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Thermal imaging has been used in animal models to non-invasively detect surface 
temperature changes after several pathologic and surgical processes. Infrared 
thermography (IRT) identifies increases or decreases in radiated heat according 
to blood circulation and microcirculation. The present review aims to discuss 
the most relevant aspects of IRT applied in biomedical research as a noninvasive 
technique in animal models, highlighting its importance in a clinical setting and for 
translational medicine. IRT provides an alternative to evaluate vascular anomalies 
where blood flow is interrupted. In surgical processes such as anastomosis and 
reconstructive techniques (e.g., grafts and flaps), thermal imaging can assess 
the viability of tissues. In burn injuries, IRT can predict and identify the areas of 
ischemia-necrosis and inflammation. Nonetheless, although IRT is a potential 
alternative to use in both animal models and human patients, the use of IRT and 
other imaging techniques is encouraged.
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1 Introduction

Animal models in biomedicine are essential to comprehend the biological and 
physiological basis of several medical fields such as biology, immunology, infectious diseases, 
oncology, genetics, and neurosciences (1, 2). The responses of animal models to different 
diseases, drugs, surgical processes, and immunizations are usually evaluated through 
cardiorespiratory, metabolic, endocrine, and behavioral parameters (3, 4). However, 
complementary and non-invasive techniques have been proposed in experimental research to 
avoid the stress-related response that invasive techniques might elicit in animals (5–7). An 
example is infrared thermography (IRT), a real-time and non-contact imaging technique that 
monitors body surface temperature (8–11).

IRT detects thermal radiation from the body surface with an accuracy of up to 0.1°C (10). 
The body’s surface temperature can change according to central and peripheral 
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thermoregulatory mechanisms that result in vasoconstriction or 
vasodilation of superficial blood vessels to reduce or increase heat loss 
(12–14). Thus, it might robustly assess surface thermal variations in 
living organisms (15).

In mammals, physiological and pathological conditions (e.g., 
inflammation, fever, interruption of blood flow) induce alterations in 
thermoregulation mechanisms which can be assessed through IRT 
(15–19). Several authors have used IRT to map the thermal response 
in animal research, including rodent and porcine models (20, 21). For 
example, IRT has been used in vascular reconstruction models in 
rabbits, together with other advanced imaging techniques (e.g., 
angiography under ultrasonic observation) to describe the 
pathophysiology of thrombosis (22). In porcine models of intestinal 
and hepatic ischemia, IRT can detect circulatory changes and their 
association with tissue viability and blood flow restoration (23, 24). 
Similarly, in animal models of burn injuries, IRT can determine injury 
depth and predict the tissue healing (25).

Angiogenesis in oncological patients (e.g., breast cancer) is 
another aspect that has been replicated in murine models and studied 
with IRT. Processes such as hypervascularity and increased blood flow 
can be observed through IRT and are known as markers of tumor 
growth (Figure 1) (26, 27). Due to the wide field of research in which 
IRT is used in several animal models, this review aims to discuss the 
most relevant aspects of IRT applied in biomedical research as a 
non-invasive technique in animal models, highlighting its importance 
in a clinical setting and for translational medicine.

2 Search methodology

PubMed, Scopus, and Web of Science were the databases used for 
searching. The following keywords –or combination of keywords– 
were used to select relevant papers regarding “animal models,” 
“thermal imaging,” “diagnostic tool,” “experimental infrared 
thermography,” “thermal monitoring under anesthesia,” “burn 
injuries,” “vascular reconstruction,” and “blood flow restoration.” 
Included studies were those where thermal imaging was used as a 
complementary diagnostic tool in animal models of the mentioned 
clinical conditions or those that explain physiopathology. Likewise, 
papers using infrared thermography in both human and non-human 
patients were included. There was no settled date of publication, and 
all studies were written in English and Spanish.

3 Experimental vascular surgery, blood 
flow restoration, and its association 
with thermal imaging

Animal models such as small mammals and non-human primates 
are often used to study vascular pathologies including ischemia to 
understand the pathophysiological changes and associate them with 
injury degree and prognosis. In addition, surgical alternatives (e.g., 
anastomoses) are reproduced in animal models to evaluate their 
effectiveness (28). Vascular anomalies are followed by interruptions or 
blood flow deviations that alter the temperature of a tissue or organ. 
These changes can be  assessed with IRT when an ischemic, 
thromboembolic, clamping, obliteration (obstruction) event, or 
another mechanism generates total or partial interruption of blood 
flow and, therefore, a reduction in the amount of radiated heat 
(Figure 2) (10, 29, 30).

3.1 Thrombosis and ischemia

Thromboembolism is one of the most common pathologies in 
peripheral blood vessels. Among these, venous thromboembolism is 
the most studied in human and animal models, in which IRT has been 
applied to identify changes generated by venous occlusion. An 
example is Deng et  al. (22) study in rabbits, where thermal 
asymmetries were evaluated using IRT, ComPression UltraSonography 
(CPUS), and AngioGraphy Under ultrasonic Observation (AGUO) in 
a model of deep vein thrombosis in the femoral vein. The authors 
found that IRT identified an increase in the surface temperature of the 
affected right pelvic limb (hindlimb), ranging from 39.14–39.24°C to 
41.08–41.91°C, suggesting that thermal imaging is a sensitive 
technique to detect changes in blood flow. Likewise, in humans by 
Bergqvist et  al. (31), who compared IRT and conventional 
phlebography to identify deep femoral venous thrombosis. In 83.3% 
of cases, an increase in skin temperature was associated with 
thrombosis, and 90.1% of agreement was reported between the two 
diagnostic methods. Identification of a thrombus as a hot spot in a 
thermogram is due to blood pooling and increased blood flow to the 
region (12, 32).

In contrast to venous thromboses, the available literature on 
arterial occlusions is limited. However, these are considered of greater 
clinical interest due to the risk of severe complications such as limb 

FIGURE 1

Summary of the application of thermal imaging in biomedical 
medicine and animal models.
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loss, multi-organ dysfunction, premature intubation, stroke, and death 
(33). In vital organs such as the heart, Lekas et  al. (34) have 
implemented IRT to identify the thermal changes of the epicardial 
surface in a canine model of temporary descending coronary artery 
occlusion. In the ischemic region, thermal imaging detected an 
immediate and progressive decrease from 31°C to 28–26°C. After 
reperfusion, the temperature returned to baseline values while some 
hypothermic and hyperthermic regions remained, representing the 
thermal imbalances that blood flow interruption can cause in the 
heart. In the same organ, Pouzot-Nevoret et al. (35) determined that 
IRT helps to differentiate feline aortic thromboembolism (FATE) with 
or without ischemia, due to the limb temperature decrease. In cats 
with acute bilateral pelvic paralysis due to FATE, the temperature of 
pelvic limbs was 22.7 ± 2.2°C, while in cats with acute hind limb 
paralysis not related to ischemic processes the average temperature of 
the limbs was 25.7°C. Moreover, in cats with FATE, the temperature 
of the pelvic limbs was 2.4°C below the one recorded in the thoracic 
limbs (unaffected region).

