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Background: Optimizing buck semen preservation techniques can significantly 
advance the goat industry. This study aimed to investigate the effects of chitosan 
on sperm quality and seminal plasma metabolite profiles in bucks during low-
temperature storage at 4°C.

Results: The results showed that when 0.2 mg/mL chitosan was added to 
semen dilution, sperm viability and antioxidant capacity were highest and 
significantly higher than the control group (p < 0.05). Sperm viability decreased 
progressively with increasing storage time at 4°C. However, on day 5, sperm 
viability was significantly higher in all groups where chitosan was added to the 
semen dilutions than in the control group (p < 0.05). A total of 23 classes of 
metabolites were detected in the non-targeted metabolism group of seminal 
plasma. The metabolite caused by chitosan mainly included fatty acyls, 
phospholipids, amino acids and organic acids. Most differential metabolites in 
fatty acyls and glycerophospholipids in chitosan-treated semen were decreased 
and enriched in the anabolic pathway of unsaturated fatty acids. Additionally, 
several oligopeptides showed correlations with sperm quality.

Conclusion: These results suggest that adding 0.2 mg/mL chitosan to semen 
diluent successfully prolongs the low-temperature preservation of semen 
mainly by altering the anabolism of lipids and amino acids. This provides 
theoretical support and practical reference for the applying chitosan in the low-
temperature preservation of buck semen.
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1 Introduction

Advancing low-temperature and cryopreservation technologies for male ruminants is crucial 
for the sustainable development of the livestock industry. Animal sperm preservation includes 
room temperature, low temperature, and freezing. Room temperature preservation facilitates 
normal metabolic activities but leads to a rapid decline in sperm vitality due to nutrient depletion 
and the accumulation of reactive oxygen species (1). Although cryopreservation enables long-
term storage, the freezing process significantly damages sperm, reducing the viability of post-
thaw samples (2). In contrast, low temperature preserves sperm to several days or sometimes 
weeks and ensures a high fertilization rate (3, 4). In addition, low temperature allows small-scale 
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germplasm exchange within the adequate preservation time, offering 
broader application prospects. The regulation of oxidative homeostasis 
in spermatozoa is critical for sperm preservation. Primarily, it extends 
low-temperature preservation duration and maintains fertilization 
competence (5). Chitosan is a biopolymer derived from chitin, a 
naturally occurring polysaccharide found in the exoskeletons of 
arthropods such as crustaceans (6). It consists of glucosamine and 
N-acetylglucosamine units, and is known for its antimicrobial, 
antioxidant, and biocompatible properties (7, 8). Chitosan reacts with 
and effectively scavenges free radicals, with its antioxidant activity being 
closely related to its molecular weight (9). Moreover, the concentration 
of chitosan and its derivatives is critical for resistance against fungi and 
bacteria (10, 11). Recent studies have shown that higher quality post-
thaw buck semen can be achieved by supplementing the semen diluent 
with 15 μg/mL of chitosan nanoparticles prior to cryopreservation (12). 
Therefore, chitosan’s antioxidant and antimicrobial properties are 
expected to enhance the effectiveness of semen preservation and 
artificial insemination techniques in bucks.

Metabolomic analysis investigates dynamic changes in the 
composition, structure, and concentration of metabolites in spermatozoa, 
providing critical insights into the metabolic factors associated with 
sperm freezing and thawing, and enabling the prediction of semen 
quality and post-thaw survival (13, 14). Compared to transcriptomics 
and proteomics, metabolomics is less affected by post-transcriptional 
modifications and provides insights into spermatozoa’s metabolic 
characteristics, biological functions, and environmental adaptations (15). 
Non-targeted metabolic analysis of bull spermatozoa revealed a richness 
in organic and fatty acids, with metabolites such as γ-aminobutyric acid, 
carbamate, benzoic acid, lactic acid, and palmitic acid identified as 
potential biomarkers of fertility (16).

The antioxidant capacity of spermatozoa is crucial for the 
successful preservation of animal semen. Here, different concentrations 
of chitosan were added to buck semen diluents to detect changes in 
sperm quality and antioxidant properties on low-temperature 
preservation. Metabolomic assays using Liquid Chromatography-Mass 
Spectrometry (LC–MS) non-targeted metabolomics were performed 
to screen for different metabolites among groups. This study 
investigated the effects of chitosan on semen viability and antioxidant 
capacity in bucks, uncovering the underlying mechanism by which 
chitosan enhances sperm preservation through the modulation of fatty 
acids, phospholipids, amino acids, and organic acid metabolites.

