22.5–22.7 21.75–21.95 ∼14a

- Width (µm) 4.09 4.71 4.76–4.8 4.08–4.12 3.26–3.3

- Length (µm) 7.80 9.12 8.3–8.4 8.22± 0.05 4.47–5.03

Acrosome area (µm2) 21.2–25.2 23.20 26.10–26.18 29.9–34.50 12.13–14.04 Acrosome coverage (%)
46.29± 8.63

(140, 233, 241–243)

aEstimated area and perimeter dimensions according to width and length (240).
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distinct DNA optimization strategies compared to human and
bovine sperm.

Buck sperm exhibits distinct physiological characteristics
compared to bull sperm, particularly in proteomic composition,
motility, and reproductive performance (8). Zhu et al. (147)
identified 238 differentially abundant proteins in buck sperm,
involved in energy production and oxidative stress mitigation.
Cryopreservation significantly reduces buck sperm motility and
viability, primarily due to diminished membrane integrity and
mitochondrial dysfunction, which impair energy production
and flagellar movement (157, 158). Capacitation and acrosome
reactions in buck sperm differ from that of bull sperm in that
they occur more rapidly, are more sensitive to environmental
conditions such as pH and ionic changes, show greater vulnerability
to oxidative stress, and experience increased plasma membrane
damage during cryopreservation, affecting fertilization success.
Because of these differences, extenders as well as the processes
of freezing and thawing might require refined compositions and
methods to optimize outcomes (147). Nutritional factors, including
dietary supplementation, further influence buck sperm quality,
improving motility and membrane integrity (157). As such, further
research is needed to understand better the unique physiological
and molecular adaptations of buck sperm, particularly in response
to oxidative stress, cryopreservation, and environmental factors
affecting fertilization success.

Researchers employing proteomic and lipidomic analyses
have identified key molecules affecting goat sperm viability after
cryopreservation (138, 159). Heat shock proteins such as HSP70
and HSP90 prevent protein denaturation during freezing, while
antioxidant enzymes such as SOD and catalase protect against
oxidative stress (160, 161). Proteins such as proline dehydrogenase
(PRODH) enhance membrane stability by scavenging ROS and
supporting cellular structures, while ubiquinone (coenzyme Q10)
acts as an antioxidant to reduce oxidative stress and preserve
mitochondrial function, significantly improving motility and
membrane integrity (29, 162). Differentially expressed proteins
(DEPs) linked to energy metabolism and oxidative stress response
further contribute to sperm cryotolerance (138). The fluidity of goat
sperm plasma membranes is greatly decreased after epididymal
maturation, which is characterized by higher lipid phase fluidity
in caput (immature) than in cauda (mature) sperm membranes, as
measured with pyrene and 1,6-Diphenyl-1,3,5-Hexatriene (DPH)
lipid descriptors. Cholesterol also enhances membrane stability and
reduces cryoinjury, supporting sperm viability post-thaw (163).
Future research should quantify specific alterations in lipid and
protein profiles to refine cryopreservation protocols and optimize
reproductive outcomes in goats.

Cryopreservation of buck sperm is absolutely important
for both fundamental and applied animal reproduction science
(Figure 1), allowing long-term storage and transport of the genetic
material. Semen collection methods significantly impact sperm
cryoresistance, with different techniques influencing sperm survival
during cryopreservation (164). Extenders such as Tris-egg yolk-
glucose and non-fat dried skimmed milk are commonly used
to protect sperm during freezing and thawing (165). Tris-egg
yolk-glucose provides essential nutrients and energy, while non-
fat dried skimmed milk supplies proteins and lipids necessary