In the case of occlusions to the superior mesenteric artery, 
morphological and thermal imaging studies have been performed in 
Wistar rats, in whom ischemia was induced at five different times. 
Macroscopically, ischemia for less than 1.5 h caused moderate 
hyperemia, and the mesenteric surface temperature decreased by an 
average of 1.5°C. In contrast, rats subjected to prolonged ischemia 
(above 1.5 h) recorded a progressive decrease in temperature by up to 
1.8°C. Subsequently, as a physiological response to reperfusion, short-
term ischemia for 30 and 60 min increased the mesenteric temperature 
by 2°C to return to basal values. However, animals with prolonged 
ischemia did not return to basal values and maintained lower 
temperatures (36).

Organ ischemia has also been replicated in animal models, and 
IRT has shown certain applications to detect interrupted blood flow. 
Brooks et al. (23) compared IRT with conventional methods such as 
histology, Doppler ultrasound, and fluorescence to analyze intestinal 
ischemic damage induced in a porcine model. After mesentery 
ligation, IRT detected circulatory changes and established a 
percentage of nonviable tissue of 69.5%. This percentage was below 
the one obtained with fluorescence and Doppler ultrasound 
fluorescence and Doppler (91.8 and 80.8%, respectively). Thus, the 
authors concluded that IRT is recommended as a complementary 
alternative that must be used with other techniques to increase the 
accuracy of the evaluation. Likewise, induced hepatic injury by 
ischemia–reperfusion of the portal vein and left lobe hepatic occlusion 
in pigs has been evaluated with IRT by Gringeri et al. (24). Through 
IRT, the temperature of the ischemic lobes was found to 
be  significantly lower than that of the non-ischemic right lobes 
(p > 0.05), and although rewarming was observed upon removal of 
the occlusion, hypothermia continued after 2 h. The authors 
highlighted the usefulness of IRT as a tool during the intraoperative 
period to detect early blood flow deprivation and its possible 
consequences such as hypoxia, the release of oxygen-free radicals, 
cytokines, microcirculatory failure, oxidative stress, and cell death 
(37, 38).

These findings are essential as they show that IRT can be used to 
identify revascularization (reperfusion) events, prevent ischemia, 
hypovolemia, and subsequent tissue necrosis in transplant surgeries, 
intestinal anastomosis, and other procedures where resection of the 
affected tissue must be decided. Likewise, IRT allows visualization of 
functional recovery after an ischemic process, where an increase in 
surface temperature is equivalent to a return of blood flow.

FIGURE 2

Anastomoses, animal models, and thermal imaging to monitor blood flow restoration. IRT: infrared thermography. In murine animal models, several 
vascular structures serve to practice and develop anastomoses techniques. Regardless of the type of anastomosis (e.g., end-to-end, end-to-side, and 
side-to-side), monitoring the restoration of blood flow after this type of vascular surgery is essential. After a successful anastomosis, restoration of 
blood flow elicits changes in the surface temperature of blood vessels and surrounding tissue.
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3.2 Anastomosis and blood flow restoration

Animal models have been used to perform microsurgical 
procedures such as the reconnection of blood vessels or vascular 
anastomosis. After this surgical procedure, clinical evaluation of the 
blood flow restoration is essential to establish the success and recovery 
of the patient. The high risk of failure after vascular anastomoses 
justifies the need to use evaluation methods in experimental animal 
models. Monitoring with IRT in the intraoperative period of vascular 
surgery could reveal some errors in the procedure and promptly 
establish correcting measures to guarantee the viability of the tissue 
(39, 40).

An example is Esposito et  al. (40) study, which used IRT to 
compare conventional sutures with laser welding in bypass surgery in 
rabbits undergoing microvascular anastomosis. When evaluating the 
temperature of the region, as well as that of the edges of the carotid 
artery corresponding to the end-to-side anastomosis, the results 
showed that the temperature during and after the use of the laser did 
not interfere with the evolution of vascular restoration and there were 
no setbacks such as clot formation, equivalent to a successful 
anastomosis without leak points. Similarly, in a murine model of 
island pedicle flap, Li et al. (41) evaluated the changes in the surface 
temperature of the flap to determine the optimal delay periods for flap 
placement. A continuous white hotspot was observed in animals with 
a successful anastomotic vessel. In contrast, choke vessels had a visible 
red zone, showing the differences in temperature in both regions.

In humans with Moyamoya syndrome (carotid stenosis), IRT had 
a similar degree of diagnostic accuracy as conventional and validated 
imaging techniques (e.g., fluorescent marker indocyanine green) to 
evaluate anastomotic permeability during surgery to place a bypass 
(42). These studies suggest the application of IRT to detect 
intraoperative decreases in the temperature of injured organs that 
indicate decreased or lack of blood perfusion, which can help 
determine the extent of the damage and the prognosis of the affected 
tissue (24, 36). On the contrary, detecting increases or returns of 
surface temperature in anastomoses of blood vessels or organs ensures 
the success of the technique and prevents tissue loss that would lead 
to hypoperfusion (43).

3.3 Blood flow and tissue repair

The degree of damage and the healing process after a tissue injury 
(e.g., surgical wounds) are other fields where IRT could offer a 
non-invasive and complementary diagnosis (44–46). After tissue 
damage, a transient vasoconstriction of surrounding blood vessels is 
observed. In contrast, the inflammatory phase occurs 2–5 days after 
the injury, together with other tissue repair events such as angiogenesis 
and re-epithelialization (47–49). This effect has been observed when 
comparing the surface temperature of an injured and healthy skin 
zone, where the highest temperatures are recorded in the injured area 
due to the local inflammatory response that promotes tissue 
restoration (45). Indeed, high temperatures of up to 33.8 ± 0.9°C were 
associated with normal wound healing in human patients with 
thoracic surgical incisions. In comparison, values of 30.0 ± 1.2°C were 
observed in patients with local infectious processes (46). Moreover, 
this study reported that thermal imaging had a sensitivity and 
specificity of 91.6 and 85.7% in predicting healing status (46).

