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Introduction: Blastocystis sp. and Enterocytozoon bieneusi are common

zoonotic pathogens threatening human and animal health. These parasites are

widely distributed in birds, and substantial research on their prevalence has

been conducted. However, no studies on Blastocystis sp. and E. bieneusi in

raptors exist.

Methods: The present study collected 335 fecal samples from raptors in

Changdao, China. The prevalence and genotypes of Blastocystis sp. and E.

bieneusi were determined through amplification of SSU rRNA and ITS gene.

Phylogenetic analysis was performed using MEGA 11 with the neighbor-joining

method (Kimura 2-parameter model, 1000 replicate).

Results: The overall infection rates of Blastocystis sp. and E. bieneusi in raptors

were 1.19% (4/335) and 1.79% (6/335), respecttively. Among them, the highest

infection rate of Blastocystis sp. was observed in Accipiter nisus (3.85%, 1/26),

while Buteo japonicus showed the highest infection rate of E. bieneusi (33.33%,

1/3), followed by Asio otus (7.69%, 1/13). This study identified two Blastocystis

sp. subtypes: ST3 and ST10 in raptors for the first time. Regarding E. bieneusi

in raptors, we identified four genotypes: CHN-F1, HND-III, BEB6, and HLJD-I.

Among these, BEB6 and CHN-F1 are notable for their zoonotic potential and the

risk of waterborne outbreaks.

Discussion: These findings suggest that raptors may be potential transmitters of

Blastocystis sp. and E. bieneusi to humans and other animals, as well as sources

of water contamination. This study fills a gap in the research on Blastocystis sp.

and E. bieneusi in raptors and is important for public health safety.
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Introduction

Blastocystis sp. is a zoonotic intestinal protozoan of the family Blastocystidae, which can

be transmitted through foodborne, waterborne, person-to-person, and zoonotic routes (1).

Approximately one billion people worldwide are infected with this parasite, with infection

rates among diarrhea patients ranging from 0.8 to 100% (2). However, a large number

of Blastocystis sp. have been detected in both symptomatic and asymptomatic individuals

(3). Therefore, their role in the host’s gut (whether as a symbiont or a parasite) remains

unclear, and their pathogenicity has yet to be conclusively determined. Blastocystis sp.

exhibits significant genetic diversity, with 44 subtypes reported, of which 38 STs have been

confirmed as valid subtypes. Studies show that 14 subtypes, including ST1–ST10, ST12,

ST14, ST16, and ST23, are recognized as zoonotic subtypes (4). Approximately 90% of
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human infections are caused by ST1–ST4, with ST3 being the

dominant subtype (5). Other subtypes are primarily found in other

animals (6).

Microsporidia are a highly diverse group of parasites, both in

terms of host range and genetic variation (7). Over 200 genera

and more than 1,700 species are known globally, capable of

infecting up to 240 species of vertebrates and invertebrates (8).

Among human infections caused by microsporidia, Enterocytozoon

bieneusi is the most common pathogenic species, accounting for

approximately 90% of all microsporidia infections in humans

(9). The pathogenicity of E. bieneusi is closely linked to the

host’s immune status (10). In individuals with normal immune

function, the infection is typically asymptomatic or presents with

mild symptoms. However, in immunocompromised individuals,

such as those with HIV, the infection can lead to diarrhea,

abdominal pain, and, in severe cases, even death (11). Based

on analysis of the Internal Transcribed Spacer (ITS) nucleotide

sequence, 820 genotypes of E. bieneusi have been identified and

further categorized into 15 phylogenetic groups (12). Group 1

includes most zoonotic genotypes, which exhibit strong cross-

species transmission capabilities and high zoonotic potential (12).

Group 2 primarily infects ruminants, although some genotypes

(such as BEB4, BEB6, I, and J) have been reported to infect humans.

Groups 3–15 exhibit stronger host specificity, and their zoonotic

potential is either limited or unclear (8).