2 Materials and methods

2.1 Buck rearing conditions and semen 
collection

The semen used in this experiment was obtained from Tianfu Goat 
at the Sichuan Agricultural University breeding farm (Ya’an, Sichuan, 
China). The animal study was approved by Sichuan Agricultural 
University (No. DKY-SR230616). Five bucks aged 1–2 years with similar 
body conditions were selected. The testes of the bucks were smooth, 
without lumps, nodules, or localized hardening, and there were no signs 
of cryptorchidism or size disparity. All bucks exhibited normal libido. 
Each buck was housed individually at room temperature under identical 
conditions, fed oat grass, broad bean hulls, and concentrates every 
morning and evening, along with regular immunization and deworming. 
Semen collection was performed four times a week between 7:00 and 

8:00 am using the artificial vagina method. The experiment was 
conducted in the autumn and lasted for 4 weeks. After semen collection, 
the ejaculate volume ranged from 0.5 to 1.5 mL, with a density not lower 
than 1.5 × 10^9 sperm/mL. It was grayish-white, odorless, and was stored 
in a 37°C water bath and diluted within 30 min.

2.2 Preparing semen dilution

TRIS (Wuxi Tongchuang Biotechnology CO., Ltd., BCR0001, 
Jiangsu, China) 3,630 mg, glucose 1,000 mg, fructose (Sangon, A600213-
0500, Shanghai, China) 1,140 mg, sodium bicarbonate (Solarbio, S5240, 
Beijing, China) 125 mg, citric acid (Solarbio, C8610, Beijing, China) 
1820 mg, HEPES (Solarbio, H8090, Beijing, China) 600 mg, potassium 
penicillin 100,000 IU (Healton, Chengdu, China), streptomycin sulfate 
100,000  IU (Healton, Chengdu, China), and 5 mL of egg yolk was 
dissolved in 100 mL of distilled water. The mixture was stirred with a 
magnetic stirrer for 10 min, then sealed with a film and stored at 4°C. For 
chitosan preparation, 0.1 g of chitosan powder ((C6H11NO4)n) 
(Solarbio, C8320, Beijing, China) (deacetylation degree >90%) was 
dissolved in 10 mL of the base dilution solution to prepare a 10 mg/mL 
preservation solution, which was also sealed and stored at 4°C.

2.3 Diluting buck semen with various 
chitosan concentrations

Semen and diluent were preheated in a 37°C water bath, diluted 
isothermally 10-fold using the gradual dilution method to avoid the 
“dilution effect” and protect sperm viability. Firstly, 100 μL of semen and 
diluent were transferred to a 1.5 mL centrifuge tube for 1:1 initial 
dilution, stood for 5 min. Then, 400 μL of diluent was added for 1:5 
secondary dilution. And finally, another 400 μL of diluent was added to 
complete the 10-fold dilution. The diluted semen was divided into 6 
groups. Chitosan dilutions of 0, 5, 10, 20, 40 and 80 μL were added to 
each 1 mL of base dilution, resulting in final chitosan concentrations of 
0, 0.05, 0.1, 0.2, 0.4 and 0.8 mg/mL. Three replicates were designed for 
each group. The diluted semen was stored at a constant temperature of 
4°C. It was gently inverted and mixed twice daily, at 8:00 am and 8:00 pm, 
to prevent sperm from settling at the bottom of the centrifuge tubes.

2.4 Sperm motility analysis after 
low-temperature

Before the test, the stage and normal slides of the computer 
assisted semen analysis (CASA) system (Minitube, AndroVision, 
Tiefenbach, Germany) were preheated to 37°C. A 50 μL semen 
sample was pre-warmed in a 37°C water bath for 10 min. A 3 μL 
aliquot of semen was then placed onto a pre-warmed standard glass 
slide (25.4 mm × 76.2 mm) and covered with a cover slip 
(20 mm × 20 mm) (Citotest, Nantong, China). The use of a classic 
slide system with pre-warmed slides and cover slips minimized 
potential errors related to sample evaporation and motility 
measurement variability, as recommended for standardized CASA 
protocols (17). Sperm viability and motility were assessed every 24 h 
for 5 days. Sperm motility parameters, including straight-line velocity 
(VSL, μm/s), curvilinear velocity (VCL, μm/s), average path velocity 
(VAP, μm/s), beat cross frequency (BCF, Hz), Straightness (STR, VSL/
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VAP, %) linearity (LIN, VSL/VCL, μm/s), and wobble (WOB, VAP/
VCL, %), were measured using CASA by aspirating 3 μL of semen 
from each low-temperature groups on days 1, 3, and 5. Three fields 
with over 200 spermatozoa were randomly selected from each group 
for observation. The test was repeated three times, and the average 
value was used as the final result.