for maintaining sperm viability. Glycerol prevents ice crystal
formation, which is the key to preserving cellular integrity
during freezing (166). Cholesterol-loaded cyclodextrins improve
membrane integrity, increasing both viability and motility in buck
and bull sperm (167). Fruit juices, such as pineapple (Ananas
comosus), orange (Citrus sinensis), and cucumber (Cucumis
sativus), contain antioxidants like carotenoids, vitamins (C and E),
phenolic compounds, and flavonoids, which have been shown to
enhance motility and reduce sperm abnormalities by mitigating
oxidative stress (168). The success of buck sperm cryopreservation
largely depends not only on the extender composition, as each
component plays a crucial role in protecting sperm cells, but
also on the characteristics of the ejaculate itself, including
the presence of seminal plasma and seasonal variations in
sperm freezability throughout the year (169, 170). For instance,
cholesterol-loaded cyclodextrins improve membrane integrity,
leading to better post-thaw viability (167). Metabolomics studies
reveal that trehalose supplementation (60–100mM) enhances
post-thaw sperm motility, viability, mitochondrial activity, and
DNA integrity when combined with low concentrations of
cryoprotectants (36, 171). Trehalose exerts its cryoprotective effects
by stabilizing sperm plasma membrane phospholipids, preventing
cellular dehydration, and reducing lipid peroxidation, thereby
minimizing oxidative stress and preserving sperm function after
cryopreservation (172).

Cryopreservation of buck sperm presents challenges in
maintaining motility, plasma and acrosomal membrane integrity,
mitochondrial membrane potential, and reducing ROS generation.
Additionally, it leads to proteomic and metabolomic alterations
due to structural damage, ultimately lowering sperm viability (171)
(Figure 2). The choice of extender is a critical factor, as different
extenders affect sperm quality in various ways (Table 2) (173).
Sperm quality is also influenced by age, and supplementation with
antioxidants has shown potential in improving these parameters
(174). Re-adding seminal plasma post-thaw has had limited
success, indicating the need for novel approaches (175). Innovative
additives such as Mito-TEMPO have shown promise in improving
sperm cryopreservation (176). Cholesterol supplementation has
also been effective in enhancing cryosurvival (177). Factors such
as semen collection methods, extender choice, and centrifugation
all influence post-thaw sperm quality, emphasizing the need
for standardized protocols (165). Antioxidant supplementation,
such as cysteine, improves motility and viability, highlighting
its potential in enhancing cryosurvival (178). Studies on tris
and egg yolk concentrations further emphasize the importance
of extender composition for post-thaw viability (179). Soy-
based extenders have shown promise in improving semen
freezability (180).

Cryoprotectants such as trehalose play a protective role
in preserving membrane integrity during freezing and thawing
(181), and using soybean lecithin instead of egg yolk provides
a safer alternative for buck semen cryopreservation (182). In
Markhoz goats, 50–70mM trehalose, alone or in combination
with 3–6mM pentoxifylline (PTX), has been reported to improve
post-thaw sperm motility, viability, and chromatin integrity
during cryopreservation (183). In Angora bucks, 50–75mM
trehalose has been reported to improve post-thaw sperm
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FIGURE 1

Sperm cryopreservation protocol. The cryopreservation process of semen typically begins with the collection of semen using an artificial vagina.

However, electroejaculation may be employed in cases where elite male animals are unable to mount due to conditions such as lameness, shyness,

or limb abnormalities. The collected ejaculate is then evaluated for key quality parameters such as motility and morphology. Following this

assessment, semen is diluted with appropriate extenders. The diluted semen is loaded into 0.25 or 0.5mL straws and cooled to 5◦C, followed by an

equilibration at this temperature for ∼3h. During the freezing stage, temperature reduction occurs in distinct phases to minimize cellular damage

and osmotic stress. Initially, the straws are cooled to −5 to −7◦C to induce extracellular ice nucleation, preventing intracellular ice formation. This is

followed by a controlled cooling phase, during which the temperature is gradually reduced at a rate of ∼1◦C per min until reaching −35◦C. This step

allows the cells to adapt to the temperature decrease, minimizing intracellular crystallization and membrane damage. The final phase involves rapid

cooling to −196◦C, which transitions the sperm cells into a vitrified state, halting all metabolic activities and preserving cellular integrity (204). Two

main methods are employed during the freezing stage of cryopreservation. The first, conventional method involves placing the straws in a styrofoam

box, 4–8cm above the liquid nitrogen surface (with a nitrogen level of 5 cm) to be frozen in the nitrogen vapor for 15min (Method A). The second

method utilizes automatic freezing systems. These systems o�er a wide range of temperatures, from +40◦C to −180◦C, and operate with precise

cooling rates between 0.01◦C and 60◦C/min (Method B). Both methods aim to ensure the gradual adaptation of sperm cells to temperature changes,

thus preserving their viability and motility. Following cryopreservation, the straws are transferred into liquid nitrogen (−196◦C) for long-term storage.