In the case of animal models, Deveci et  al. (50) used IRT to 
monitor healing in a full-thickness skin wound model in Wistar rats. 
When comparing the local temperatures of untreated and treated 
(with dexpanthenol) animals, the authors found that as wound 
treatment time progressed, there was less local temperature increase. 
Similarly, in full-thickness cutaneous wounds in mice, treatment with 
europium dressing decreased the wound area faster than in control 
animals (51). Other options for comparing surgical procedures were 
reported by Viscardi et al. (52), who tested CO2 surgical laser as a 
refinement method to castrate piglets while improving the healing 
process of conventional procedures. Contrary to what was expected, 
laser-castrated piglets recorded lower wound temperatures than 
scalped-castrated piglets. Moreover, laser-castrated piglets had 
behavioral alterations related to pain, which suggested higher tissue 
damage than conventional castration techniques. These studies show 
that IRT can monitor the inflammatory response of the wound site 
and associate it with normal or delayed healing. Using IRT with other 
diagnostic tools might help provide an accurate healing prediction or 
even design intervention plans when wound healing is impaired.

4 Thermal imaging applied to 
neurosurgery and neurosciences

4.1 Experimental models of cerebral 
ischemia and neurosurgery

Neuroscience research includes neurosurgery, cerebral damage of 
different natures, and behavioral alterations, among others. Damage 
to nervous tissue, as well as its vasculature, can generate brain 
temperature alterations due to inflammatory, infectious, surgical, 
tumoral, or structural processes, events that have been recognized 
with thermal imaging (10, 53). For example, in a murine model of 
occlusion/reperfusion of the middle cerebral artery in hypertensive 
rats, Yao et  al. (54), used IRT to non-invasively monitor brain 
temperature and maintain central brain temperature within a range of 
1°C upper shift, serving as a support technology to conventional 
measurement methods through thermocouple probes.

Animal models are beneficial to study ischemic and occlusive 
processes in the middle cerebral artery, a vascular structure that 
irrigates both cerebral hemispheres and is exposed in surgical 
interventions (55). Therefore, structural damage such as temporary 
occlusion can cause thermal alterations, as demonstrated by Watson 
et al. (56) in a model of temporary occlusion of the branches of the 
middle cerebral artery and the internal carotid artery, in the region of 
the frontal, parietal and temporal lobes in the cynomolgus monkey 
(Macaca fascicularis). The regions deprived of blood flow recorded an 
immediate temperature decrease between 0.3 and 1.3°C, while they 
recovered basal temperatures after reperfusion. Likewise, the 
temperature of the arterial blood vessels decreased between 1.3 
to 3.2°C.

The sequelae of vascular events have also been studied in humans 
but using IRT, as reported by Alfieri et  al. (57) in patients with 
hemorrhagic stroke. The authors found that, when compared to the 
control group, the temperature of the hands in individuals who 
suffered unilateral hemiparesis after stroke had similar values 
(29.5 ± 3.0°C vs. 29.6 ± 2.7°C). In contrast, significant differences 
were detected in the feet of affected (27.5 ± 3.3°C) versus healthy 
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patients (27.9 ± 3.0°C). However, da Silva Dias et al. (58) did not find 
differences in foot temperature between patients with loss of 
somatosensory sensitivity and those with stroke sequelae.

Neurosurgery and the perioperative period, including the surgical 
procedure and anesthesia, is another field where IRT has shown its 
clinical application. In the case of anesthesia monitoring, Kastek et al. 
(59) evaluated the effect of anesthetics such as isoflurane and the 
changes in cerebral flow due to the effect of CO2 and occlusion of the 
right middle cerebral artery. The authors reported that 80% of arterial 
occlusion decreases brain surface temperature by approximately 0.5°C 
below the baseline value. This effect was reversed after reperfusion, 
recording increases of up to 1.6°C, as a result of a sudden influx of 
blood to the brain. Likewise, Suzuki et  al. (60) evaluated cerebral 
metabolism and blood flow with IRT using isoflurane and α-chloralose. 
Isoflurane increased cerebral circulation but decreased metabolism, in 
contrast to α-chloralose, showing the application of IRT to detect 
circulatory alterations and the consequent changes in radiate heat.

The thermal images included in Figure 3 show another suggested 
application of IRT during an experimental process such as stereotactic 
surgery in a rat model. With IRT, the temperature changes from the 
perioperative period can be observed. For example, during anesthesia 
induction, the temperature of the tail (one of the main thermoregulatory 
organs of the species) decreased. In contrast, an incision generates pain 
or surgical stress, with an increase in physiological parameters, 
something similar to what can be observed during the induced brain 

injury model, that is likely to trigger an adrenergic discharge. All these 
events induce immediate physiological changes that can be recorded 
with IRT. These results suggest that IRT could be used during invasive 
neurosurgical procedures and/or those that require high-precision 
manipulation (aneurysms, arteriovenous malformations, or tumors), 
due to the irrigation of these highly vascularized structures. In this sense, 
IRT is useful to determine active areas on the exposed cerebral cortex, 
due to the increase in blood flow and consequently metabolism during 
motor and language tests in the trans-operative period (61). Similarly, 
Parrish and Iorga (62) used IRT to monitor brain function in human 
patients undergoing glioma resection surgery. The results showed that 
intraoperative thermography detected changes in the thermal pattern 
before and during the behavioral task, showing the brain regions that are 
activated when an action is requested. For example, when the patient 
was asked to squeeze an object with his right hand, the temperature of 
the sensory and motor cortex increased due to increased vascularization.

4.2 Infrared thermography and animal 
models in behavioral neuroscience

Several induced behavioral responses in animal models are another 
field where IRT has been used due to the association of peripheral 
blood flow control and central responses. Blood flow depends on the 
autonomic control that innervates the blood vessels. Thus, superficial 