2.5 Sperm plasma membrane integrity

Sperm membrane integrity was evaluated using the hypo-osmotic 
test method (18). Sodium citrate (0.735 g) and fructose (1.351 g) were 
dissolved in 100 mL of purified water to create a hypotonic solution 
stored at 4°C. After 5 days of low-temperature storage, 100 μL of semen 
was aspirated and added to 900 μL of hypotonic solution, then incubated 
in a water bath at 37°C for 30 min. Plasma membrane integrity was 
assessed by observing sperm swelling under low osmotic pressure with 
a microscope (Murzider, MSD1125, Shenzhen, China). Three fields with 
over 200 spermatozoa were randomly selected from each group for 
observation. The test was repeated three times, and the average value was 
used as the final result. The proportion of tail-bent spermatozoa to the 
total spermatozoa was calculated as the plasma membrane integrity rate.

2.6 Sperm antioxidant property 
measurement

The assays were performed on days 1, 3, and 5 according to the 
instructions of the T-AOC assay kit (Solarbio, BC1315, Beijing, China), 
CAT assay kit (Solarbio, BC0205, Beijing, China), ROS assay kit 
(Solarbio, CA1410, Beijing, China), and MDA assay kit (Solarbio, 
BC0025, Beijing, China). For T-AOC measurement, 1 mL of pre-cooled 
extraction solution was added per 5 million spermatozoa, followed by 
ultrasonic disruption. The sample was then centrifuged at 10,000 rpm 
for 10 min at 4°C, and the supernatant was collected. The absorbance 
was measured at a wavelength of 593 nm using a microplate reader, and 
T-AOC was calculated according to the instructions provided in the kit. 
For CAT and MDA, 1 mL of extract was added to each 5 million 
spermatozoa, broken by ultrasonication, and then centrifuged at 8000 g 
for 10 min at 4°C. The supernatant was taken and the absorbance was 
measured using an enzyme marker at 240 nm, 532 nm and 600 nm, 
respectively. CAT and MDA were calculated according to the formula in 
the instruction manual. For ROS, the sperm concentration was adjusted 
at 5 million spermatozoa/mL, and DCFH-DA was added to make the 
final concentration at 1–10 μmol/L. The plate was incubated for 20 min 
at 37°C away from light, and 200 μL of resuspension was aspirated and 
added to a 96-well plate, and detected by using a fluorescence enzyme 
marker, setting the excitation wavelength at 488 nm and the emission 
wavelength at 525 nm, and detecting the intensity of fluorescence before 
and after stimulation. For each experiment, three biological replicates 
were performed, with three technical replicates each.

2.7 Sperm non-targeted metabolomic 
analysis

The semen was divided into control groups (CT, n = 6) and 
0.2 mg/mL chitosan-treated groups (CS, n = 6) and subjected to 

non-targeted metabolomic analysis on days 1 and 5 of low 
temperature. Low-temperature semen was centrifuged at 4000 r/min, 
4°C for 5 min. A 40 mg sample was added to a steel ball, homogenized 
using a ball mill for 20 s, and centrifuged at 3000 r/min, 4°C for 30 s 
to allow the sample to settle to the bottom of the tube. The samples 
were extracted with methanol and separated using a UPLC (Shimadzu, 
LC-30A, Kyoto, Japan) and a Waters ACQUITY Premier HSS T3 
column. Data acquisition was performed using the information-
dependent acquisition (IDA) mode with Analyst TF 1.7.1 Software 
(Sciex, Concord, ON, Canada). TOF MS scan parameters were: mass 
range, 50–1,000 Da; accumulation time, 200 ms; dynamic background 
subtraction, on. Product ion scan parameters were: mass range, 
25–1,000 Da; accumulation time, 40 ms; collision energy, 30 or − 30 V 
in positive or negative modes; collision energy spread, 15; resolution, 
UNIT; charge state, 1 to 1; intensity, 100 cps; exclude isotopes within 
4 Da; mass tolerance, 50 ppm; the maximum number of candidate 
ions to monitor per cycle, 18.