motility, while 50mM trehalose resulted in the lowest percentage
of total abnormalities (184). Further research is needed to
optimize the techniques and antioxidants to better protect
sperm during and after cryopreservation (32). Removing seminal
plasma through centrifugation has improved sperm quality

during cryopreservation (185), and supplementation with seminal
plasma later in the cryopreservation process has enhanced
post-thaw sperm quality (186). Washing procedures during
cryopreservation affect sperm quality, underscoring the need
for standardized protocols (166). Egg yolk concentration also
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FIGURE 2

Sperm evaluation. (A) CASA (Computer-Assisted Sperm Analysis). (B) Acrosomal Membrane Integrity, B1: Intact acrosomal membrane, B2: Damaged

acrosomal membrane. (C) Plasma Membrane Integrity, C1: Intact plasma membrane, C2: Damaged plasma membrane. (D) Mitochondrial membrane

potential, D1: High mitochondrial membrane potential, D2: Low mitochondrial membrane potential, D3: No mitochondrial membrane potential. (E)

Immunolocalization of Histones in Bovine Sperm Cells, E1: Negative control sperm cell incubated with only the secondary antibody, E2: Sperm cell

with a medium level of histone fluorescence, E3: Sperm cell with a high level of histone fluorescence. (F) Reactive Oxygen Species (H2O2) and

Viability, F1: Viable sperm without ROS, F2: Dead sperm with ROS, F3: Viable sperm with ROS. (G) Mitochondrial O−
2 generation, G1: Live cells without

stain, G2: Dead cells with green stain, G3: positive mitochondrial O−
2 generation, G4: Dead and positive mitochondrial O−

2 generation. (H)

Proteomics. (I) Metabolomics.

influences sperm quality during cryopreservation, reinforcing the
importance of extender composition (187). Natural additives,
such as fulvic acids (188) and black cumin seed extract
(189) have shown promise in improving motility and reducing
oxidative stress in buck sperm. The cryoprotective effects of
fruit juices on sperm viability further suggest their potential
as natural cryoprotectants (168). Morphological changes post-
cryopreservation emphasize the need for careful sperm selection
for successful fertilization (10). Overcoming the challenges
in buck sperm cryopreservation requires optimizing extender
composition, antioxidant treatments, cryoprotectants, and semen
processing techniques. By improving these factors, the success of

cryopreservation can be increased, providing a valuable tool for
genetic preservation in breeding programs.

Sperm cryopreservation causes molecular changes effecting
sperm structure, function, and fertility. These effects vary
by species due to unique sperm characteristics such as
size, morphology, and membrane composition (190, 191).
Factors affecting cryopreservation efficacy include cooling
and thawing rates, sperm origin (ejaculate or epididymal),
and individual variations (192–194). Cryopreservation lowers
sperm viability and motility while increasing acrosome reaction
rates (195). Proteomic analyses have identified biomarkers that
influence sperm cryopreservation recovery, suggesting that
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TABLE 2 Goat semen preservation and e�ciency.

Study Breed Diluent Supplement Primary outcome

Kumar et al. (82) Black Bengal buck Tris-Egg Yolk-Citrate
extender

Control
T1—Vitamin E, 3 mmol/mL (Vit-E)
T2—Quercetin 10 µmol/mL
T3—Quercetin 20 µmol/mL
T4—Quercetin 30 µmol/mL

Quercetin at 20 µmol/mL improved post-thaw sperm plasma membrane integrity, viability,
acrosomal integrity, mitochondrial membrane activity, and sperm kinematics. It also
significantly reduced ROS and RNS levels, increased antioxidant enzyme activity (CAT, SOD,
GPx, FRAP), and lowered lipid peroxidation (MDA levels). Higher total and progressive motility
observed at 20 µmol/mL quercetin compared to control.