FIGURE 3

Thermal images of a brain injury model in Wistar rats. During stereotactic surgery, thermal imaging was performed to record the changes in the 
average temperature of the tail, the main thermoregulatory organ of rats. (A) Before the skin incision, it can be observed that the tail temperature of the 
proximal (Sp1), medial (Sp2), and distal segments (Sp3) was within a range of 32.5 and 31.1°C. (B) Incision. In contrast to the basal period, the tail 
temperature dropped by up to 1.9°C in the proximal segment of the tail. This could be associated with the effect of anesthetics, which usually cause 
hypothermia after their administration. (C) Trephine hole. A progressive decrease in temperature was observed in the animals, dropping up to 3.5°C 
compared to the temperatures before the incision. (D) Induced brain injury. Increases in tail temperature were recorded in all three segments (32.4°C, 
32.3°C, and 32.0°C). Because head trauma can be considered a stressor that also causes pain, vasodilation in the tail could be associated with surgical 
stress-induced hyperthermia. (E) Suturing. Small decreases in temperature were recorded during suturing, with values of −0.7°C, −0.2°C, and − 0.3°C 
in the proximal, medial, and distal segments, respectively. (F) Post-injury. Similar to suturing, decreases in tail temperature of up to 6.8°C were 
recorded. The decrease in temperature may be related to the vasodilatory effect of anesthetics that promotes heat loss and, therefore, a lower amount 
of heat radiated to the environment.
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or cutaneous thermal changes might be associated with fear and other 
emotions as shown by Vianna and Carrive (63) in Wistar rats. In this 
study, after a conditioned fear test, the temperature of the tail (31.5°C) 
and the foot (34.8°C) decreased by an average of 5.3°C and 7.5°C, 
respectively. In comparison, the eye temperature (35.2°C) and the head 
temperature (32.8°C) increased by an average of 0.8°C and 1.5°C, 
respectively (63). This response is the result of the endocrine responses 
elicited by stress. The vasomotor effects reduce the temperature in 
peripheral areas (such as the tail and legs) and increase the temperature 
in key organs (e.g., eyes and brain) to cope with the stressful stimulus 
(64). During stress, the hypothalamic–pituitary–adrenal axis is 
activated, stimulating the adrenal cortex and the secretion of 
glucocorticoids, which promote gluconeogenesis and lipolysis, which 
increases thermogenesis. In turn, glutamatergic neurons stimulate the 
dorsomedial hypothalamus, which promotes sympathetic activation 
and thermogenesis, generating stress hyperthermia (65).

Other studies have also reported increases in head/body 
temperature and decreases in tail surface temperature in mice in 
response to stress caused by movement restriction (66, 67). Lecorps 
et al. (68) measured the thermal response with IRT on the tail and 
body surface of mice exposed to fox feces (predator odor). The mice 
responded with a discrete increase in tail temperature, from 
22.10 ± 0.9°C to 23.32 ± 1.3°C. In animal models of anxiety, Miyazono 
et al. (69) studied the anxiolytic effect of etizolam in a stress-fear model 
caused by mice exposed to pyrazine, a molecule that has been shown 
to generate fear in rats and mice. Using IRT, it was observed that 
pyrazine prevented significant decreases in tail temperature, recording 
decreases of less than 1°C. Likewise, Lecorps et al. (70) indicated that 
in the elevate plus maze and open-field neuropsychological tests, the 
infrared eye temperature increased (R = 0.213), while the tail 
temperature decreased, both as the test execution time passed. This 
means that animals subjected to this type of neuropsychological test 
generate a certain level of stress and/or anxiety, determined by the 
relationship that exists between the increase in temperature during the 
test. It should be  noted that the non-invasiveness achieved with 
thermography allows these findings to be obtained, aspects that must 
be considered by researchers when issuing their conclusions.

Other studies focused on stress, such as that of Carrive et al. (71), 
reported a reduction in pain sensitivity in rats conditioned to stress, 
which was called “stress-induced analgesia.” The decrease in tail 
temperature (4.4°C) recorded with IRT during stress was correlated 
with the slowing of nerve fiber conduction. On the other hand, Faraji 
and Metz (15) used IRT to demonstrate that female mice tend to have 
greater temperature modification when compared to males in stressful 
situations. In a rearing deprivation test, the skin temperature of the 
head of females was 33.75°C, while males recorded 33.40°C. Similarly, 
the temperature of the female’s back was 33.33°C versus 32.97°C of 
males. Regarding tail temperature, the values in females were an 
average of 27.21°C while the males recorded 27.91°C. Thus, IRT could 
be used as a tool to recognize surface temperature changes elicited by 
stress-mediated responses, as proposed in Figure 4.

5 IRT and anesthesia monitoring in 
laboratory animals

One of the main challenges during anesthesia is maintaining 
thermal homeostasis due to the tendency of patients to develop 

hypothermia during the perioperative period. During a surgical 
procedure, shaving, application of antiseptics on the skin, and 
organ exposure increase body heat loss by radiation and 
evaporation. Moreover, due to the depressing effect of anesthetics 
on the central nervous system, they decrease the sensitivity of the 
hypothalamus -the main thermoregulatory center- to detect low 
temperatures, resulting in an inhibition of the compensatory 
response to raised temperature (e.g., thermogenesis and 
sympathetic inhibition) (72). Due to the reported thermal changes, 
IRT has been used to evaluate the regional temperature in subjects 
with local anesthetic effects, mainly spinal cord blocks and 
general anesthesia.

5.1 Local anesthesia and surface thermal 
changes

The effect of local anesthetics has been studied mainly in murine 
animal models to understand their mechanism of action or to 
corroborate the technique’s efficacy. In this sense, Xu et  al. (73) 
evaluated the surface temperature of the fore and pelvic limbs, ears, 
and tail of C57BL/6 mice receiving 50-μL bupivacaine 0.25% 
epidurally. The temperature of the tail and pelvic limbs progressively 
increased by approximately 3 to 4°C. The increase in temperature in 
these structures is associated with the vasodilation caused by the local 
anesthetic, increasing blood flow to the caudal region. This thermal 
effect is the result of the suppression of neurological activity due to the 
regional epidural block. Thus, increases in the regional temperature 
after the administration of a local anesthetic might help to confirm the 
success of the epidural block. Another study in rats evaluated the 
effects of the administration of ropivacaine (local anesthetic) by 
recording the temperature of the head, back, and tail. The authors 
found that the animals that received the drug had a similar maximum 
temperature in the head (central compartment) and the back 
(peripheral compartment) (29.4°C and 30°C, respectively). The 
animals also presented microcirculatory changes in the tail that 
caused congestion and therefore an increase in caudal 
temperature (74).

In canines, Küls et al. (75) recorded the temperature of the pad 
region before orthopedic surgery in dogs to evaluate the effect of 
epidural and femoral-sciatic blockade with bupivacaine. With IRT, it 
was determined that a temperature difference greater than 1°C was 
associated with a successful anesthetic block. In the same species, 
Wan-Tae et al. (76) evaluated the temperature of the dorsal region of 
dogs with spinal cord injury by experimental compression using 
balloon inflation (Foley catheter) at the L2 and L3 levels. The findings 
obtained by IRT reported a decrease in temperature from the thoracic 
region to the pelvic level, recording the lowest temperatures in the 
pelvic region. In these animals, in the fourth week after surgery, a 
slight increase in temperature was observed, mainly in the thoracic 
region. Likewise, it was found that canines maintained dorsal 
temperature symmetry before and after surgery, where the lateral 
temperature of the left thoracic, lumbar, and pelvic region was 28.66, 
28.48, and 28.09°C, respectively; and those of the right side were 
28.65, 28.47, and 28.09°C, respectively. Therefore, IRT can assess the 
temperature changes as a response to regional anesthesia, where a 
successful blockade is interpreted with a decrease in regional  
temperature.
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5.2 General anesthesia and its effect on 
peripheral thermoregulation