The original LC–MS data file was converted into mzXML format by 
ProteoWizard software. Peak extraction, alignment and retention time 
correction were performed by the XCMS program. The “SVR” method 
was used to correct the peak area. Peaks with a detection rate lower than 
50% in each group were discarded. Metabolic identification information 
was obtained by searching the laboratory’s self-built database, integrated 
public database, AI database and metDNA. At the same time, ensure 
that the CV value of the QC samples is less than 0.3 to ensure the 
stability and reliability of the analytical results, and then carry out the 
positive and negative modes for metabolite identification. Finally, 
extract the substances with a combined score of 0.5 or more and a CV 
value of less than 0.3 for QC samples, and then merge the positive and 
negative modes (retaining the substances with the highest qualitative 
grade and the smallest CV value) to obtain the ALL sample data file.

2.8 Statistical analysis

All results were expressed as mean ± standard error of the mean 
(SEM) and analyzed using SAS Studio software (SAS Studio v3.8, 
Cary, NC, USA). Experimental data were analyzed using mixed model 
for repeated measures or one-way ANOVA followed by Tukey–
Kramer multiple comparisons. Correlation analysis was performed 
using the Spearman correlation coefficient. A p-value less than 0.05 
was considered statistically significant.

3 Results

3.1 Chitosan improves the viability of buck 
sperm during low-temperature 
preservation

Sperm viability was measured every 24 h starting from day 0 
(Table 1). At day 0, sperm viability across all chitosan concentrations 
were insignificantly different (p > 0.05). By day 1, viability declined 
across all treatments; however, sperm viability in the 0.2 mg/mL 
(p = 0.037) and 0.4 mg/mL (p = 0.049) chitosan groups remained 
significantly higher compared to the control group (p < 0.05). On days 
2–5, sperm viability continued to decrease, yet the 0.2 mg/mL chitosan 
group maintained higher viability than the control group (p < 0.05). In 
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contrast, there was no significant difference in the 0.2 mg/mL chitosan 
group for 2–4 days of preservation (p > 0.05), and a significant decrease 
in sperm viability was observed on day 5 (p < 0.01).

3.2 Chitosan increases sperm motility and 
plasma membrane integrity during 
low-temperature storage

The VSL, VCL and VAP of sperm motility were assessed after 
adding different concentrations of chitosan to the low-temperature 
preservation diluent of buck semen (Figures 1A–C). With increasing 
storage time, all motility parameters (VSL, VCL, VAP) showed a 
declining trend, which was most pronounced in the control group 
(p < 0.05). VSL and VAP were minimally affected by different 

concentrations of chitosan, showing no significant difference compared 
to the control group (p > 0.05). The addition of 0.05–0.2 mg/mL 
chitosan to semen dilutions significantly increased VCL at 5 days 
compared to the control group (p < 0.05). Furthermore, our results 
indicate that chitosan is most effective at improving motility parameters 
at low concentrations, while high concentrations (0.8 mg/mL) exhibit 
an inhibitory effect. While the BCF and LIN remained unaffected by 
chitosan treatment (p > 0.05), significant improvements were observed 
in the WOB and STR (p < 0.05) (Supplementary Figures S1A–D). On 
day 5 of low-temperature storage, sperm plasma membrane integrity 
was significantly higher in the 0.05 (p = 0.005), 0.1 (p = 0.001), and 0.2 
(p < 0.001) mg/mL chitosan-treated groups compared to the control 
(p < 0.05) (Figure 1D). These results indicate that chitosan, particularly 
at low concentrations, effectively preserves buck sperm motility during 
cold storage.

FIGURE 1

Sperm motility and plasma membrane integrity of bucks affected by different concentrations of chitosan. (A) VSL. (B) VCL. (C) VAP. (D) Plasma 
membrane integrity. VSL, straight-line velocity; VCL, curvilinear velocity; VAP, average path velocity. Different lowercase letters indicate significant 
differences (p < 0.05) and the same letters indicate no significant differences (p > 0.05), the same below.

TABLE 1 Viability of buck sperm stored at 4°C under different chitosan concentrations.

