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Identifying where and how grazing animals are active is crucial for informed 
decision-making in livestock and conservation management. Virtual fencing systems, 
which use animal-mounted location tracking sensors to automatically monitor 
and manage the movement and space-use of livestock, are increasingly being 
used to control grazing as part of Precision Livestock Farming (PLF) approaches. 
The sensors used in virtual fencing systems are often able to capture additional 
information beyond animal location, including activity levels and environmental 
information such as temperature, but this additional data is not always made 
available to the end user in an interpretable form. In this study we demonstrate 
how a commercial virtual fencing system (Nofence®) can be used to map the 
spatiotemporal distribution of livestock activity levels in the context of grazing. 
We  first demonstrate how Nofence® activity index measurements correlate 
strongly with direct in-situ observations of grazing intensity by individual cattle. 
Using methods adapted from movement ecology for analysis of home range, 
we subsequently demonstrate how space-use and cumulative and average activity 
levels of grazing cattle can be spatially mapped and analyzed over time using two 
different approaches: a simple but computationally efficient cell-count method and 
a novel adapted version of a more complex Brownian Bridge Movement Model. 
We further highlight how the same sensors can also be used to map spatiotemporal 
variations in temperature. This study highlights how data generated from virtual 
fencing systems could provide valuable additional insights for livestock managers, 
potentially leading to improved production efficiencies or conservation outcomes.

KEYWORDS

cattle (Bos taurus), grazing, space-use, virtual fencing, Brownian bridge movement 
models

1 Introduction

Livestock grazing is a widespread agricultural practice with profound implications for 
ecosystems, land management and production efficiency (1). To balance livestock needs and 
pasture quality, grazing must be carefully managed, as overgrazing can deplete plant and soil 
nutrients (2). Methods such as rotational grazing, where livestock are periodically moved 
between areas of a pasture to allow plant regrowth (3), and “mob grazing,” involving short 
duration, high-density grazing followed by a grass recovery period (4), can improve herbage 
availability (5–7). However, these systems require careful management, as poor timing can 
deplete forage quality and livestock performance (8, 9). Carefully managing livestock density 
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and grazing behavior can also support conservation aims, including 
improved biodiversity and habitat quality (10, 11).

Identifying the location, intensity and frequency of grazing is 
crucial for informed livestock and conservation management 
decision-making (12–14). Traditional monitoring methods, such as 
visual observation and field surveys are labor- and time-intensive (15, 
16). The introduction and uptake of Precision Livestock Farming 
(PLF) approaches have increased the use of automated monitoring 
technologies that continuously monitor livestock, such as Global 
Navigation Satellite Systems (GNSS) that track location (17–19) and 
accelerometers that record activity (20, 21). In wild animals, ranging 
from fish to mammals, advances in sensor technology and the 
availability of large movement datasets have led to the development of 
sophisticated analysis methods within the field of movement ecology, 
the study of the movement patterns of animals in relation to their 
environment (22, 23). Tools such as random walk movement models 
(24), Hidden Markov Models (HMM) (25), State-space Models (SSM) 
(26), and Brownian Bridge Movement Models (BBMM) (27), have the 
potential to provide deeper insights into the movement and space-use 
behavior of managed animals (28, 29). Previous studies have identified 
grazing behavior using accelerometers (30, 31), but linking activity 
data to location data can help pinpoint where livestock are grazing 
(32–34) or where barn-housed animals may be feeding (28, 35).

Virtual fencing systems typically consist of animal-mounted collars 
that use GNSS signals to monitor individual livestock location and give 
an audio cue or mild electrical impulse once an animal crosses a user-
defined virtual boundary. The end-user sets the virtual boundary using 
a smartphone or computer application that enables basic visualization 
of position and other relevant data; commercially available virtual 
fencing systems include Vence® (United States); eShepherd® (Australia) 
and Halter® (New Zealand) (36). In this study, we focus on Nofence® 
(37), a system commonly used in the United Kingdom and Europe (38, 
39). The Nofence® system records animal location and a relative 
activity index but does not directly inform end-users where cattle are 
actively grazing, although several recent studies have explored this 
potential. Hamidi et al. (40) used Nofence® GNSS location data to 
classify cattle as either lying (corresponding to at least two successive 
minutes without a movement relocation) or not lying (daylight hours 
spent not lying), and then combined these with Unmanned-Aerial-
Vehicle (UAV) imaging to estimate grazing impact using the 
Red-Green-Blue Vegetation Index (RGBVI). Aaser et al. (39) used 
Nofence® location and activity index data to estimate grazing habitat 
preference. Using standard default system settings, they characterized 
a high activity index as grazing and a low activity index as not grazing. 
However, their study lacked ground-truth validation of grazing 
classifications, and highlighted the need for further work with real 
in-situ observations. Versluijs et al. (41) undertook in-situ observations 
to identify and classify various free-ranging cattle behaviors including 
grazing, but used high-resolution 10 Hz accelerometer measurements 
under a non-standard system configuration, which would lead to high 
battery drain therefore limiting long-term practical use (39).