General anesthetics (both inhalational and parenteral drugs) 
induce hypothermia, a state that can be evaluated with IRT, as shown 
by Gjendal et al. (67) who assessed the thermal response of C57BL/6 
mice to 3 stimuli; (1) anesthesia with isoflurane, (2) scruff, and (3) 
injection of substances intraperitoneally. This study showed that 
isoflurane induced a tail temperature drop by more than 3°C during 
anesthesia (basal: 31.16°C vs. anesthetic: 28.13°C), followed by a drop 
in eye temperature (from 37.32°C to 34.70°C) and body temperature 
(from 32.88°C to 30.29°C). Vogel et  al. (77) mention that ocular 
surface temperature is a good indicator to measure the effect of 
isoflurane-induced anesthesia in an animal model of myocardial 
infarction, while Hankenson et  al. (72) describe that isoflurane 
anesthesia causes dilation of peripheral blood vessels, exacerbating 
heat elimination, especially in the thermoregulatory organ of rats, 
which is the tail.

In other studies where the tail has been used as a thermal window 
to evaluate the effect of injectable anesthetics such as intraperitoneal 
ketamine (150 mg/kg), anesthetized C57BL/6 mice showed an 
immediate decrease in tail temperature, a change that persisted at 5, 
10, 15 min and recovery (32.35 ± 1.60°C), 5 (27.23 ± 0.51°C), 10 
(25.19 ± 0.52°C), (25.18 ± 0.89°C), (25.39 ± 0.80°C), respectively. This 
hypothermia effect is associated with the mechanism of action as an 
N-methyl-D-aspartate receptor antagonist (78). Together with the 

hypothalamic suppression, general anesthetics inhibit the activation 
of β-adrenoceptors involved in the sympathetic response, which leads 
to a decrease in heart and respiratory rate, as well as the inhibition of 
catecholamine release and the stimulation of BAT, responsible for 
non-shivering thermogenesis. In other species such as pigs, Farrar 
et al. (79) compared the rectal temperature and IRT values at the base 
of the ear and the temporal angle of eyelids in sows anesthetized with 
tiletamine and zolazepam. The results showed that the temperature of 
the base of the ear had a higher correlation with the rectal temperature 
(r = 0.432) than the ocular temperature (r = 0.359). Although this 
study showed that rectal temperature had less variability in terms of 
measurements, IRT is a tool that, due to its non-invasiveness, is an 
alternative for monitoring temperature in this species, in addition to 
the fact that other authors have reported strong positive correlations 
between rectal temperature and the ear canal (r = 0.62) and between 
rectal temperature and of the eye (r = 0.53) (80).

In this way, IRT could help to recognize and prevent 
complications during anesthesia, such as hypothermia. 
Hypothermia during anesthesia delays the recovery of consciousness 
and causes peripheral vasoconstriction (72). In animal models, the 
effect of anesthetics can be  monitored through the surface 
temperature of the tail, which serves as a thermoregulatory organ. 
In this species, the decrease in temperature in the tail region is a 
physiological vasoconstriction process to preserve heat. This effect 
is schematized in Figure 5, where thermal imaging was used to 
monitor anesthesia in Wistar rats.

FIGURE 4

Application of IRT in various neurobehavioral tests. (A) During a conditioning protocol to electroshocks, the average eye temperature (El1) and the ear 
(El2) can be evaluated with IRT, recording 34.7°C and 35.4°C. (B) Administration of the dopaminergic drug SKF. The vasoconstriction effect of the drug 
can be assessed by recording the surface temperature of the tail, obtaining minimum temperatures of 25.5°C at the distal end of the tail (El3). 
(C) During the Rotarod motor test, the increase in temperature in the BAT region (El1) is identified, which may be associated not only with locomotion 
but with the degree of stress during the test. (D) Motor test in an elevated beam paradigm. A lateral view of the rat during its displacement could 
provide information on the thermal response of the animals.
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6 Thermal imaging to diagnose and 
monitor oncologic animal models

In humans, breast cancer affects approximately 2.8 million women 
worldwide. Although mammography is the most common technique 
for cancer diagnosis, other tools such as IRT are considered as an 
alternative due to the changes in temperature and increased blood 
flow as a result of possible angiogenesis (81). Angiogenesis is the 
formation of new blood vessels from existing capillaries. “Tumor 
angiogenesis” is the growth of new blood vessels that tumors need to 
expand. In the context of cancer, angiogenesis is a fundamental 
process for tumor growth and the formation of metastases (82). 
Cancer stem cells are also involved in neovascularization, and the 
presence of these cells has been found to contribute to the failure of 
various anticancer therapies through the process known as vascular 
mimicry formation (83).

The formation of new blood vessels in the tumor cell 
microenvironment is one of the reasons why IRT has been used in 
animal models of breast cancer. Through tumor growth monitoring, 
it was found that, unlike what is observed in humans with cancer, 
where the surface dermal temperature increases by 1–2°C, in mice, a 
progressive decrease in temperature was recorded (between 1.5 and 
3°C, depending on the tumor cell) (26). In Sprague–Dawley rats, 
Wahab et al. (84) used thermography (together with four different 
image filtering techniques) for tumor recognition. The results showed 
that IRT not only allows the visualization of thermal changes in the 
tumor region, but its use in conjunction with other techniques (such 
as contrast stretching) improves the accuracy of IRT. In Balb/c mice, 
IRT was used to estimate tumor area according to changes in surface 
temperature after radiotherapy treatment, obtaining a maximum of 
36°C on day 15, and a minimum of approximately 28°C on day 29. In 
addition, the results of IRT were compared with conventional 

measurement methods using manual caliper, finding a strong 
correlation between both techniques (85).

Other correlations between tumor size and tumor temperature 
have been reported in Balb/c mice. The temperature at the injection 
site progressively decreased from 33.7°C to 31.4°C, allowing 
temperature changes to be observed before clinical signs of the tumor 
appeared (86). Moreover, even when tumors cannot be diagnosed by 
direct observation, thermal imaging can detect temperature changes 
of up to 0.1°C in affected tissue (27).

Progressive decreases in surface temperature as the tumor 
increases in size are associated with necrosis in the center of the tumor 
due to the treatment (87). Therefore, the application of IRT in 
cancerology has not been limited to being a complementary diagnostic 
method but has also been suggested as a technique to monitor 
treatment, as studied by Yu et al. (88) in Sprague Dawley rats. In this 
study, IRT was applied to diagnose breast cancer and determine the 
effectiveness of treatment with doxorubicin nanoparticles (2 mg/kg). 
It was found that lower temperature was recorded in treated animals 
due to the efficacy of the treatment. Real-time IRT techniques in mice 
with subcutaneous tumors have been used with magnetic nanoparticle 
hyperthermia to approximate intratumoral temperature. In this sense, 
after 3 min of magnetic hyperthermia, Rodrigues et al. (89) used a 
formula developed for Andrä et  al. (90) to distinguish tumor 
temperature from baseline values, which revealed significant 
differences between the surface temperature of healthy mice (+11°K) 
and those with tumors (+5°K).