As global ecosystems change, the habitats of wildlife are

shrinking, especially under the intensified influence of human

activities. As a result, the interaction space between domesticated

and wild animals has become increasingly complex. Raptors, as

apex predators in the food chain, have close ecological interactions

with various poultry, livestock, and other wildlife, making them

potential carriers for parasite transmission. Studies have shown

that the prevalence of Blastocystis sp. in global bird populations is

29% (2). In addition, a meta-analysis indicates that the infection

rate of microsporidia in birds worldwide is 14.6%, with E. bieneusi

accounting for 77.42% of microsporidian infections (13). These

findings suggest that both pathogens are widely distributed among

birds. If raptors were infected with these two parasites, it would not

only threaten their health but also, through ecological interactions,

may impact other species and even human health. However, there

have been no reports of raptors being infected with Blastocystis sp.

and E. bieneusi. This knowledge gap hinders our understanding of

the role of raptors in the transmission of these parasites and their

potential impacts on human and animal health.

This study is the first to investigate the prevalence and genetic

diversity of Blastocystis sp. and E. bieneusi in raptors. The findings

will provide data to support ecological restoration and public health

safety and offer valuable insights into the transmission risks of

infectious diseases in raptors and potential preventive measures.

Materials and methods

Samples collection

From September to October 2024, a total of 335 samples were

collected form raptors in Shandong Changdao National Nature

Reserve, including Caprimulgus jotaka (n = 2), Asio flammeus (n

= 3), Accipiter gentilis (n = 3), Pernis ptilorhynchus (n = 2), Otus

sunia (n = 242), Otus lettia (n = 1), Falco tinnunculus (n = 2),

Buteo japonicus (n = 3), Accipiter nisus (n = 26), Accipiter gularis

(n = 28), Accipiter virgatus (n = 4), Falco subbuteo (n = 1), Ninox

scutulata (n = 2), Falco peregrinus (n = 3), Asio otus (n = 13).

We captured raptors using nets on Daheishan Island, Changdao,

and released them after collecting cloacal swab samples. During

sampling, we recorded the species and sampling time. All samples

were transported to the laboratory on dry ice and stored at−80◦C.

All sampling procedures strictly adhered to the guidelines of the

Ethics Committee of Qingdao Agricultural University.

DNA extracting and PCR amplifying

After adding 500 µL of physiological saline to each cloacal

swab, the mixture was vortexed at maximum speed until the

feces were completely detached from the swab. According to the

manufacturer’s instructions, DNA was extracted using the E.Z.N.A.

Stool DNA Extraction Kit (Omega Biotek Inc, Norcross, GA,

USA). The extracted DNA samples were stored at −20◦C until

PCR analysis.

Nested PCR was performed to amplify the Internal

Transcribed Spacer (ITS) region to detect the presence of E.

bieneusi in the samples. In the first round, external primers

NEBF1 (5′-GGTCATAGGGATGAAGAG-3′) and NEBR1 (5′-

TTCGAGTTCTTTCGCGCTC-3′) were used, with the following

reaction program: 94 for 5min for pre-denaturation; 94◦C for

45 s, 55◦C for 45 s, 72◦C for 1min, for 35 cycles; and a final

extension at 72◦C for 10min. In the second round, internal

primers NEBF2 (5′-GCTCTGAATATCTATGGCT-3′) and NEBR2

(5′-ATCGCCGACGGATCCAAGTG-3′) were used, with an

extension time of 40 s and other reaction conditions the same

as the first round (14). Additionally, forward primer RD5

(5′-ATCTGGTTGATCCTGCCAGT-3′) and reverse primer

BhRDr (5′-GAGCTTTTTAACTGCAACAACG-3′) were used

to amplify the small subunit ribosomal RNA (SSU rRNA) gene

to detect the presence of Blastocystis sp. in the samples, under

the following conditions: 94◦C for 5min for pre-denaturation;

94◦C for 45 s, 57◦C for 45 s, 72◦C for 1min, for 35 cycles; and

a final extension at 72◦C for 10min (15). All PCR reactions

included positive and negative controls. PCR products were

analyzed by electrophoresis on a 1.5% agarose gel to assess the

amplification results.

Sequencing analysis

All PCR-positive products were subjected to bidirectional

sequencing by Qingdao Weilai Biotechnology Co., Ltd.

Representative sequences were obtained by clustering

at 100% similarity using cd-hit. These representative

sequences were then compared with reference sequences

from GenBank. A phylogenetic tree was constructed in

MEGA 11 software using the neighbor-joining method

(NJ) combined with the Kimura 2-parameter model, and
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TABLE 1 Prevalence of Blastocystis sp. in raptors.