In this study, we highlight how the activity index recorded by the 
Nofence® collar strongly correlates with direct in-situ observations of 
grazing intensity. Using data obtained from the Nofence® collar, 
we further demonstrate how tools adapted from the field of movement 
ecology can be used to visualize and map space-use, cumulative and 
mean activity intensity, and also localized temperature across the 
study site over time. We discuss how such data analysis could provide 
valuable additional insights for farmers and graziers using virtual 
fencing systems to manage their livestock.

2 Methods

2.1 Study site and duration

The study was conducted from 29 September 2023 to 26 
November 2023 (58 days) at Boat Field, High Woods Country Park, 
Colchester, Essex (postcode CO4 5WF; central Global Positioning 
System (GPS) coordinates of 51.902883, 0.910765). The field is a 
managed pasture, measuring approximately 7.2 hectares and 350 m 
x 300 m at its greatest extent (longitude x latitude), and consists of 
an upper, relatively flat section with short, hay-cut grass 
(Figures 1B,D), and a lower, sloped region with scrubby vegetation 
and small fenced areas of trees (Figures  1A,C; 
Supplementary material S1 provides further details, including plant 
species present). These two distinct areas were separated by a clear 
ridgeline (marked as the red contour line in Figure 1A), but livestock 
could move freely around the full field. Key features at the study site 
included paths, a stream outside the field, and a water trough in the 
north-west corner (Figure 1). No public access was permitted to the 
field during the study period.

2.2 Animals and sensors

Ethical approval (reference number ETH2324-0100) was provided 
by the University of Essex ethics committee. Using a herd of Red Poll 
cattle (Bos taurus), the study site was managed for conservation purposes 
on behalf of Colchester City Council by Legacy Grazing (authors RB and 
LB). On 29 September, Nofence® tracking collars were fitted to three 
cows (Figure 1D; cattle IDs 294,322, 294,361, and 294,364). These cows 
were all pregnant and suckling calves during the study, and formed part 
of a larger herd that varied in size over time (see Supplementary material S1 
for further details).

The Nofence® tracking collar units include a GPS sensor, a 
dynamometer and an accelerometer to measure activity, and a 
temperature sensor (39, 42). End-users can set a virtual fence to 
constrain livestock via the collar units using a smartphone application 
(38, 39). In this study, the virtual fence was set approximately 60 m 
outside the boundary of the field, which was enclosed by a robust 
wooden fence, so was effectively unused given our aim was to use the 
collars to map space-use and activity, rather than specifically explore 
the impact of the virtual fence on behavior. Default collar settings were 
used for recording frequency as in Aaser et al. (39), with GPS locations 
recorded every 15 min when animals were active. To conserve battery, 
a lower update rate of approximately one recording every 1–2 h is used 
when animals are inactive, such as at night. Activity was measured 
using an in-built dynamometer, that counted movements along the 
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heave axis over a defined (commercially sensitive) threshold, 
cumulatively totaled every 30 min and termed an ‘activity index’ by 
Aaser et  al. (39). The collar unit also recorded the localized 
instantaneous temperature every 30 min. This dataset is available in 
the University of Essex Data Repository (44).

2.3 Grazing observations

The three collared cows were observed in-person by two observers 
over 8 days in October and November 2023. Each cow was 
continuously observed for an average of 936 min (minimum = 886 min, 
maximum = 1,035 min). Behavior was recorded as grazing when the 
cow was observed with their head lowered, actively consuming 
vegetation and not ruminating (Supplementary material S2); minor 
pauses in grazing (e.g., raising head and chewing for a few seconds) 
were noted but the classification was only changed to non-grazing (or 
vice-versa) when a clear and sustained change in behavior was 
observed. This observational data is available in the University of Essex 
Data Repository (45). All observation sessions were filmed using a 
video camera to enable validation of behavioral classification. For 
subsequent analysis, each minute throughout the study period was 
classified as belonging to a grazing or non-grazing bout, and the 
number of minutes (proportion of time) spent grazing (or non-grazing) 
in each 30-min observation period was determined.