Batool et al. (83) Crossbred Kamori goats Tris-egg yolk extender Control
Quercetin 1 µmol/mL
Quercetin 5 µmol/mL
Quercetin 10 µmol/mL
Quercetin 15 µmol/mL

Quercetin at 5µM improved post-thaw sperm total and progressive motility, plasma membrane
and acrosome integrity, and viability. It also significantly increased antioxidant enzyme activity
(SOD, CAT, POD, APX, TAC) and reduced oxidant levels (TOS, MDA). Pregnancy rate was
higher in the quercetin-treated semen group (80%) compared to control (60%).

Suwor et al. (244) Anglo-Nubian goats Tris, Citric acid, Glucose,
Calcium chloride

Exp. 1. Glycerol (5%) combined with soybean
lecithin (1 and 3%) and egg yolk (10
and 18%). Exp. 2. soybean lecithin (3%) and
glycerol (5%) with 1, 3, and 5mM for
Glutathione or 6, 9, and 12mM for Cysteine
or 1, 2, and 3mM for vitamin E

Exp. 1.—Highest motility (44.70 ± 0.57%) and viability (53.00 ± 0.37%) with 5% glycerol and
3% soybean lecithin. No significant difference in DNA methylation with glycerol (5%) combined
with either soybean lecithin (3%) or egg yolk (10%) compared to fresh sperm.
Exp. 2.—Addition of 5mM glutathione significantly enhanced frozen sperm quality (motility,
viability, acrosome integrity, membrane integrity, and mitochondrial activity). 5mM
glutathione or 6mM cysteine reduced lipid peroxidation of frozen semen.

Ali et al. (245) Kamohri buck Tris-based Egg Yolk
(TEY) extender

Selenium at concentrations of 0mM (Group
A, control), 2mM (Group B), 4mM (Group
C), and 6mM (Group D).

In-vitro: Group B showed significantly higher motility, morphology, membrane integrity, and
live-dead ratio both chilled and post-thaw.
In-vivo: Group B (2mM selenium supplementation) had a significantly higher conception rate
(50%) compared to Group A (control, 30%).

Bucak et al. (246) Angora goat Tris-based extender Control, Lipid mixtures (Liposomes) (321.99
µg), Lipid mixtures (Liposomes) (841.33 µg),
Melatonin (0.25mM), Melatonin (1mM),
Lipid mixtures (Liposomes) (321.99 µg)+
Melatonin (1mM), Lipid mixtures
(Liposomes) (841.33 µg)+Melatonin
(0.25mM)

The addition of Lps 321.99µg/mL (65 %), gave the best motility, plasma membrane and
acrosomal membrane integrity (p < 0.05).
Lps 321.99µg/mL+Mel 1mM and Lps
841.33µg/mL+Mel 0.25mM have decreased DNA damage and abnormal DNA.

Salama et al. (247) Boer goat bucks Tris-based extender 0%, 5%, 10%, 15% PRP Increased motility, viability, antioxidant activity, pregnancy and kidding rates with 10% PRP

Khalique et al. (248) Beetal buck TRIS-citrate-yolk 0, 25, 50, 75, 100µg/mL CeO2NPs Enhanced motility, viability, membrane integrity, fertility outcomes with 25 and 50 µg/mL

Saratsi et al. (249) Skopelos bucks OviXcell R© 0, 2.15, 10, 30mM Fumaric Acid Improved viability, membrane and acrosome integrity, mitochondrial function with 2.15 mM

Galián et al. (250) Murciano-Granadina
goat

Different extenders
(IMIDA, skim
milk-based, etc.)

Skimmed-milk-based, SDS in egg-yolk-based
(IMIDA), etc.

