
95% of researchers rate our articles as excellent or good
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.
Find out more
ORIGINAL RESEARCH article
Front. Vet. Sci.
Sec. Animal Nutrition and Metabolism
Volume 12 - 2025 | doi: 10.3389/fvets.2025.1533728
The final, formatted version of the article will be published soon.
You have multiple emails registered with Frontiers:
Please enter your email address:
If you already have an account, please login
You don't have a Frontiers account ? You can register here
The objective of this study was to assess the effect of fermented onion (FO) on the growth performance of Liangshan Black Sheep (LBS) and to elucidate its potential molecular mechanisms from a multi-omics perspective. A total of 20 LBS were randomly assigned to one of four groups and fed diets containing 0%, 10%, 20%, or 30% fermented onions, respectively. The initial and final body weights were recorded. Following the termination of the experiment, the control group and the group exhibiting the most significant increase in average daily gain (ADG) were selected for slaughter. Rumen epithelial tissue was then collected for transcriptome sequencing, while fermented and unfermented onions were collected for untargeted metabolomics.The study revealed that the supplementation of 20% FO led to a notable enhancement in the ADG of LBS, whereas the addition of 30% resulted in a growth-inhibitory effect. Metabolomic analysis revealed that the fermentation process markedly elevated the concentration of bioactive compounds in the onion, including quercetin, rutin, luteolin, myricetin, 4'-methoxyflavone and other flavonoids, as well as linoleic acid, γ-linolenic acid and diverse amino acids. Transcriptome analysis revealed 34 differentially expressed genes (DEGs), which were primarily enriched in protein-related signalling pathways, glycerolipid metabolism, and digestion and absorption-related pathways. The appropriate addition of FO has been demonstrated to promote the growth performance of LBS by increasing the concentration of bioactive substances and regulating metabolic processes and gene expression. The findings of this study provide a scientific basis for improving the growth performance of LBS and making more effective use of onion resources, and contribute new insights to the development and utilization of feeds.
Keywords: fermented onion, Liangshan black sheep, Transcriptome, Metabolomics, Rumen, Average daily gain
Received: 24 Nov 2024; Accepted: 07 Apr 2025.
Copyright: © 2025 Yang, Wang, Qi, Jin, Guan and Huang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence:
Chaoyun Yang, Xichang College, Xichang, China
Ran Guan, Xichang College, Xichang, China
Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Research integrity at Frontiers
Learn more about the work of our research integrity team to safeguard the quality of each article we publish.