To assess the correlation between the Nofence® activity index 
and observed grazing intensity, a linear model was used to compare 
the proportion of time each cow was observed to be grazing over 
each 30-min period to the sensor-recorded activity index from the 
same period. Model assumptions (linearity, normality, 
homoscedasticity, and independence) were checked and met. 
Supplementary material S2 provides further details of the 
observations and shows no significant difference between observers 
in the proportion of time observed grazing and activity index 
(e = −6.13, p = 0.15).

2.4 Mapping spatial distributions

Two methods were used to generate utility distribution (UD; 
density) maps of space-use (total time spent in given locations), 
cumulative activity (total sum of activity index), and average activity 
(mean activity index). The cell count method is computationally efficient 
but limited by data frequency, while the Brownian Bridge Movement 
Model (BBMM) estimates movement between recorded locations but it 
is more computationally intensive and requires model assumptions. For 
each spatial distribution generated, core and full range sizes were 
determined by identifying the highest density cells cumulatively adding 
to 50% or 95% respectively, following previous animal home range 
analyses [e.g. (28, 46, 47)]. All analyses were programmed using R 

FIGURE 1

(A) Top-down map of the study site Boat Field, Highwoods Country Park, Colchester, Essex, UK; underlying image taken from Google Maps (43). Solid 
black lines mark field boundaries and fenced tree areas; dashed yellow lines indicate paths, the blue line shows a stream outside the field; a water 
trough is marked in the NW corner (blue circle with black border). Dotted black lines represent 5 m contour lines (height specified in meters) with the 
ridgeline dividing the upper and the lower fields marked in red line. Photo viewpoints are shown with a ‘V’ icon of the: (B) upper field (relatively flat 
pasture), (C) lower field (sloped, with scrubby vegetation), and (D) study cattle equipped with the Nofence® collar units (in the upper field).
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Statistical Software v4.2.3 with R Studio Cherry Blossom (48, 49), 
employing the ‘ggplot2’ and ‘ggmap’ (function ggmap()) packages (50, 
51) for plotting distribution matrices over satellite imagery.

In the cell count method, a virtual grid (15 m x 15 m = 225 m2 
cells) was overlayed over the field layout (28). At each time-step, GPS 
data were used to assign each individual cow to a given cell and the 
respective cell count value was increased to reflect time spent in the 
area (based on time duration between 15-min location recordings), 
cumulative activity (recorded every 30 min and split equally between 
consecutive locations), average activity or average sensor temperature. 
A BBMM (27) was used to estimate movement paths between 
recorded locations and hence generate space-use and activity maps 
within the same 15 m x 15 m grid, although this required a novel 
modification to the standard BBMM algorithm in order to map 
activity across space. Where animals are relatively stationary, the cell 
count method and the BBMM yield similar results, but the BBMM 
may give better estimates when movement is more dynamic. 
Supplementary material S3 provides full details of these spatial 
mapping methods and their implementation.

Sensor recorded temperatures, influenced by the close proximity of 
the collar unit to the animal (see Figure 1D; Supplementary material S2), 
will not directly measure ambient conditions but may nevertheless reflect 
underlying trends. To demonstrate the relation between hourly sensor-
recorded temperatures and hourly local weather station temperature 
readings (within a mile of the study site, 52), a Spearman’s Correlation 
test was conducted (non-normal data distribution, Shapiro-Wilks = 0.99, 
p < 0.001).

2.4.1 Comparing the similarity of spatial 
distributions

The Bhattacharyya coefficient (BC) measures the similarity 
between two probability distributions. After normalizing the spatial 
distributions, to be consistent with a probability density, BC was used 
to compare the cumulative activity, average activity, and space-use 
across all three cattle (Equation 1):

 ( ),i iBC P Q= ∑ ×
 

(1)

where Pi and Qi are the normalized values of the distributions, and 
the sum is taken over all grid cells. A higher BC indicates a greater 
similarity, with 0 indicating no similarity and 1 indicating 
complete similarity.

The BC was also used to compare the recorded temperature to 
space-use and activity, and to compare space-use and activity over 
time and between each cow (see Supplementary material S3).