Species No. examined No. positive % (95% CI) OR Subtype (n)

Otus sunia 242 3 1.24% (0.15–3.12) Reference ST10 (2) ST3 (1)

Caprimulgus jotaka 2 0 0 (-) - -

Asio flammeus 3 0 0 (-) - -

Accipiter gentilis 3 0 0 (-) - -

Pernis ptilorhynchus 2 0 0 (-) - -

Otus lettia 1 0 0 (-) - -

Falco tinnunculus 2 0 0 (-) - -

Buteo japonicus 3 0 0 (-) - -

Accipiter nisus 26 1 3.85% (0.00–15.77) 3.19 (0.32–31.80) ST10 (1)

Accipiter gularis 28 0 0 (-) - -

Accipiter virgatus 4 0 0 (-) - -

Falco subbuteo 1 0 0 (-) - -

Ninox scutulata 2 0 0 (-) - -

Falco peregrinus 3 0 0 (-) - -

Asio otus 13 0 0 (-) - -

Total 335 4 1.19% (0.33–3.03) - -

CI, confidence interval.

the reliability of the results was assessed through 1,000

bootstrap replicates.

Statistical analysis

Data analysis was performed using SPSS software (IBM Corp.,

Armonk, NY, USA), calculating the odds ratio (OR) and 95%

confidence intervals (95% CI) of the infection rate of parasites. A

p-value of <0.05 was considered statistically significant.

Results

Prevalence of Blastocystis sp. and E.

bieneusi in raptors

In this study, four Blastocystis sp.-positive samples were

detected from 335 raptor fecal swab samples, with an overall

prevalence was 1.19% (4/335, 95% CI 0.33–3.03). No significant

differences in prevalence were found between different raptor

species (χ ² = 4.45, df = 14, P = 0.9921). Among the species,

Accipiter nisus had the highest prevalence (3.85%, 1/26), followed

by Otus sunia (1.24%, 3/242). No Blastocystis sp. infection was

detected in other species (Table 1, Figure 1).

Additionally, six positive samples of E. bieneusi were detected

in this study, resulting in an overall infection rate of 1.79%

(6/335, 95% CI 0.66–3.86). The highest infection rate was found in

Buteo japonicus (33.33%, 1/3), followed by Asio otus (7.69%, 1/13),

Accipiter gularis (3.57%, 1/28), and Otus sunia (1.24%, 3/242). No

E. bieneusi infection was found in other species. The differences in

infection rates between species were not statistically significant (χ2

= 9.45, df = 14, P = 0.8011; Table 2, Figure 1).

Subtypes/genotypes distribution of
Blastocystis sp. and E. bieneusi in raptors

Through sequence analysis of Blastocystis sp.-positive samples,

this study identified two Blastocystis sp. subtypes, ST10 and ST3,

with ST10 being the dominant subtype (75%, 3/4), found in both

Accipiter nisus and Otus sunia. ST3 was detected only in Otus sunia

(Table 1).

Additionally, sequence analysis of six E. bieneusi-positive

samples identified four genotypes: HLJD-I, BEB6, HND-III, and

CHN-F1. BEB6 (33.33%, 2/6) was found in both Asio otus andOtus

sunia, with HLJD-I (66.66%, 2/3) being the dominant genotype

in Otus sunia. HND-III and CHN-F1 were detected in Accipiter

gularis and Buteo japonicus, respectively (Table 2).

Phylogenetic relationship of Blastocystis sp.
subtypes and E. bieneusi genotypes

This study obtained two representative sequences of Blastocystis

sp. through clustering. Phylogenetic analysis showed that

PQ643313 clustered with the reference sequence MT798805 in the

same clade, both belonging to the ST10 subtype. PQ643314 showed

100% similarity with the human-derived reference sequence

MK782518 and clustered in the ST3 subtype (Figure 2).

The phylogenetic analysis of six representative E. bieneusi

sequences revealed that PQ643841 shared 99% similarity with
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FIGURE 1

PCR amplification results for the SSU rRNA gene of Blastocystis sp. and the ITS gene of E. bieneusi. B1–B4 represent Blastocystis sp.-positive

samples, E1–E6 represent E. bieneusi-positive samples. –, Negative control; +, Positive control; M, Marker.

TABLE 2 Prevalence of Enterocytozoon bienuesi in raptors.