Highest sperm quality with new IMIDA extender

Shah et al. (251) Beetal buck (Capra
hircus)

Triladyl R© T1: 10% v/v,
T2: 15% v/v,
T3: 20% v/v
egg yolk in Triladyl R©

Optimum fertility rate (73.53%) with 10% v/v egg yolk in Triladyl R©

Ghanem et al. (252) Buck 83mM citric acid,
250mM
tris-hydroxymethyl-
aminomethane, 50mM
glucose, 0.1M sucrose,
3M dimethyl sulfoxide

Melatonin (M), L-carnitine (LC), cysteine
(Cys), LC+M, M+ Cys, LC+ Cys, LC+

Cys+M

Improved post-thaw physiochemical properties with Cys alone or in combination with LC

(Continued)
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TABLE 2 (Continued)

Study Breed Diluent Supplement Primary outcome

Liang et al. (253) Goat Andromed R© , Optidyl R© ,
Sigma
l-phosphatidylcholine,
Skim milk

Egg yolk, skim milk, soybean lecithin Improved post-thaw quality and fertility with Andr R© and Opt R©

Caamaño et al. (254) Bermeya Tris, citric acid and
glucose

Exp. 1—Control (C), 10, 50, 100µg/mL (0,
33, 164 and 329 µM/mL) taxifolin (T) Exp.
2.—(Lower taxifolin concentration was
chosen according to Exp. 1.)—C, 5 µM/mL
(1.5µg/mL) T, 1mM GSH and combine

Exp. 1.—T10 increased progressive motility (P < 0.001), decreased viability on the three
concentrations (P < 0.001), at 0 and 5 h T10 decreased Cytoplasmic ROS (P = 0.049), decreased
mitochondrial O−

2 at all doses (P = 0.024).
Exp. 2.—5µM taxifolin or 1mM GSH (whether used individually or in combination) enhanced
both total and progressive motility. taxifolin improved kinematic parameters such as VCL, ALH,
and DNC (P < 0.05).

Abedin et al. (255) Assam Hill Tris, citric acid, fructose,
EY extender

T0 (C), T1 (0.1 mg/mL ZnO NPs), T2 (0.5
mg/mL ZnO NPs), T3 (0.5µg/mL Se NPs),
T4 (1µg/mL Se NPs)

The addition of 0.1 mg/mL Zinc Oxide Nanoparticles (ZnO NPs) to the extender significantly
improved the post-thaw quality of goat spermatozoa by enhancing antioxidant enzyme activities
and reducing lipid peroxidation levels.

Esmaeilkhanian et al.
(256)

Saanen Tris, citric acid, fructose,
EY extender

Mito-TEMPO with doses of 0, 1, 10, 100, and
1000µM.

Mito-TEMPO with doses of 0, 1, 10, 100, and 1000µM.
Apoptotic-like Changes and ROS Concentration: Decreased in 10 and 100µM Mito-TEMPO
groups.
Mitochondria Membrane Potential: Higher in 1, 10, and 100µMMito-TEMPO groups.
DNA Fragmentation: Lowest in the 10µMMito-TEMPO group.

Akhondzadeh et al. (257) Mature goat bucks Tris-citrate-fructose-
soybean lecithin
extender

Antifreeze protein (AFP) at concentrations of
0µg/mL (A0), 5µg/mL (A5), and 10µg/mL
(A10) combined with either 7% glycerol (G7)
or 5% glycerol (G5)

Total and Progressive Motility: Higher in A5G5 and A5G7 groups (p < 0.05).
PlasmaMembrane Integrity, Sperm Acrosome Integrity, DNA Integrity, Acrosome Intact Sperm,
and Mitochondrial Membrane Potential: Higher in A5G5 and A10G5 groups (p < 0.05).
Sperm Viability: Higher in A5G5 (p < 0.05).
Lipid Peroxidation: Lower in A5G5 and A5G7 groups (p < 0.05).
Apoptosis Occurrence: Lower in groups with 0µg/mL AFP and higher live post-thawed
spermatozoa in groups with 5µg/mL AFP combined with either 5 or 7% glycerol (p < 0.05).

Karaşör et al. (258) Ankara buck Tris, citric acid, fructose,
EY extender

ROCK inhibitor (5 and 20µM), antifreeze
protein III (1 and 4µg/mL), boron (0.25 and
1mM)

ROCK inhibitor and boron improved post-thaw motility (71.82 and 76.36%) compared to
control (66.15%); antifreeze protein III showed minimal impact on motility (70.58%). DNA
damage reduced significantly with antifreeze protein III (1.23%) and boron (1.83 and 1.18%)
compared to control (3.37%). No significant effect on plasma membrane, acrosome integrity, or
mitochondrial membrane potential.