3 Results

3.1 Comparison of sensor-recorded activity 
index and observed grazing

The mean observed time for a grazing bout was 20 min 42 s and 
for a non-grazing bout was 10 min 42 s. A strong significant positive 
relationship exists between the relative proportion of time cattle were 
observed grazing over a 30-min period and the activity index recorded 
by the Nofence® sensor (R2 = 0.81, p < 0.001; Figure 2A). Cattle were 

primarily observed during daytime grazing, resulting in more 
exclusively grazing periods (n = 31 periods) than exclusively 
non-grazing periods (n = 5 periods), with n = 36 mixed periods where 
both grazing and non-grazing behaviors occurred (Figure 2B). During 
exclusively grazing periods, the activity index is clearly higher (100% 
grazing over 30 min, median activity index = 4,270) compared to 
periods of exclusively non-grazing (0% grazing, median activity 
index = 661) (Figure  2B). Non-zero activity index values were 
recorded during exclusively non-grazing behavior (Figure 2B), likely 
due to other head movements such as drinking, scratching, 
ruminating, or interactions between cows. Results remained consistent 
when considering data from each observer independently (see 
Supplementary material S2). For further analysis, and consistent with 
Aaser et al. (39), we classify activity as ‘low intensity’ when the activity 
index <2,500 and ‘high intensity’ when the activity index >2,500. This 
threshold is a heuristic estimate that approximately aligns with the 
observed proportion of time spent grazing being 50% (activity 
index = 2,642; Figure 2A) and the midpoint (activity index = 2,233; 
Figure 2B) between the maximum value for exclusively non-grazing 
periods (activity index = 1,848) and the minimum value for exclusively 
grazing periods (activity index = 2,617).

3.2 Activity over time

High intensity activity periods (activity index ≥2,500) account for 
45% of the sensor recorded activity index values (Figures 2C,D), with 
a gradual increase in their daily occurrence from October to 
December (Figure 2C). Across the three cattle, average activity during 
high intensity periods increased over time (Spearman’s Correlation 
Coefficient [hereafter ρ] = 0.18, p < 0.001; values above black line in 
Figure 2C), but average activity during low intensity periods (activity 
index <2,500) decreased over time (ρ = −0.08, p < 0.001; values below 
black line in Figure 2C). The daily count of low intensity periods 
increased over time (Figure  2D; ρ = 0.37, p <  0.001), despite the 
increase in average activity during high intensity periods over the 
same period (Figure 2C).

A consistent diurnal activity pattern is shown across all cows, 
with the mean hourly activity index increasing from low intensity 
activity overnight (mean activity index <2,500 from 18:00 to 
07:00) to high intensity activity in the late morning and early 
afternoon, with a slight dip around midday, peaking at 10:00 and 
16:00 (mean activity index = 3,963 and 4,152 respectively), 
followed by a decrease into the evening and night (Figure 2E). 
Mean hourly activity index values are similar for each individual 
cow, although some differences are apparent (e.g., cattle ID 
294361 consistently showed lower mean activity during the day 
compared to the other cows; Figure 2E). The mean hourly activity 
index also increased over the study period (by two-week periods; 
Figure 2F), aligning with the increase in high intensity grazing in 
Figure 2C.

3.3 Mapping space-use and grazing activity

The cell count method and the BBMM produced qualitatively 
similar results for space-use across the study (Figures 3A,B), with the 
BBMM generating a smoother map due to the model estimation of 
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movement in-between actual observed locations. Both models 
consistently identified core range areas near the water trough (NW 
corner of upper field), the SW corner of the upper field, along the 
ridgeline and in the lower field (Figures 3A,B).

Comparing Figures  3A,C for the cell count method, and 
Figures  3B,D for BBMM, highlights that space-use is highly 
correlated with cumulative activity (BC = 0.96 for cell count method; 
BC = 0.99 for BBMM). Nevertheless, there are some notable 

