Skip to main content

ORIGINAL RESEARCH article

Front. Vet. Sci.

Sec. Veterinary Infectious Diseases

Volume 12 - 2025 | doi: 10.3389/fvets.2025.1541964

Decoding the genome and epigenome of avian Escherichia coli strains by R10.4.1 nanopore sequencing

Provisionally accepted
  • Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China

The final, formatted version of the article will be published soon.

    Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, which is a very important disease worldwide. Despite well-documented genomic traits and diversity of APEC, its epigenomic characteristics are less understood. This study utilized the high throughput and long-read capabilities of Oxford Nanopore Technology (ONT) to elucidate the genome structures and methylation modifications of three E. coli isolates of avian origin: one intestinal isolate from a healthy wild bird and two systemic isolates from clinically affected chickens. Three complete genomes, each comprising a single chromosome and multiple plasmids were assembled. Diverse virulence-associated genes, antimicrobial resistance genes, mobile genetic elements plasmids and integrons were characterized from the genomes. Despite a limited sample size, our whole genome sequencing (WGS) data highlighted significant genomic diversity among the E. coli strains and enriched repertoire of gene clusters related to APEC pathogenicity. From the epigenetic analysis, multiple methylation modifications, including three N5-methylcytosine (5mC), eight N6-methyladenine (6mA) and two N4methylcytosine (4mC) modification motifs were identified within all three isolates. Furthermore, common GATC and CCWGG methylation motifs were predominantly distributed within regulatory regions, suggesting a role in epigenetic transcription regulation. This study opens the avenue for future research into pathogenesis, diagnostic and therapeutic strategies of APEC considering epigenetic analysis.

    Keywords: Avian Pathogenic Escherichia coli, Chickens, nanopore, epigenetics, Methylation

    Received: 09 Dec 2024; Accepted: 21 Feb 2025.

    Copyright: © 2025 Wang, Liu, Shao, Li and Paudel. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence:
    Runsheng Li, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China
    Surya Paudel, Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, SAR China

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

    Research integrity at Frontiers

    Man ultramarathon runner in the mountains he trains at sunset

    94% of researchers rate our articles as excellent or good

    Learn more about the work of our research integrity team to safeguard the quality of each article we publish.


    Find out more