Species No. examined No. positive % (95% CI) OR Genotype (n)

Otus sunia 242 3 1.24 (0.15–3.12) Reference HLJD-I (2), BEB6 (1)

Caprimulgus jotaka 2 0 0.00 (-) - -

Asio flammeus 3 0 0.00 (-) - -

Accipiter gentilis 3 0 0.00 (-) - -

Pernis ptilorhynchus 2 0 0.00 (-) - -

Otus lettia 1 0 0.00 (-) - -

Falco tinnunculus 2 0 0.00 (-) - -

Buteo japonicus 3 1 33.33 (0.00–94.11) 39.83 (2.80–567.67) CHN-F1 (1)

Accipiter nisus 26 0 0.00 (-) - -

Accipiter gularis 28 1 3.57 (0.00–14.70) 2.95 (0.30–29.37) HND-III (1)

Accipiter virgatus 4 0 0.00 (-) - -

Falco subbuteo 1 0 0.00 (-) - -

Ninox scutulata 2 0 0.00 (-) - -

Falco peregrinus 3 0 0.00 (-) - -

Asio otus 13 1 7.69 (-) - BEB6 (1)

Total 335 6 1.79 (-) - -

CI, confidence interval.

the reference sequence MW756993 and clustered in the first

group. The other representative sequences clustered in the

second group, with PQ643838 and PQ643843 located in the

same branch. These two sequences, along with the reference

sequence KX383618, formed a sister group and all belong

to the HLJD-I genotype. PQ6463839 showed 99% similarity

with the reference sequence KX383636 and formed a separate

branch. PQ643840 and PQ643842 are of the BEB6 genotype and

clustered with the reference sequence MK139947 in the same

clade (Figure 3).

Discussion

A meta-analysis has shown that the global prevalence of

Blastocystis sp. in birds is 29% (2). The prevalence is 35%
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FIGURE 2

Phylogenetic relationship between the Blastocystis sp. sequences in this study and the reference sequences downloaded from GenBank was

assessed using the neighbor-joining (NJ) method, with genetic distances calculated based on the Kimura 2-parameter model. The nucleotide

sequences identified in this study are marked with black circles before the subtype names. The numbers on the branches represent the bootstrap

percentage values from 1,000 repetitions, with values >50% shown in the tree.
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FIGURE 3

Phylogenetic relationship between the E. bieneusi sequences in this study and the reference sequences downloaded from GenBank was assessed

using the neighbor-joining (NJ) method, with genetic distances calculated based on the Kimura 2-parameter model. The nucleotide sequences

identified in this study are marked with black circles before the subtype names. The numbers on the branches represent the bootstrap percentage

values from 1,000 repetitions, with values >50% shown in the tree.
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in Chinese peafowls, 17.8% in Malaysian quails, and 42.9% in

Iranian pigeons (16–18). These data indicate that Blastocystis sp.

is widely distributed among birds globally. In this study, the overall

prevalence of Blastocystis sp. in raptors was 1.19%, which is lower

than the 4.92% prevalence reported in migratory birds in Northeast

China (19). This difference may be attributed to sampling methods,

geographic location, and other factors, and the specific reasons

warrant further investigation. Additionally, the highest prevalence

was observed in Accipiter nisus (3.85%, 1/26), followed by Otus

sunia (1.24%, 3/242), with no Blastocystis sp. infection detected in

other raptor species. This variation could be linked to the host’s

immune status. As a common parasite in birds, E. bieneusi had an

overall infection rate of 1.79% (6/335) in this study, which is lower

than the infection rates in Central European pigeons (13.29%), Iraqi

pet birds (32.32%), and Chinese swans [7.49%; (20–22)]. The low

prevalence in raptors may indicate a relatively low exposure or

low suitability of raptors as hosts of E. bieneusi compared to other

birds. Furthermore, the infection rates of E. bieneusi in different

raptor species ranged from 0 to 33.33%, with the highest infection

rate observed in Buteo japonicus (33.33%). This difference may

be related to the the sample size as well as the differences in

susceptibility among different species to parasites.