Time (day) 0 0.05 0.1 0.2 0.4 0.8 (mg/mL)

0 85.82 ± 0.73a 85.80 ± 0.08a 85.55 ± 0.39a 85.86 ± 0.23a 85.46 ± 1.00a 86.36 ± 0.88a

1 76.51 ± 1.15cdef 75.84 ± 1.89bcde 77.20 ± 1.18bcd 79.80 ± 1.40b 79.71 ± 0.48b 79.24 ± 1.25bc

2 69.44 ± 1.67ijkl 71.50 ± 1.92fghij 72.22 ± 0.23efghi 74.21 ± 1.29defg 72.38 ± 1.20efgh 72.54 ± 0.77efgh

3 67.98 ± 1.38jkl 70.14 ± 1.81ghij 71.70 ± 0.29fghij 74.11 ± 1.04defg 71.46 ± 1.34ghij 70.82 ± 1.23ghij

4 54.43 ± 1.12p 64.97 ± 0.52lm 67.72 ± 0.92ijkl 72.19 ± 0.37efghi 69.79 ± 0.18hij 61.45 ± 1.34mn

5 50.78 ± 0.73q 59.94 ± 0.46no 63.06 ± 0.47mn 69.24 ± 0.32hijk 65.16 ± 1.27klm 56.69 ± 1.61op

Different lowercase letters indicate significant differences (p < 0.05) and the same letters indicate no significant differences (p > 0.05), the same below.
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3.3 Improvement of antioxidant properties 
of buck semen by chitosan during 
low-temperature storage

During low-temperature preservation, T-AOC and CAT levels in 
spermatozoa showed a gradual decrease. These levels initially increased 
and then decreased with increasing chitosan concentration (Figures 2A,B). 
On day 1, the 0.2 mg/mL chitosan group showed a significantly higher 
T-AOC compared to the control, with this enhancement maintained 
through days 3 and 5 (p < 0.05). Similarly, the 0.2 mg/mL chitosan group 
had higher CAT activity on day 1 compared to the control (p < 0.05), a 
trend that persisted on days 3 and 5. ROS and MDA levels increased with 
preservation time (Figures  2C,D). Low concentrations of chitosan 
reduced ROS and MAD levels, with 0.2 mg/mL showing the most 
pronounced effect, while 0.8 mg/mL had significantly reduced ROS 
inhibition compared to 0.2 mg/mL. The findings demonstrate that the 
addition of 0.2 mg/mL chitosan to semen dilutions significantly enhances 
antioxidant capacity and reduces oxidative stress in buck sperm during 
cold storage. Therefore, the 0.2 mg/mL chitosan group was selected for 
further analysis.

3.4 Differential metabolites in seminal 
plasma affected by chitosan

Untargeted metabolomic analysis was performed on control and 
0.2 mg/mL chitosan-treated groups on days 1 and 5 of low-temperature 
storage. The results showed a high overlap in total ion flow peak 

profiles, with consistent retention times, and response intensities. PCA 
confirmed the stability and reproducibility of the analysis system, with 
quality control samples clustering tightly (Supplementary Figure S2). 
Orthogonal partial least squares discriminant analysis (OPLS-DA) 
further delineated the relationship between metabolites and samples, 
showing clear separation between treatment groups. This separation 
underscores the significant metabolite changes induced by chitosan 
treatment and extended storage (Figure  3A). In both ionization 
modes, the OPLS-DA models demonstrated robust performance, with 
high goodness of fit (R2 = 0.99) and predictive power (Q2 = 0.71).

A total of 2,978 metabolites were detected in 20 samples from 4 
groups: 1119  in anionic mode and 1859  in cationic mode. In 
cationic mode, 22 classes of metabolites were detected, dominated 
by amino acids and their metabolites, phenol and its substituted 
derivatives, heterocyclic compounds, organic acids and their 
derivatives, and glycerophospholipids. In anionic mode, 23 classes 
were detected, dominated by phenol and its substituted derivatives, 
organic acids and their derivatives, heterocyclic compounds, amino 
acids and their metabolites, and fatty acyls (Figures  3B–E). The 
analysis identified over 600 differential metabolites between groups. 
The most numerous were amino acids and their metabolites, 
followed by phenol and its substituted derivatives, heterocycles, 
organic acids, and their derivatives, fatty acyls, and 
glycerophospholipids (Figure 4A, Supplementary Figures S3A,B, 
Supplementary Table S1). Most changes were due to low 
temperature, while a few were caused by adding chitosan, mainly 
including amino acids and their metabolites, fatty acyls and 
glycerophospholipids (Figure 4A).

