
94% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Vet. Sci.
Sec. Animal Nutrition and Metabolism
Volume 12 - 2025 | doi: 10.3389/fvets.2025.1541257
The final, formatted version of the article will be published soon.
Select one of your emails
You have multiple emails registered with Frontiers:
Notify me on publication
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
MSTN is a well-studied inhibitor of skeletal muscle development, but its mechanism of affecting gut metabolites and the functions it exerts through this pathway are still unclear. This study aims to reveal how MSTN affects the metabolism process by regulating gut metabolites. Combined analysis of jejunal contents metabolome and jejunal tissue transcriptome was used to compare the differences in intestinal metabolites and intestinal tissue gene expression between MSTN mutant and wild-type bovines. Metabolomic analysis identified that compared to wild-type bovine, a total of 304 metabolites their abundances were significantly changed in MSTN mutate including 142 upregulated and 162 downregulated. Transcriptome results showed that the expression level of 1541 genes were influenced by MSTN disruption, including 536 upregulated genes and 1005 downregulated genes, which were categorized into 311 KEGG signaling pathways, primarily related to disease and metabolism. Correlation analysis results suggested a notable cross-regulation between the transcript levels of some specific genes in jejunal tissues and the abundance of jejunal metabolites, represented by fatty metabolites and genes associated with fatty acid degradation, synthesis and elongation.Collectively, the result of this study indicated that MSTN gene mutation led to alterations in gut microbial metabolites by increasing the abundance of beneficial monounsaturated fatty acids (MUFAs) such as oleic acid, then to promote fatty acid degradation while inhibiting its synthesis by regulating the expression levels of relevant genes. These results provide a foundation for understanding the effects of MSTN gene mutations on gut metabolites and its certain functions that MSTN regulated via gut metabolites.
Keywords: MSTN, bovine, gut, Metabolome, Transcriptome
Received: 07 Dec 2024; Accepted: 11 Apr 2025.
Copyright: © 2025 Gao, Ma, Wang, Wu, Kang, Li, Yang and Wen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Guangpeng Li, Inner Mongolia University, Hohhot, 010021, Inner Mongolia Autonomous Region, China
Lei Yang, Inner Mongolia University, Hohhot, 010021, Inner Mongolia Autonomous Region, China
Tong Wen, Baotou Teachers' College, Baotou, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Supplementary Material
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.