The known Blastocystis sp. subtypes that can infect humans

range from ST1 to ST10, with ST6 and ST7 being widespread in

various bird species such as poultry, peafowls, and quails, and are

considered the dominant subtypes in birds (16, 17, 23). However,

the results of this study differ from other bird studies. We did not

detect ST6 or ST7 in raptors, but instead unexpectedly identified

ST3 and ST10. Epidemiological data show that ST3 is the primary

subtype responsible for human infections and is widely found in

dogs, rodents, and cattle, indicating that this subtype has strong

host adaptability and significant zoonotic potential (24–26). ST10

is widely distributed in animals such as cattle, sheep, and camels,

and is considered one of the most specific subtypes in ruminants

(24, 27, 28). The infection of ST3 and ST10 in raptors is likely

due to interactions with domesticated or wild animals and there

is also a risk of cross-species transmission to humans, particularly

among birdwatchers. Moreover, the increasing encroachment of

human activities into wildlife habitats may facilitate such cross-

species transmission, highlighting the need for greater attention to

zoonotic risks in wildlife monitoring. An important observation is

that Noradilah et al. isolated ST10 from river water in Malaysia,

further suggesting that water sources could serve as a significant

route for the transmission of Blastocystis sp. (29). This further

emphasizes the environmental context in which Blastocystis sp.

transmission may occur, where water contamination from wildlife

could contribute to broader ecological and public health risks.

This study identified four genotypes of E. bieneusi from raptors:

CHN-F1, HLJD-I, BEB6, and HND-III. CHN-F1 is classified into

Group 1, initially discovered by Zhao et al. in foxes in China

and widely present in farmed fur animals in China (30, 31).

Subsequently, Holubová et al. reported this genotype in pigeons

in Central Europe (18). Although no human infections have been

reported so far, CHN-F1 has the potential to cause zoonotic

diseases, and its cross-species transmission ability should not be

overlooked. HLJD-I, BEB6, and HND-III are classified into Group

2, which was initially considered to be specific to ruminants (8).

However, subsequent studies have shown that genotypes such as

BEB4, BEB6, I, and J have been found in humans and other

animals, indicating that this group poses a public health risk

(32). HLJD-I and HND-III were first discovered in sika deer

in Heilongjiang and Henan, China, respectively, and this study

is the first to detect these two genotypes in birds, suggesting

that these genotypes are no longer restricted to their original

hosts and may have cross-species transmission potential (33). To

our knowledge, BEB6 was first discovered and named in cattle,

but later studies confirmed that this genotype is more common

in sheep and has also been sporadically found in non-human

primates, raccoon dogs, and other animals, suggesting that it

has low host specificity and high adaptability (22, 31, 34–36).

Notably, as reported by Ye et al., this genotype has already

been detected in a wastewater treatment facility in Zhengzhou,

China (37), suggesting that raptors may contaminate surface water

sources through their feces, thereby posing a potential risk for

waterborne outbreaks. This finding further highlights the potential

role of raptors in environmental pollution, and future research

should focus on the ecological risks of waterborne transmission of

zoonotic pathogens.

However, this study has some limitations. For example, the

sample size for certain raptor species is relatively small, which

may affect the accuracy of infection rate estimates, especially

for rare species. Additionally, the study was conducted in a

single geographic location, which may not fully reflect the

distribution patterns of these parasites in other areas. Another

limitation is the lack of consideration of seasonal variation in

parasite prevalence, which is an important factor in understanding

the dynamics of infection. Future research should focus on

expanding the sample size, especially for rare species, and

incorporating multiple geographic regions to capture a broader

range of ecological and environmental gradients. Additionally,

implementing long-term monitoring to assess the seasonal and

temporal trends of parasite prevalence will greatly enhance

our understanding of the epidemiological patterns of raptor

parasitic infections.

Conclusion

In conclusion, this study is the first to reveal the prevalence

of Blastocystis sp. and E. bieneusi in raptors, with infection rates

of 1.19% and 1.79%, respectively. We identified two zoonotic

Blastocystis sp. subtypes (ST3 and ST10), which were detected

in birds for the first time. The study also identified four E.

bieneusi genotypes (CHN-F1, HND-III, BEB6, and HLJD-I),

among which BEB6 and CHN-F1, as zoonotic genotypes, were

found in raptors for the first time. Both BEB6 and ST10 have

the potential to cause waterborne outbreaks. These results suggest

that raptors may be potential cross-species transmitters, creating

new transmission pathways between humans and animals, and

highlighting the potential ecological interactions and zoonotic risks

between wild and domestic animals, particularly the threat of water

contamination by raptors. Therefore, future research should focus

on the interaction patterns between raptors, domestic animals,

and other wildlife, and explore additional control strategies

Frontiers in Veterinary Science 07 frontiersin.org

https://doi.org/10.3389/fvets.2025.1538725
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Gao et al. 10.3389/fvets.2025.1538725

to reduce the risks of cross-species disease transmission and

water contamination.
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