Dhara et al. (259) Pantja buck Egg yolk-tris (EYT)
extender

1%, 3%, 5%, 7%, 9% v/v BSP proteins Improved post-thaw semen quality with 5% BSP proteins

Zhang et al. (29) Laoshan Tris, citric acid, fructose,
EY extender

Proline at 0, 0.5, 1, 2, and 4mM
concentrations

Adding 2mM proline to the freezing medium significantly improved the quality of post-thaw
goat sperm. This improvement was marked by enhanced motility, membrane and acrosome
integrity, along with increased antioxidant levels and decreased oxidative stress markers.

El-Khawagah et al. (260) Boer and Zaraibi Tris-based Butylated hydroxytoluene (BHT) 0.5mM in
Tris-soya lecithin, 1.0–2.0mM in Tris-egg
yolk

BHT at 0.5mM in Tris-soya lecithin and 1.0–2.0mM in Tris-egg yolk improved sperm motility,
plasma and acrosome membranes, and DNA integrity. Reduced lipid peroxidation at
1.0–2.0mM.

Susilowati et al. (15) Kacang Egg yolk-citrate Simmental bull seminal plasma protein 2.5
mg/mL

2.5 mg/mL Simmental bull seminal plasma protein increased post-thaw viability, motility, and
intact plasma membrane. Higher conception, pregnancy, and kidding rates.

(Continued)
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TABLE 2 (Continued)

Study Breed Diluent Supplement Primary outcome

Sun et al. (261) Chongming White goats Tris-based Soybean lecithin 2% SL 2% SL resulted in higher sperm viability, motility, membrane and acrosome integrity, and
mitochondrial activity. Similar or better than 20% egg yolk.

Igbokwe et al. (262) West African Dwarf
(WAD) goats

Tris-based Tiger nut milk 15% TNM 15% TNM in slow freezing enhanced motility, livability, membrane and acrosome integrity.
Lower abnormality and MDA concentration.

Lv et al. (263) Not specified Commercial bull semen
extender

Resveratrol 10, 50µM 10 or 50µM Resveratrol increased total and progressive motility, membrane and acrosome
integrity, and mitochondrial activity. Reduced ROS production.

Sharma and Sood (16) Chegu Tris Citrate Egg Yolk 10% Egg Yolk, 6% Glycerol Post-thaw sperm parameters such as motility and viability were significantly improved, leading
to a conception rate of 42.5%.

Gororo et al. (264) Small East African goat Various extenders Extender 1—1.38% glucose+ egg yolk (18%)
Extender 2—0.30% glucose+ egg yolk (2.5%)
Extender 3—0.20% fructose+ non-egg yolk

Non-frozen semen viable up to 24 h at 4◦C in low or non-egg yolk-based extenders. Higher
sperm quality at lower temperature.

Pawshe et al. (265) Malabari Various extenders Soybean lecithin (Bioxcell), Egg yolk
(Triladyl)

Commercial egg yolk (Triladyl) based extender resulted in better cryopreservation outcomes
than others.

Konyak et al. (182) Black Bengal Tris extender Soybean lecithin 1% SL 1% SL maintained in vitro sperm characteristics similar to egg yolk, optimal for Black Bengal
buck semen.

Swelum et al. (266) Aardi Tris, citric acid, fructose,
EY extender

Chicken (C), pigeon (P), goose (G), Japanese
quail (Q), duck (D), or turkey (T) egg yolks

Chicken egg yolk provided the best results for post-thaw buck semen quality, particularly in
sperm motility, vitality, plasma membrane integrity, DNA integrity, and lower sperm
abnormalities. It also showed the lowest malondialdehyde levels and highest reduced glutathione
activities.

El-Battawy and El-Nattat
(267)

Zaraibi Tris-based Methionine 1.5, 2.5, 5mM 2.5mMMethionine improved SM% and post-thawing motility.

Yousefian et al. (268) Mahabadi Soybean lecithin-based CoQ10 0.5, 1, 1.5µM 1µMCoQ10 protected from cryoinjury, improved motility and membrane functionality.