FIGURE 2

Effect of chitosan on the antioxidant properties of bucks semen stored at low temperature. (A) The levels of T-AOC. (B) The levels of CAT. (C) The levels 
of ROS. (D) The levels of MAD.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis revealed significant enrichment of 
differential metabolites in amino acid and fatty acid metabolic 
pathways (Figure  4B, Supplementary Figure S3B). The lowest 
number of differential metabolites was observed in the control 
and treatment groups on the first day of low-temperature storage. 
Five days of storage had a greater effect on the number of 
differential metabolites than the addition of chitosan. Differential 
metabolite analysis between the groups revealed 44 common 
differential metabolites, of which 21 were amino acids and their 
metabolites, fatty acyls, and glycerophospholipids (Figure 4C, 
Supplementary Table S2). This study found various oligopeptides 
in semen plasma metabolites, which were differentially expressed 
with the addition of chitosan or during low-temperature 
preservation (Figure 4D). Most differentially expressed fatty acyl 
metabolites increased in CT5 compared to other groups 
(Figure  4E). This study confirmed that metabolite levels in 
seminal plasma changed with increased low-temperature 
preservation time. We focused on the effect of chitosan on semen 
low-temperature preservation and found more significant 
between the control and treated groups on day 5. Both differential 
metabolite and KEGG enrichment indicated that fatty acids and 
amino acids were key differential metabolites.

3.5 Chitosan affects the metabolism of 
fatty acyl and glycerophospholipids in 
seminal plasma

On the fifth day after the addition of chitosan, substantial changes 
in metabolites of fatty acyls and glycerophospholipids were observed. 
Therefore, data from day 5 of storage were selected for subsequent 
analysis. Examination of glycerophospholipids and fatty acyls revealed 
that the majority of differential metabolites were prominently 
expressed in the CT-5 group. These metabolites were enriched in 
pathways related to the synthesis and metabolism of unsaturated fatty 
acids, including linoleic acid and arachidonic acid metabolism, as well 
as unsaturated fatty acid biosynthesis (Figures 5A,C). Free fatty acids 
(FFA) and oxidized lipids comprised the largest proportion of 
glycerophospholipids and fatty acyls (Figure 5B). Correlation analyses 
showed that metabolites highly expressed in the CT-5 group were 
negatively correlated with sperm viability, plasma membrane integrity, 
and T-AOC, but positively correlated with ROS and MDA levels 
(Figure  5D). Notably, 5,8,11-eicosatriynoic acid was positively 
correlated with sperm plasma membrane integrity, while erucic acid 
was positively associated with T-AOC. Additionally, FFA (18:1) 
correlated positively with ROS and MDA. These metabolites are all 
unsaturated fatty acids.

FIGURE 3

Non-targeted metabolic profiles of seminal plasma from low-temperature preserved buck semen. (A) OPLS-DA score plot. (B) Heat map of the 
corresponding metabolic signatures detected in positive ion mode. (C) Heat map of the corresponding metabolic signatures detected in negative ion 
mode. (D) Proportion of positive ion mode metabolites. (E) Proportion of negative ion mode metabolites. FA, fatty acyl; GL, glycerides; GP, 
glycerophospholipids; SP, sphingolipid.
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3.6 Chitosan affects the metabolism of 
amino acids and organic acids in seminal 
plasma

Subsequent analysis of amino acids and organic acids revealed that 
most differential metabolites were oligopeptides, which showed elevated 
levels in CS-5 (Figures 6A,B, Supplementary Table S3). This indicates that 
chitosan is involved in the biosynthesis and metabolism of numerous 
oligopeptides. KEGG analysis of the differential metabolites showed 
significant enrichment in bile secretion and folate biosynthesis pathways 
(p < 0.05) and most of the metabolites were enriched in the metabolic 
pathway. (Figure  6C). Certain oligopeptides exhibit antioxidant and 
antimicrobial properties (19, 20). These oligopeptides were analyzed for 
correlation with sperm viability, plasma membrane integrity and 
ROS-related indices. The highly expressed oligopeptides in CS-5 
exhibited positive correlations with sperm viability and plasma 
membrane integrity and negatively correlated with ROS and MAD 
(Figure 6D). This suggests that these oligopeptides play a role in reducing 
oxidative stress, thereby contributing to the maintenance of sperm quality.