FIGURE 2

(A) Activity index in relation to proportion of time spent grazing, and (B) comparison of activity index during non-grazing periods (proportion of time 
spent grazing = 0%; n = five data points) and grazing periods (proportion of time spent grazing = 100%; n = 31 data points). Each data point represents 
a 30-min observation period (and associated sensor activity index measurement). (C) Activity index over time, with each data point representing a 30-
min sensor-recorded period. Lines show overall and individual trendlines for activity index >2,500. (D) Daily count of activity index values <2,500 (low 
intensity grazing) over time, with overall and individual trendlines. (E) Mean hourly average activity index over the full study for all three cattle combined 
and individually. Dashed vertical grey lines mark divisions by time of day: night (00:00:00 to 05:59:59), morning (06:00:00 to 11:59:59), afternoon 
(12:00:00 to 17:59:59) and evening (18:00:00 to 23:59:59). (F) Mean hourly average activity index for each two-week period and for the overall study, 
for all three cattle combined. In (A) the dashed line marks the estimated activity index where the proportion of time spent grazing is 50% (activity 
index = 2,642). In (B), the dashed lined shows activity index = 2,233, the midpoint between the maximum value where proportion of observed time 
observed grazing is 0% (activity index = 1848) and the minimum value where the proportion of observed time spent grazing is 100% (activity 
index = 2,617). In (C,D) dashed vertical grey lines show two-week divisions (F). In (C–F) the solid horizontal line corresponds to an activity index of 
2,500. Overall trendlines are shown in each subplot (dashed black).
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differences in spatial distribution such as the upper field where the 
core range for cumulative activity is larger (Figure 3C, core range in 
upper field = 75 cells for cell count method; Figure 3B, core range in 
upper field = 54 cells for BBMM) than for space-use (Figure 3A, core 

range in upper field = 33 cells for cell count method; Figure 3B, core 
range in upper field = 47 cells for BBMM). The (mean) average 
activity distributions show larger core range in the upper field 
(Figure 3E, core range = 79 cells in upper field and 25 cells in lower 

FIGURE 3

Distribution maps generated using the (A,C,E) cell count method and (B,D,F) Brownian Bridge Movement Model (BBMM): (A,B) space-use, (C,D) 
cumulative activity and (E,F) average activity over the full study and all three cattle. Each virtual cell is 225 m2 and darker colors indicate higher activity, 
while lighter colors indicate lower activity. Contours represent core range (50%; solid grey) and the full range (95%; dashed grey). The red dashed line 
shows the contours of the ridgeline dividing the upper and the lower fields. Note that there are no units for the density scales in (C-F) as the Nofence® 
activity index is used, which is a dimensionless count.
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field for cell count method; Figure 3F, core range = 99 cells in upper 
field and 29 cells in lower field for BBMM), indicating that there may 
be more spatial uniformity in average activity across the field when 
compared to cumulative activity (Figures  3C,D), although the 
distribution of average activity intensity does not directly overlap 
with cumulative activity (BC = 0.93 for the cell count method, 
BC = 0.93 for BBMM).

Supplementary material S3 includes more detailed analysis of 
spatiotemporal variations in space-use and activity. In particular, 
Supplementary Figures S3.3–S3.6, respectively, highlight how the 
cattle shifted their space-use and activity from the lower field at night 
to the upper field during the day, with a further consistent shift from 
the upper to lower field as the study progressed.

3.4 Temperature

As expected for this temperate location, mean hourly 
temperature exhibits a consistent diurnal pattern, peaking at 18.33°C 
(13.00–13:59) and reaching a minimum of 9.58°C (03:00–03:59) 
over the study period, with similar patterns in all cow sensors 
(maximum difference of 1.79°C for 07:00–07:59; Figure 4A). This 
diurnal pattern is also clear in the spatial temperature distribution 
maps, showing higher temperatures in the morning and afternoon 
(Figures 4C,D) compared to the night and evening (Figures 4B,E). 
There is a significant strong correlation between the sensor recorded 
temperatures and local weather station temperature readings 
(ρ = 0.88, p < 0.001), although the sensor temperature measurements 