Narwade et al. (269) Crossbred Tris-based with egg yolk
or soybean

Trehalose 131.25mM with/without 25% soya Trehalose with egg yolk improved post-thaw semen quality.

Seifi-Jamadi et al. (270) Mahabadi Egg yolk-based with
DMA (5%) or glycerol
(5%)

Control, Quercetin 10, 20µM 10µMQuercetin with DMA improved motility and reduced lipid peroxidation.

Salmon et al. (271) Alpine Skim milk-based Cholesterol-loaded cyclodextrin (CLC) (3
mg/mL, corresponding to 141µg/mL
cholesterol)

CLC treatment improved resistance to seminal plasma damage.
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deeper insights into these molecular species are crucial for
understanding functional preservation in frozen-thawed sperms.
Cryopreservation impacts proteins involved in sperm motility,
viability, acrosomal integrity, ATP content, and capacitation.
The use of “omics” technologies, especially proteomics, aids in
optimizing freezing-thawing protocols to maintain sperm function
and fertility (145, 147, 171). Different extenders used during
cryopreservation contain cryoprotectants, antioxidants, and other
agents to maintain sperm viability and function (190). However,
while some freezing protocols yield satisfactory post-thaw sperm
survival, others may result in reduced sperm viability due to
suboptimal cryoprotectant composition or freezing and thawing
conditions (196).

Lipidomics has been significant for studying lipid profiles,
providing insights into how variations in lipid composition affect
sperm quality and cryopreservation outcomes across different
species. Lipidomic analysis can help predict cryopreservation
success in ruminant sperm (145, 197, 198). Targeted lipidomics
has been applied to uncover semen cryotolerance-related lipid
profiles in Mediterranean Buffalo bulls, demonstrating its
potential in evaluating sperm quality (199). The link between
lipidomics and sperm fertility has been explored, focusing
on cryotolerance and semen quality, identifying potential
biomarkers in the spermatozoa lipidome that could be used for
selecting high-fertility doses before freezing (200). Lipidomics
has revealed the lipid composition of sperm cells from various
species, highlighting the role of fatty acids in sperm function
(201). Recent lipidomic studies have identified significant
qualitative and quantitative differences in sperm membranes
among ejaculates that led to pregnancy vs. those that did not
(202), providing additional evidence for this approach’s potential
for characterizing gamete function associated with fertility
outcomes. Lipidomics has also been proposed as a method to
assess the spermatozoa and seminal plasma of males for fertility
prediction (203).

4 Conclusions and the outlook

There is a need to enhance sperm cryopreservation techniques
to improve sperm survival during freezing and thawing processes
and ensure successful fertilization across various species, thereby
contributing to the progress of reproductive biotechnologies
and conservation initiatives. Advances in molecular biology,
lipidomics, proteomics, metabolomics, and DNA methylation
are helpful in better understanding the male gamete during
freezing and thawing, and in improving extender formulations
and freezing techniques in buck sperm cryopreservation. Future
advancements are expected to focus on minimizing the detrimental
effects of seminal plasma enzymes through the improvement of
extenders, as part of broader strategies to enhance sperm quality
and viability post-cryopreservation. Furthermore, detection of
biomarkers that indicate the quality of sperm and their ability
to withstand freezing will aid in choosing the most suitable
sperm samples for freezing. This will ultimately enhance the
effectiveness of artificial insemination and genetic conservation
initiatives in goats.
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156. Bucak MN, Bodu M, Başpinar N, Güngör S, Ili P, Acibaeva B, et al.
Influence of ellagic acid and ebselen on sperm and oxidative stress parameters during
liquid preservation of ram semen. Cell J. (2019) 21:7–13. doi: 10.22074/cellj.2019.
5593

157. Nurul I, Nuryadi N, Eko N, editors. Supplementation of mangosteen (Garcinia
Mangostana) pericarp filtrate in tris-egg yolk-based diluent on buck sperm membrane
integrity. In: Proceedings of the 1st International Conference in OneHealth (ICOH 2017).
Atlantis Press (2017).