These studies in animal models have encouraged the application 
of IRT in humans, together with new precision medicine techniques. 
New technologies such as Deep Learning, when used together with 
IRT, have been shown to detect anomalies in thermograms of patients 
with breast cancer with a sensitivity of 92.3% and a specificity of 53.8% 
(91). Similarly, 100% accuracy has been reported by Fernández-Ovies 

FIGURE 5

Thermal imaging was applied to evaluate inhalant and injectable anesthesia in female Wistar rats. Due to the influence of anesthetics on central 
thermoregulatory centers, IRT can be used to monitor the thermal balance of rodents during anesthesia. (A) Isoflurane anesthesia. A1 to A4 shows the 
progressive decrease in the temperature of the rat’s tail. When considering a proximal (Sp1), medial (Sp2), and distal segment (Sp3) of the tail, an 
average decrease of up to 3.3°C was registered. (B) Administration of ketamine + xylazine anesthesia. From B1 to B4, the injectable combination 
caused a progressive decrease in the temperature of the tail of up to 3.5°C. The decrease in the Surface temperature of the tail can be associated with 
the systemic vasodilator effect of general anesthetics that forces the organism to shift blood Flow from peripheral tissues to vital organs (e.g., heart and 
brain). Therefore, the surface temperature of the tail decreases due to vasoconstriction to reduce the amount of heat loss.
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et  al. (92) when using IRT together with mammography and 
ultrasound. Thus, vascular changes characteristic of tumors, even 
without the presence of observable clinical signs, make IRT a valuable 
tool for the diagnosis and monitoring of anticancer therapy both in 
experimental models and in clinical trials with humans.

7 Animal models of burn injury and 
IRT

The World Health Organization reports a prevalence of 180,000 
burn deaths each year, with a higher incidence in low- and middle-
income countries, where non-fatal burns are one of the main causes 
of morbidity (93). Research into the pathophysiology of burns, burn 
wound healing, and projects designed to employ new treatment 
modalities constitute another aspect in which animal models are 
indispensable (94, 95). Thanks to these in vivo models, it has been 
possible to identify the inflammatory, circulatory, and metabolic 
alterations present in a burn injury, whether due to cold or heat (96). 
For example, in rodents, leporids, and pigs, the three characteristic 
regions of burn damage have been successfully reproduced: a central 
zone of necrosis or coagulation zone, a surrounding area of stasis with 
impeded blood flow, and an outermost zone of inflammation and 
hyperemia (Figure 6) (96, 97). According to the severity or extent of 

the damage, the classification of burns has changed from first, second, 
third, and fourth degree to represent the degree of burn depth as 
superficial, superficial partial-thickness, deep partial-thickness, and 
full-thickness (98).

The effects on dermal circulation differ according to the described 
regions. In the necrosis zone, there is a complete loss of dermis and 
subpapillary vasculature (96). In the stasis zone, there is no circulation 
from the dermal capillaries, whereas in the hyperemia zone, edema 
but intact vasculature making it recoverable tissue (96, 99). Because 
infrared thermography captures the R skin emissivity and the amount 
of heat radiated from the dermal blood vessels, IRT has been 
postulated as a complementary tool to analyze burn depth and healing 
potential (25). The visual technique for burn depth assessment has 
been shown to have only 60% accuracy (100). IRT has therefore been 
used to correlate temperature at the injury site with burn depth, as well 
as with progression and healing prediction (101).

7.1 Heat burn injury and IRT

Blood perfusion assessment helps predict healing time in burn 
patients, so techniques such as active dynamic thermography (ADT) 
can distinguish abnormalities in the heat transfer pattern of injured 
tissue. This was studied by Prindeze et al. (44) in a Duroc pig model 

FIGURE 6

Application of thermal imaging in animal models of burn injury. According to the three burn injury zones, changes in the microcirculation arise after 
tissular damage. In the zone of coagulation, necrosis, and irreversible tissue damage are present. In the zone of stasis, reversible vascular injury is 
observed, causing vasoconstriction due to the presence of chemical mediators such as thromboxane and catecholamines. In contrast, in the 
hyperemia zone, vasodilation is present due to the release of pro-inflammatory mediators. While these biochemical reactions cause systemic 
alterations, the changes in the microvasculature also alter the amount of radiated heat from the body. With the use of an infrared camera, the 
coagulation zone with necrosis and lack of functional irrigation is detected at low temperatures. In contrast, vasoconstriction in the stasis zone and 
vasodilation in the hyperemia zone can be observed as yellowish-green and reddish color in the thermal images.
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with superficial partial and deep partial thickness burns. ADT 
identified different average temperatures from 30 to 150 min 
postinjury, an effect that was related to differences in perfusion 
(assessed with the LDI) between shallow and deep burns. In a porcine 
model using Yorkshire animals, IRT was applied, in conjunction with 
a multiprobe adapter system for transepidermal assessment and 
histology to determine burn severity over 4 days. The authors found 
that surface temperature decreased according to burn severity, being 
most notable in individuals with third-degree burns (baseline values 
of 34.4°C to a minimum of approximately 32°C in deep burns). This 
was consistent with increased transepidermal evaporative water loss 
and histological changes characteristic of deep burns (collagen 
coagulation, apoptosis, necrosis, and vascular occlusion). These results 
suggest that IRT is a tool that can establish burn severity (102).

In the same animal model with Yorkshire pigs, a burn depth 
assessment was also been performed by Ponticorvo et al. (103), who 
adopted the IRT method to assess burn severity. IRT was used as a 
noninvasive assessment method during the first 72 h to be compared 
with histological severity diagnosis. The results showed that IRT had 
an accuracy rate of 73% (correctly classifying 35 of 48 lesions), a 
sensitivity of 66%, and a specificity of 33%, in contrast to clinical 
assessment by histology, which had an accuracy of 83% (correctly 
classifying 40/48 burns). This suggests that, although IRT is a tool that 
can be adopted, a complementary assessment is required to correctly 
classify the severity of the lesions.

