
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Vet. Sci.
Sec. Veterinary Infectious Diseases
Volume 12 - 2025 | doi: 10.3389/fvets.2025.1550646
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
Bovine leukemia virus (BLV) is a retrovirus that infects cattle, causing bovine enzootic leukosis, a chronic disease characterized by the proliferation of infected B cells. BLV proviral load (PVL) is a key determinant of disease progression and transmission risk. Cattle can exhibit distinct phenotypes of low PVL (LPVL) or high PVL (HPVL), which remain stable throughout their lifetime. Differential expression analysis revealed 1,908 differentially expressed genes (DEGs) between HPVL and LPVL animals, including 774 downregulated (DReg) and 1134 upregulated (UReg) genes. Functional enrichment analysis revealed that DReg genes were associated primarily with immune response pathways. Conversely, the UReg genes were enriched in processes related to cell cycle regulation, mitotic division, and DNA biosynthesis. Proteinprotein interaction analysis revealed six highly interconnected clusters. Interestingly, a cluster was enriched for sphingolipid metabolism, a process critical to enveloped virus infection and immune receptor signaling. These findings provide valuable insights into the molecular mechanisms of BLV infection, suggesting potential markers for disease monitoring and targets for therapeutic intervention.
Keywords: BLV, Proviral load, differential gene expression, RNA-Seq, biological pathway
Received: 23 Dec 2024; Accepted: 13 Mar 2025.
Copyright: © 2025 Petersen, Suarez Archilla, Miretti, Trono and Carignano. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Hugo Adrian Carignano, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria - Consejo Nacional de Investigaciones Científicas y Técnicas, Hurlingham, Argentina
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.