158. Kumar R, Chandra P, Konyak P, Karunakaran M, Santra A, Das SK. In vitro
development of preimplantation caprine embryo using cryopreserved black bengal
buck semen. Indian J Anim Res. (2020) 54:1210–3. doi: 10.18805/ijar.B-3886

159. Hitit M, Memili E. Sperm signatures of fertility and freezability. Anim Reprod
Sci. (2022) 247:107147. doi: 10.1016/j.anireprosci.2022.107147

160. Nikbin S, Panandam JM, Yaakub H, Murugaiyah M, Sazili AQ. Novel
Snps in heat shock protein 70 gene and their association with sperm quality
traits of boer goats and boer crosses. Anim Reprod Sci. (2014) 146:176–81.
doi: 10.1016/j.anireprosci.2014.03.001

161. Hu W, Fang M, Yang Y, Ye T, Liu B, Zheng W. Detection of heat shock protein
27, 70, 90 expressions in primary parenchymatous organs of goats after transport stress
by real-time Pcr and elisa. Vet Med Sci. (2020) 6:788–95. doi: 10.1002/vms3.327

162. Hernawati T, Susilowati S, Mulyati S, Oktanella Y. Optimizing equilibration
protocols through ubiquinone supplementation in goat frozen semen diluent.
Interciencia. (2024) 404:65–83. doi: 10.59671/gvis9

163. Rana APS, Majumder GC, Misra S, Ghosh A. Lipid changes of goat sperm
plasma membrane during epididymal maturation. Biochim Biophys Acta Biomemb.
(1991) 1061:185–96. doi: 10.1016/0005-2736(91)90284-F

164. Jiménez-Rabadán P, Soler AJ, Ramón M, García-Álvarez O, Maroto-
Morales A, Iniesta-Cuerda M, et al. Influence of semen collection method on
sperm cryoresistance in small ruminants. Anim Reprod Sci. (2016) 167:103–8.
doi: 10.1016/j.anireprosci.2016.02.013

165. Jiménez-Rabadán P, Ramón M, García-Álvarez O, Maroto-Morales A. del
Olmo E, Pérez-Guzmán MD, et al. Effect of semen collection method (artificial
vagina vs electroejaculation), extender and centrifugation on post-thaw sperm
quality of blanca-celtibérica buck ejaculates. Anim Reprod Sci. (2012) 132:88–95.
doi: 10.1016/j.anireprosci.2012.04.005

166. Anand M, Baghel G, Yadav S. Effect of egg yolk concentration and washing
on sperm quality following cryopreservation in barbari buck semen. J Appl Anim Res.
(2017) 45:560–5. doi: 10.1080/09712119.2016.1232265

167. Mocé E, Tomás C, Blanch E, Graham JK. Effect of cholesterol-loaded
cyclodextrins on bull and goat sperm processed with fast or slow cryopreservation
protocols. Animal. (2014) 8:771–6. doi: 10.1017/S1751731114000226

168. Daramola J, Adekunle E, Onagbesan O, Oke O, Ladokun A, Abiona J, et al.
Protective effects of fruit-juices on sperm viability of west African dwarf goat bucks
during cryopreservation.AnimReprod. (2018) 13:7–13. doi: 10.4322/1984-3143-AR726

169. Cabrera F, González F, Batista M, Calero P, Medrano A, Gracia A. The
effect of removal of seminal plasma, egg yolk level and season on sperm
freezability of canary buck (Capra Hircus). Reprod Dom Anim. (2005) 40:191–5.
doi: 10.1111/j.1439-0531.2005.00544.x

170. Cardenas-Padilla AJ, Jimenez-Trejo F, Cerbon M, Chavez-Garcia A, Cruz-
Cano NB, Martinez-Torres M, et al. Sperm melatonin receptors, seminal plasma
melatonin and semen freezability in goats. Theriogenology. (2024) 225:98–106.
doi: 10.1016/j.theriogenology.2024.05.034

171. Xu B, Wang Z, Wang R, Song G, Zhang Y, Su R, et al. Metabolomics
analysis of buck semen cryopreserved with trehalose. Front Genet. (2022) 13:938622.
doi: 10.3389/fgene.2022.938622
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