4 Discussion

Buck spermatozoa are highly susceptible to oxidative stress 
during storage, severely impacting sperm function. To address this 

challenge, antioxidants have been widely explored for their ability 
to prolong sperm viability in vitro (21, 22). Chitosan exhibits strong 
antioxidant properties and excellent biocompatibility (23), making 
it less prone to rejection and providing a rationale for its inclusion 
in buck semen diluents. In this study, the addition of chitosan 
during low-temperature preservation of buck semen was effective 
in improving sperm viability and mitigating the decline in sperm 
antioxidant capacity. However, this effect did not scale with 
increasing concentrations of chitosan; instead, concentrations 
exceeding 0.4 mg/mL resulted in diminished effectiveness. These 
findings align with chitosan addition in porcine semen 
cryopreservation, demonstrating significantly lower lipid 
peroxidation levels in the chitosan-treated group than in the control 
group (24). Furthermore, previous studies have highlighted the 
potential of chitosan and its derivatives as carriers for antioxidant 
and anti-inflammatory agents (22, 25), underscoring its versatility 
in applications in biomedicine (26), agricultural science and 
technology (27), and food industry (28). In addition, dietary 
chitosan supplementation at a level of 2.5 g/kg for an 8-week 
interval prior to semen collection plays a critical role in mitigating 
the negative effects of oxidative stress in the seminal plasma of 
bucks fed either a control or high-fat diet (29). These findings 
further support the role of chitosan in improving both the quality 
and antioxidant capacity of sperm, which could have valuable 
implications for enhancing reproductive outcomes in buck breeding.

FIGURE 4

Overall differential metabolite among groups in seminal plasma of bucks. (A): Heat map of overall differential metabolites, differential metabolites at 
the same number of storage days are shown in red (A) marked in red. (B) KEGG pathway enrichment analysis of differential metabolites. (C) Number of 
differential metabolites between groups Wayne plots. (D) Expression patterns of random oligopeptides. (E) Expression patterns of random fatty acyls.
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In this study, spermatozoa were stored at 4°C, successfully 
mitigating the detrimental effects of cryopreservation while 
maintaining sperm functionality. Previous studies have shown that 
adding Y-27632 to semen diluents during low-temperature storage 
significantly improved sperm viability and integrity over 21 days 
(30). Although the present study only extended to day 5 of 
low-temperature preservation-a relatively short duration—it 
provided preliminary evidence suggesting that chitosan enhances 
semen preservation under low-temperature conditions. 
Metabolomics in reproductive biology is deemed a more precise 
approach for delineating phenotypes than transcriptome or 
proteome (15). This study identified a total of 23 metabolite 
classes via seminal plasma metabolomics, predominantly 
comprising phenol and substituted derivatives, amino acid and its 
metabolites, and organic acid and its derivatives. Importantly, 
chitosan supplementation during low-temperature preservation 
led to significant shifts in seminal plasma metabolite profiles, with 
216 differential metabolites identified on day 1, increasing to 605 

on day 5. This trend aligns with observations in sheep, where 
longer storage durations yielded even greater numbers of 
differential metabolites, surpassing those observed with other 
compounds like Y-27623 (30). These findings suggest that storage 
duration plays a critical role in driving metabolic changes in 
seminal plasma, potentially influencing sperm preservation  
outcomes.

Fatty acids and phospholipids are essential components of cell 
membranes, and spermatozoa depend on the integrity of the plasma 
membrane for survival and progressive motility (31). However, the 
high susceptibility of unsaturated fatty acids to oxidative damage 
during storage poses a significant challenge to sperm preservation 
(32–34). In this study, chitosan supplementation reduced unsaturated 
fatty acid levels after 5 days of low temperature preservation. KEGG 
pathway analysis revealing an enrichment of metabolites in the 
unsaturated fatty acid biosynthesis pathway, suggesting that chitosan 
may modulate lipid metabolism by influencing key enzymes involved 
in fatty acid synthesis or degradation. Specifically, the reduction in 