FIGURE 4

(A) Average sensor temperature per hour of day over the full study duration. Hourly sensor temperatures are calculated as the mean of temperatures 
recorded between 00:00 and 00:59, 01:00 to 01:59, 02:00 to 02:59 etc. Dashed vertical grey lines show divisions by time of day: night (00:00:00 to 
05:59:59), morning (06:00:00 to 11:59:59), afternoon (12:00:00 to 17:59:59) and evening (18:00:00 to 23:59:59). (B–E) Temperature distribution maps 
by time of day across all three cattle: (B) night (n = 2090 data points), (C) morning (n = 2088 data points), (D) afternoon (n = 2,115 data points), 
(E) evening (n = 2,124 data points). (F) Sensor temperature over the study duration from all three animal-mounted sensors, with a mean daily trendline 
shown in red. A mean daily trendline is also shown for local weather station temperature, less than a mile from the study site, in blue. Dashed vertical 
grey lines show two-week divisions. (G–J) Temperature distribution maps for each two-week period: (G) F1 (n = 1937 data points), (H) F2 (n = 2,304 
data points), (I) F3 (n = 2,160 data points) and (J) F4 (n = 2016 data points). In (B–E) and (G–J), each virtual cell is 225m2, with darker red indicating 
higher temperatures and white indicating lower temperatures (0°C to 31°C). The cells in (B–E) and (G–J) with a satellite underlay show areas with no 
recorded data. The red dashed line represents the contour of the ridgeline dividing the upper and the lower fields.
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were consistently slightly higher, likely due to the proximity between 
the animal and the collar (Figure 4F). Although the relative variation 
in mean temperature across the field is small (coefficient of 
variation = 20.66%, assuming no spatial dependence between cells), 
the lowest recorded temperatures occur around the ridgeline 
(Figures 4B–E), possibly due to increased wind exposure which was 
generally from the SW during the study period. Over the study 
period, temperatures gradually decreased (Figure  4F), with 
two-week spatial temperature maps illustrating the first 2 weeks 
were notably warmer (mean temperature of 18.23°C) than later 
periods (mean temperatures of 12.55°C, 10.11°C and 9.57°C for F2 
to F4 respectively; Figures 4F,G).

4 Discussion

This study has highlighted how data routinely recorded by a 
commercial virtual fencing technology can be  used to provide 
additional insights into the space-use and activity of cattle. Activity 
index measurements recorded by the Nofence® tracking sensor were 
shown to be highly correlated with grazing intensity, as determined 
and validated by direct in-situ observations of cattle in a 
United Kingdom pasture. Two different approaches adapted from 
movement ecology, a simple cell count and a more complex Brownian 
Bridge Movement Model (BBMM), were used to map space-use and 
activity intensity over time and space. These approaches can provide 
additional insights and information for farmers and graziers 
managing livestock using this type of technology.

The strong significant positive relationship between the Nofence® 
activity index and the proportion of time cattle were directly and 
continuously observed grazing over 30-min periods (Figure  2A) 
highlights how the activity index could offer a useful indirect proxy 
measure of relative grazing intensity. This measure could 
be  continuously collected over time and space using default 
commercial system settings. Previous studies using the same system 
have either lacked validation of the activity index against grazing 
observations (39), have indirectly estimated grazing intensity through 
location data alone (40), or have used high-frequency accelerometry 
data which is unavailable in the standard commercial system and may 
also limit battery life (41).

Monitoring patterns of activity over time could offer insights into 
grazing behavior to help inform managers. Grazing cattle are 
generally more active during the daytime (39, 53, 54) and consistent 
diurnal patterns in the activity index were observed for all cattle in 
the study (Figure 2E). Both overall mean activity index (Figure 2F) 
and the mean activity index during high intensity activity periods 
(Figure 3C) increased over the study, while counter-intuitively, the 
daily count of low intensity activity periods also increased 
(Figure 2D). This suggests that, as the study progressed, cattle spent 
less total time in the day grazing but were more active when doing so, 
and likely reflects changes in the availability of forage (55, 56) and 
reduced daylight hours (53, 54) toward the end of the year, which are 
both known to affect cattle grazing behavior.

The cell count (28, 57) and BBMM (27, 58) methods are standard 
approaches in movement ecology to analyze animal space-use over 
time (Supplementary material S3), although alternative statistical 
methods such as Hidden Markov Models [HMMs (25, 59, 60)] and 
State Space Models [SMMs (26, 61, 62)] could also be  used to 

identify behavioral changes over space and time. The cell count 
method is efficient for small areas with high frequency data but does 
not account for movement between recorded locations. The BBMM 
offers a more complete interpretation of movement but is 
computationally intensive and requires model parameter estimation 
and assumptions. Both methods yielded qualitatively similar 
space-use maps (Figures  3A,B), though the BBMM produces 
smoother visualizations. The choice of grid resolution and location 
recording frequency are critical for both methods, which may break 
down when data are sparse (Supplementary material S3). Clear 
space-use patterns emerged throughout the study, with cattle 
consistently positioned near the water trough, along the ridgeline, 
and in areas such as the South-West corner of the upper field 
(Figures 3A,B). Previous studies have shown how grazing patterns 
may link to vegetation (63–65), external resources (66–68) and 
stocking rate (69, 70), but more detailed environmental data would 
be required to fully explain cattle space-use in this study. Similarly, 
a sample size of three is too small to properly analyze inter-individual 
differences in space-use but there is some evidence that individual 
cows exhibited distinct preferences for certain areas of the field 
(Supplementary material S3).