In third-degree burns, where the tissue is nonviable and does not 
heal, surgical excision and grafting are the appropriate options. 
However, because removal of viable tissue or incomplete removal of 
all necrotic tissue is common, it is essential to evaluate the healing 
process (102). In a comparative study in humans with third-degree 
burns between IRT and indocyanine green angiography (ICG), IRT 
was found to be able to determine the area of unsalvageable tissue, 
which overlapped 91% (range 82 to 98%) with the results obtained by 
ICG. However, because IRT overestimated the wound surface area by 
approximately 1 to 2 cm, it is important to establish that IRT can 
be applied in burns but must be accompanied by another diagnostic 
method (101). Similarly, although studies are carried out in animal 
models, clinical applications in human patients have shown that the 
temperature of burns classified microscopically as nondeep burns 
increase their temperature by an average of 1.5 ± 2.3°C from day 1 to 
2 while in those classified as deep decreases of −1.5 ± 2.0°C were 
recorded (from 32.3 ± 2.0°C to 30.8 ± 1.3°C), keeping an accuracy of 
87.2%, unlike the clinical assessment with 54.1% accuracy, which 
could help determine cases that require surgery (104).

7.2 Thermal imaging applied ice burns

In the case of frostbites, minipig models have shown changes 
in perfusion before and after frostbites, as reported by 
Rothenberger et  al. (105). The authors recorded increases of 
15–20% in blood flow for superficial and superficial partial burns, 
whereas in deep partial and full thickness burns blood flow 
decreased by 4 ± 2.1% to 27 ± 11.8%. These changes have been 
replicated in murine models and evaluated with IRT. Himashree 
et al. (106) used albino rats to induce superficial or deep frostbite 
burns on the pelvic limbs. Assessment during the first week 
showed that IRT detected areas of tissue viability and temperature 

increases in reversible (superficial) burns (from 17.6 ± 0.1°C 
immediately after frostbite to 23.1 ± 0.3°C) after 1 week of 
assessment. In contrast, lower values were recorded in deep 
(irreversible) burns than in superficial burns, and there was no 
significant increase in temperature (from 16.9 ± 0.2°C at 1 h post-
injury to 17.1 ± 0.2°C 1 week later). Due to the nature of burns, the 
current assessment of burn depth is performed not only with IRT 
(due to its limitations) but with other methods such as Doppler 
laser, dermoscopy techniques, and hyperspectral imaging, among 
others (98).

8 Flaps and grafts, blood flow 
reconstruction that can be assessed 
through IRT

IRT can be used as an objective technique to monitor blood flow 
restoration after grafts and/or flaps (107). In grafts, IRT is ideal for 
identifying the thermal response derived from the formation of 
granulation tissue at the level of the dermis and epidermis, as well as 
from angiogenesis between the graft and the recipient area. Grafts 
are classified according to their origin. If they come from the same 
individual, they are known as autografts or isografts; if they come 
from a cadaveric donor, they are called allografts or homografts, and 
xenografts or heterografts if they come from a different species 
(108). Soft tissues such as skin, muscle, and fat may present 
alterations such as tumor masses, trauma, or congenital 
malformations that cause atrophy and dysfunction. Autologous free 
flap transplantation is used to repair such defects; however, it 
requires adequate blood perfusion and patency of the main artery in 
the anastomosis, and microcirculation of the transplanted tissue 
(13, 109).

In both grafts and flaps, IRT is an important tool that allows 
decisions to be  made regarding the evolution of the procedure, 
especially considering that an undesirable ischemic process may 
be  associated with a decrease in regional temperature or, on the 
contrary, an increase in temperature due to an inflammatory process, 
both affecting tissue integration. In an experimental surgical model of 
ischemia–reperfusion in flaps formed in rats, the importance of blood 
supply was analyzed by proposing the use of a hydrogel patch that 
releases carbon monoxide and nitric oxide gasses which favor blood 
supply to the flap, angiogenesis, and also promotes distal 
vascularization and inhibit the inflammatory process. Infrared 
thermal images obtained on day 14 post-surgery showed that the 
experimental group that received the hydrogel maintained a sustained 
blood supply compared to the other groups (109).

In an experimental model with rats, the role of defensins and the 
survival time of ischemic arterialized venous flaps intentionally 
infected with 105 CFU of Pseudomonas aeruginosa was determined 
using IRT to confirm flap ischemia (i.e., decreased temperature in the 
left epigastric region of rats compared to its contralateral side) (110). 
In the same species, Czapla et  al. (111) evaluated subcutaneous 
perforating arteries with IRT before experimental placement of the 
skin flap. The results showed that IRT identified suitable arteries with 
efficient blood flow for anastomosis, as well as visualizing those with 
a high probability of ischemia and necrosis. In humans, preliminary 
results of the present authors have shown that thermal imaging can 
be used to monitor flap viability, as shown in Figure 7.
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9 From animal models to human 
medicine: translational use of IRT

The application of IRT in animal models has implications for both 
veterinary medicine and translational medicine. Although the use of 
alternatives to animal experimentation is currently advocated due to 
the differences that might be reported in physiological responses in 
animals and humans (112, 113), clinical trials developed in animals 
serve as an approximation to validate tools such as IRT. One of the 
most reported examples is studies evaluating tissue viability in patients 
who have received flaps after thermal or electrical burn wounds. In 
this regard, before performing graft or flap surgery, assessing burn 
wound depth using IRT has allowed for determining tissue healing 
potential with a sensitivity and specificity of 51.2 and 77.9% within the 
first 21 days in human patients (25). Higher percentages of sensitivity 
and specificity of IRT have been reported by Asif et  al. (114) 
in humans.

These applications are relevant because early assessment of burn 
tissue viability might guide more accurate treatment protocols (e.g., 
flaps or grafts) (115). This has been reported in patients undergoing 
abdominoplasty, in whom alterations in blood perfusion of the 
transverse abdominal muscle showed differences in thermal patterns 
within 30 s. At a clinical level, the location of hot spots in the muscle 
can serve as a guide for the surgeon during the surgical procedure and 
in the recovery period. Similarly, the feasibility of hand reconstructions 
after traumatic hand injury has used dynamic infrared thermography 

during the postoperative period to continuously assess perforator flap 
perfusion (116).

Burn injuries are the fourth most common type of trauma 
worldwide, causing significant morbidity and permanent disability, 
impacting the quality of life of the burned patient (117). The Luis 
Guillermo Ibarra-Ibarra National Rehabilitation Institute has a highly 
specialized center for the care of patients with severe burns, the 
CENIAQ (National Burn Research Center). In this center, protocols 
are being developed using IRT to evaluate the progression and 
treatment of patients with burn injuries. Moreover, other medical 
specialties linked to patient rehabilitation and physiotherapy have 
suggested IRT as a valuable tool for monitoring patient healing 
processes (Figure 8).