FIGURE 5

Differential analysis of fatty acyl and glycerophospholipid metabolites in buck semen between CS-5 and CT-5. (A) Differential metabolites clustering 
heat map. (B) FA and GP metabolites subclass composition. (C) KEGG pathway enrichment analysis of differential metabolites. (D) Analysis of the 
correlation between differential metabolites and sperm quality.
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gamma-linoleic acid, a derivative of linoleic acid, could indicate that 
chitosan acts to prevent the oxidation of polyunsaturated fatty acids, 
which are highly prone to lipid peroxidation. Recent studies have 
shown that supplementation with unsaturated fatty acids, such as 
linoleic, oleic and palmitoleic acids, may increase sperm viability and 
mitochondrial activity during fluid storage at lower temperatures 
(6°C), a process that reduces oxidative stress and lipid degradation 
(35). These fatty acids may be metabolically incorporated into sperm 
membranes, and the addition of chitosan modulates fatty acid 
metabolism to maintain sperm viability by reducing oxidative  
damage.

In addition to lipid metabolism, chitosan supplementation 
induced significant alterations in amino acid and organic acid 
pathways. KEGG analysis revealed enrichment in bile acid and folate 
anabolic pathways, both essential for maintaining sperm function. 
Folic acid, in particular, is associated with reduced sperm DNA 
fragmentation and enhanced membrane stability, emphasizing the 
importance of metabolite composition in sperm quality (36, 37). 
Additionally, many oligopeptides were identified among the 
differential metabolites of this study. Oligopeptides exhibit 
antioxidant, antibacterial, and anti-inflammatory activities while also 
being characterized by hypoallergenicity, high bioavailability, 

FIGURE 6

Differential analysis of amino and organic acid metabolites in buck semen between CS-5 and CT-5. (A) Differential metabolites clustering heat map. 
(B) Amino acid and organic acid metabolites subclass composition. (C) KEGG pathway enrichment analysis of differential metabolites. (D) Analysis of 
the correlation between differential metabolites and sperm quality.
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targeting, and safety (38, 39). Chitosan is widely used for its excellent 
antimicrobial and antioxidant properties. In this study, chitosan 
addition led to higher levels of many oligopeptides. Ala-Gln and 
Gly-Gln increased sperm viability in an ammonia-containing 
medium during in vitro sperm culture (40). In yeast cells, various 
dipeptides regulate cell membrane function by affecting membrane 
integrity and lipid composition. Additionally, dipeptides act as 
antioxidants to reduce MDA levels (41). Notably, specific 
oligopeptides, such as Phe-Asp-Gly-Asp-Phe, interact with 
antioxidant enzymes like superoxide dismutase (SOD), altering its 
conformation to enhance activity (42). These findings are consistent 
with the enhanced antioxidant capacity observed in chitosan-treated 
spermatozoa, pointing to a potential link between oligopeptide 
regulation and oxidative stress mitigation. However, the sheer 
diversity of oligopeptides presents challenges in elucidating their 
precise roles.

This study has several limitations that warrant further 
exploration. While the addition of 0.2 mg/mL chitosan to the semen 
diluent resulted in notable changes in lipid and amino acid 
metabolism, analyzing metabolites at a single time point limits 
insights into the dynamic metabolic changes occurring during 
preservation. Future studies should explore its long-term 
preservation effects, elucidate its mechanisms of action, and 
investigate possible synergistic interactions with other bioactive 
compounds to further optimize semen preservation techniques. 
Moreover, although the findings highlight improvements in sperm 
motility parameters and antioxidant capacity at low temperatures, 
these results are confined to in  vitro conditions. The absence of 
in  vivo validation restricts the applicability of these findings to 
practical semen cryopreservation protocols. Expanding research to 
include in  vivo studies and exploring the synergistic effects of 
chitosan with other compounds could establish a stronger foundation 
for its use in reproductive biotechnology. Finally, considering the 
observed alterations in metabolite profiles, uncovering the precise 
mechanisms by which chitosan influences lipid and amino acid 
metabolism will be essential. This could involve investigating its role 
in maintaining cell membrane stability and mitigating oxidative 
stress. Addressing these gaps will advance our understanding of 
chitosan’s potential and pave the way for developing optimized 
semen preservation techniques and improving assisted reproductive  
technologies.

In summary, this study found that chitosan addition during 
low-temperature sperm preservation led to significant changes in 
seminal plasma metabolites, such as fatty acids and amino acids. 
Chitosan possibly protects spermatozoa by maintaining cell 
membrane function and scavenging reactive oxygen species. Further 
studies are needed to investigate the specific roles of fatty acids and 
oligopeptides in sperm preservation, particularly through the 
evaluation of different preservation methods and longer storage  
durations.
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