By modifying the standard BBMM algorithm to incorporate 
recorded activity index values in a stepwise manner 
(Supplementary material S3), we  can spatially map both 
cumulative and average activity (Figures  3C–F). Space-use 
distribution maps correlated closely with cumulative activity 
maps (cell count method, see Figures  3A,C and BBMM, see 
Figures 3B,D), indicating that cows were generally active in areas 
they frequented, especially the upper field. The cattle were often 
directly observed to lie and rest toward the South of the upper 
field near the ridgeline, explaining why space-use and average 
activity core range do not correlate there (most clearly seen by 
comparing Figures 3B,F). While average activity was generally 
higher in the upper field (Figures 3E,F), it did not always coincide 
with the highest cumulative activity areas (Figures 3C,D). This 
suggests that some less frequented areas may experience intensive 
short-term activity (grazing) over short periods. Spatial variation 
in cattle grazing activity has been observed to be  driven by 
vegetation preferences (71, 72) or by time of day (39); 
Supplementary Figures S3.3, S3.4 in Supplementary material S3 
highlight how activity changed over space over the course of each 
day. The long-term distribution of cattle activity may also 
fluctuate due to changes in the availability of vegetation (56, 73) 
or water sources (72, 74); a decrease in the quantity and 
availability of vegetation in the upper field may explain a notable 
shift toward the lower field as the study progressed 
(Supplementary Figures S3.5, S3.6 in Supplementary material S3).

Mean sensor-recorded temperature showed a diurnal pattern 
(Figure 4A) and decreased over the study (Figure 4F), consistent 
with seasonal trends in the United  Kingdom (75). Although 
temperature variations across the field were minimal (CV = 20.66%), 
lower temperatures were recorded on or near the ridgeline 
(Figures 4B–E). Sensor temperatures are generally higher than local 
weather station temperatures, most likely due to the sensor’s close 
proximity to the animal (Supplementary material S2). Using an 
animal-mounted sensor to record temperature and other 
environmental data could offer novel ways to understand and 
interpret both localized climatic conditions and related animal 
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behavior. For example, when precipitation increases, cattle may 
expand their foraging area (74) or roam further (76), and in hot 
weather, cattle may graze away from open pasture where shade may 
be lacking (67). However, there are some limitations to this ‘mobile 
sensor’ approach since observations are inherently biased toward 
areas where the animal spends more time, and certain locations may 
miss data entirely at key times (e.g., Figures 4B,E show missing data 
in the upper field because cows tended to rest in the lower 
field overnight).

Using either of the methods highlighted in this study, long-term 
spatiotemporal activity monitoring could be undertaken using data 
recorded as part of the normal operation of virtual fencing systems. 
The cell count method is extremely simple and computationally 
efficient and hence could easily be incorporated in real time into 
standard visualization tools used as part of virtual fencing systems. 
The BBMM is more complex and may require additional 
computational resources but can model behavior in between 
recorded locations and produces smoother distribution maps to 
help end-users visualize outputs. Using outputs from either 
approach could help inform and improve grazing practices by 
guiding rotation frequency to maintain forage quality and prevent 
overuse (8, 9), or alert graziers to animal health and welfare 
concerns where significant activity or behavioral changes occur (29, 
35, 77, 78), enabling timely interventions. In practical deployments 
of virtual fencing technology, boundary interactions that occur may 
not significantly affect overall cattle behavior (42, 79) but could alter 
space-use activity indices directly (e.g., animals moving quickly 
near the virtual boundary) or indirectly (e.g., animals behaving 
differently due to being constrained by the virtual fence). Hence 
better understanding of how the recorded activity index relates to 
virtual fence boundary interactions would be needed before our 
approach could be applied in contexts where the virtual fence is 
used as part of grazing management. Similarly, different local 
environments, varying forage availability, topography, and weather 
conditions, may lead to distinct patterns of activity and grazing 
behavior and hence further work will be needed to generalize this 
approach across landscapes and livestock types (80–82).
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