Another field in which animal models have served as an 
approximation to the expected results in humans is induced head 
trauma or neurosurgery and its association with thermal response. 
Cerebral vascular surgeries due to aneurysms have been studied with 
IRT. In these studies, by performing clip placement in the anterior 
cerebral artery, brain temperature before and after the procedure can 
be  compared. Potential ischemic events were monitored through 
thermography, and the diagnosis provided by IRT was corroborated 
with computed tomography (CT) and angio-CT (118). Thus, IRT is 
currently used in various fields of human and animal medicine, and 
through studies carried out on animals, the basis for its application in 
the daily clinical practice of human patients can be obtained (13, 
14, 119).

FIGURE 7

Use of infrared thermography to monitor peripheral irrigation in a flap. (A) and (B) immediate postoperative period after placement of a pedicled flap in 
a patient who received an electric shock and injured the medial plantar region of the left foot. The circle placed in Figure B (El1) shows the maximum 
(31.9°C), minimum (28.9°C), and average (30.1°C) temperature of the flap after the surgical procedure. Images (C,D) show the 24-h postoperative 
follow-up. Considering the circle that delimits the flap (El1) in Figure (D), it is observed that the maximum, minimum, and average temperatures 
increased by 3.7, 3.1, and 3.5°C, respectively, compared to the initial temperatures. One of the relevant clinical signs is the gradual increase in 
temperature in the flap region during the next hours, which is associated with blood flow and perfusion between the recipient tissue and the flap.
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10 Limitations of thermal imaging that 
need to be considered by researchers

Several environmental, technical, and biological factors need to 
be considered when using thermal imaging due to its influence on the 
increases or decreases in surface temperature. Environmental 
conditions include direct solar radiation, wind speed, and relative 
humidity (120–122). For example, a linear correlation between surface 
temperature and ambient temperature was reported in pigs (slope 
value = 0.40°C) (123). Similarly, in horses, Soroko et al. (124) reported 
that increases in ambient temperature highly influence the surface 
temperature of the carpus region. Likewise, in rabbits, de Lima et al. 
(125) reported that ocular surface temperature is affected by 
temperature, humidity, and ventilation. The presence of wind and 
wind speed is another factor that reduces the surface temperature 
(126, 127). Wind speeds of 7 and 12 km/h reduce the ocular surface 
temperature by 0.43 and 0.78°C, respectively, in cattle (125, 127). 
Thus, the room where the animals are maintained needs to be within 
the animal’s thermal comfort zone and must be controlled to avoid 
inaccurate readings, as stated in dogs, in whom a controlled 
temperature of 21°C is recommended to reduce variations on IRT 
values (128).

Regarding technical factors or those related to the camera, the 
most critical aspect is related to emissivity. Emissivity is known as the 
object’s ability to emit radiation (129, 130). This ability depends on the 
characteristics of the surface or the skin. Animal models for 
biomedicine use a wide range of species with several traits such as the 
presence of hair, hair color, feathers, or glabrous skin that directly 
influence emissivity. For example, pigs have an emissivity of 0.92–0.95 

(131), while horses and rabbits have recorded values of 0.95 and 0.97, 
respectively (132, 133). However, the selection of the thermal window 
is related to emissivity, as values can differ according to anatomical 
region, as shown in pigs, in whom the highest emissivity values were 
recorded at dorsal areas of live animals (0.93), and the lowest at hairy 
skin areas (0.93) or dead pig’s skin (0.80) (131). The differences in 
emissivity according to the species must be considered when using 
IRT in animal models that replicate human diseases, particularly when 
human skin emissivity is around 0.98 (131).

Another variable is related to the resolution of the camera, which 
might affect the quality of the data. In animals, a resolution between 
80 × 90 pixels or 320 × 240 pixels is recommended (36, 134, 135), a 
resolution similar to the one is used in human studies (320 × 240 
pixels). Additionally, the distance to the object and the capture angle 
must be considered to avoid recording inaccurate temperatures (136).

Biological aspects such as the color of the coat, hair length/type, 
dermal thickness, glabrous skin, and physiological differences (e.g., 
Wistar rats vs. naked mole rats) must be considered when selecting 
the animal model (137, 138). For example, in animals with hair, hair 
acts as a thermal insulator that affects infrared readings, decreasing 
the actual surface temperature (139). Thus, selecting the appropriate 
anatomical region to evaluate (e.g., zones without hair) and 
maintaining a controlled environment during experimental 
procedures is important when adopting IRT in research.

Finally, the use of IRT with other imaging techniques has been 
shown to improve the performance of thermal readings. An example is 
a study combining infrared thermography with laser speckle imaging 
to evaluate cerebral blood flow in rats as a model for stroke (60). In a 
model of peripheral arterial occlusion in Wistar rats, Hoinoiu et al. (140) 

FIGURE 8

Application of IRT in both animal and human patients for translational medicine. (A) In patients with facial paralysis, temperature may be altered 
according to the vascular theory of the disease. (B) In rehabilitation medicine, restriction tapes are used to inhibit and promote blood return, aspects 
that can be measured with IRT. (C) In anastomosis surgery, indirect evaluation of revascularization through IRT in the postoperative period is a 
complementary tool to clinical tests. (D) In a burn injury, the extension of the affected area can be objectively visualized with IRT.
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evaluated tissue perfusion by laser Doppler and computed tomography 
angiography, where the thermographic analysis confirmed severe 
persistent ischemia. The importance of combining different diagnostic 
and monitoring methods is mentioned in a study where vascularization 
of induced mammary tumors in female Sprague–Dawley rats was 
performed through power Doppler, ultrasound (B flow), thermography, 
and histology analysis (141). In this study, the authors concluded that 
thermal monitoring was strongly correlated with Power Doppler, which 
might reflect the angiogenesis process during tumoral growth. Thus, in 
further animal models where IRT can be used, it is recommended to 
compare its application with other techniques.

11 Conclusion

Thermal imaging in biomedical animal models has been used to 
non-invasively detect temperature changes in blood vessels due to 
several events that alter blood flow. In real-time, IRT identifies 
increases or decreases in radiated heat according to blood circulation 
and microcirculation. Thus, IRT provides an alternative to evaluate 
vascular anomalies where blood flow is interrupted, resulting in 
reduced blood flow and radiated heat. In surgical processes such as 
anastomosis and reconstructive techniques (e.g., grafts and flaps), 
thermal imaging can assess the viability of tissues through blood flow 
restoration. Similarly, in burn injuries, IRT can predict the degree of 
tissular damage by delimiting the areas of ischemia-necrosis and 
inflammation. It is recommended to use IRT together with other 
diagnostic and imaging tools to provide an accurate diagnosis. 
Moreover, the application of IRT in several animal models could help 
to link this basic experimental information to its application in 
translational medicine.
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